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The existence of nontrivial curves of constant width was already
known to Euler [4]. They have since become an active subject of
study, appearing in many different contexts and having surprising
applications in different areas of mathematics and engineering.

The notion of diametrically maximal sets appeared later, at the
beginning of last century, as a generalization of constant width sets
[8]. A set in a metric space is diametrically maximal (or complete)
if the addition of any point to the set increases the diameter.



It is well known that every bounded set C can be completed, in the
sense that there is always a complete set D containing C such that
diamC = diamD (see, for example, the survey [2]). Such a set D is
called a completion of C. In general, a set can have infinitely many
completions. We denote by H the family of all nonempty, closed,
bounded and convex sets in our space, endowed with the Hausdorff
metric. The diametric completion mapping

γ : H → 2H

associates with each C ∈ H the family of all its completions. The
question with which we are mainly concerned in this talk can be
phrased in a simple manner: is γ a continuous function?



Every complete set satisfies the spherical intersection property and
therefore it is an intersection of closed balls [2]. For this reason,
γ is somehow related to the ball hull mapping β, which associates
with every bounded set the intersection of all balls containing it. It
is known that β need not be continuous, even in three dimensional
spaces [11]. Hence, having in mind that

γ = γ ◦ β ,

one might expect a similar behavior of γ. To our surprise, this is
not so and we show that γ is locally Lipschitz continuous in the wide
class of normed spaces with Jung constant less than 2. This class
includes the spaces with normal structure [5] and, in particular, the
finite dimensional spaces.



The setting for the following is a normed real vector space (X, ‖·‖).
For a subset C ⊂ X , we let diam‖·‖C denote the diameter of C.
Given a point x ∈ X , the radius of C with respect to x is defined as

r(x,C) = sup{‖x− y‖ : y ∈ C} .

If C is a bounded set, then C is included in the ball with center x
and radius r(x,C), for every x ∈ X . When x ∈ C, it is clear that

r(x,C) ≤ diamC

and the problem of covering a bounded set C by a ball with radius
smaller than diamC is a classical subject in convex geometry and
functional analysis.



In this latter context, a normed space X has normal structure
if for each C ∈ H there is a point x ∈ C such that r(x,C) < dC .
Different generalizations of this concept can be found in the literature.
The Jung constant J(X) is defined by

J(X) = sup{2r(C) : C convex, diamC = 1} ,

where
r(C) = inf{r(x,C) : x ∈ X}

is the radius of Chebyshev of C [1]. Notice that J(X) < 2 implies
that every bounded set C can be included in a ball with radius smaller
than diamC (now the center of the ball need not be in C). It is well
known that J(X) < 2 does not imply normal structure: the space
`∞ with the usual sup norm is an example.



We denote by ρ the Hausdorff metric on H that is induced by the
norm and by ∆ the Hausdorff metric on the family of all nonempty,
closed and bounded sets in 2H that is induced by the metric ρ. Con-
tinuity in the following refers to these metrics.

Theorem 1.The diametric completion mapping γ is locally Lip-
schitz continuous in spaces with Jung constant less than 2.

Let X satisfy J(X) < 2 and let τ satisfying J(X)/2 < τ < 1.
Consider two sets C,C ′ ∈ H and let DCC ′ = max{diamC, diamC ′}
and dCC ′ = min{diamC, diamC ′} . The idea of the proof is showing
that, if C,C ′ satisfy the condition

ρ(C,C ′) ≤ β dCC ′



with β = 1−τ
10τ+2, then

∆(γ(C), γ(C ′)) ≤ DCC ′

β dCC ′
ρ(C,C ′) .

Notice that, when DCC ′ = 0, the above constant (which has no
meaning since dCC ′ = 0 as well) can be replaced by 1. Therefore, we
may assume that DCC ′ > 0 and, using

ρ(C,C ′) ≤ β dCC ′

together with

dCC ′ ≥ DCC ′ − 2ρ(C,C ′) ,



we have

dCC ′ ≥
DCC ′

1 + 2β
> 0

which yields

∆(γ(C), γ(C ′)) ≤ DCC ′

β dCC ′
ρ(C,C ′)

≤ 1 + 2β

β
ρ(C,C ′)

an inequality that proves the local Lipschitz continuity of γ, having
in mind that

β =
1− τ

10τ + 2



Let us say that a normed space X satisfies property (G) if every
bounded set C ⊂ X can be included in a ball with radius smaller
than diamC. This property is a particular case of the notion of
relative normal structure [7]. It is natural to ask whether the condition
J(X) < 2 (which is a uniform version of property (G)) can be replaced
in Theorem 1 by property (G).

If C ⊂ X is a bounded subset of a normed space X , the wide
spherical hull η(C) and the tight spherical hull θ(C) of C are de-
fined as

η(C) =
⋂
x∈C

B(x, diamC)

and
θ(C) =

⋂
x∈η(C)

B(x, diamC) .



These two mappings, which associate with each set an intersection
of closed balls containing it, have been studied in connection with
different questions in convexity, variational and functional analysis.
However, some of their basic properties and possible applications to
set covering, approximation and optimization problems have been
hardly explored.

Corollary 2. The wide spherical hull mapping η is locally Lips-
chitz continuous in spaces with Jung constant smaller than 2.

The proof of this result is just a direct application of Theorem 1,
together with the following characterization of η(C) given in [9]:

η(C) =
⋃
{D : D ∈ γ(C)} .



In the general case, a similar result is available for convex bodies
with nonempty interior (a similar result was proved for β in [11]).
Given C ∈ H, denote by B(C, r) ⊂ H the closed ball with center C
and radius r. Recall that the inner radius rC is the supremum of the
radii of all balls contained in C.

Proposition 3. Let C ∈ H be a set with inner radius rC >
0. Then η and θ are locally Lipschitz continuous mappings in
B(C, rC/2).

More precisely, we show that defining

λC := 12(diamC + rC)/rC,



then
ρ(η(D), η(D′)) ≤ λC ρ(D,D′)

for every D,D′ ∈ B(C, rC/2) with

ρ(D,D′) < rC/6 .

Analogously, there exists a positive constant µC satisfying

ρ(θ(D), θ(D′)) ≤ µC ρ(D,D′)

for every D,D′ ∈ B(C, rC/2) with

ρ(D,D′) < rC/(4 + 2λC) .



The continuity of the diametric completion mapping γ can also be
considered from the point of view of the space of equivalent norms.
Indeed, if ‖ · ‖ and | · | are two different equivalent norms, they
induce different mappings γ‖·‖(·) and γ|·|(·). It is quite natural to ask
whether, for given C ∈ H, the mapping

‖ · ‖ → γ‖·‖(C)

is continuous or even whether it has a Lipschitz behavior. Given a
normed space (X, ‖ · ‖) and ε ≥ 0, we say that | · | is an ε-equivalent
norm on X if, for every x, y ∈ X ,

(1− ε)‖x− y‖ ≤ |x− y| ≤ (1 + ε)‖x− y‖ . (1)



Since we are dealing with more than one norm, we will specify in
the notation which is the norm we are dealing with. For instance, the
self-Jung constant Js|·|(X) relative to | · | is defined as

Js|·|(X) = sup{2rC(C) : C convex, diamC = 1},

where rC(C) = inf{r(x,C) : x ∈ C}. However, ρ and dist will
always refer to the norm ‖ · ‖.

Proposition 4.Let (X, ‖·‖) be a finite dimensional normed space
and let |·| be an ε-equivalent norm. Then, for every C ∈ H, there
is a constant M‖·‖(C) such that,

∆‖·‖(γ‖·‖(C), γ|·|(C)) ≤ 2ε

1− ε
M‖·‖(C) .



A (possibly not sharp) estimate for M‖·‖(C) is

M‖·‖(C) =
diam‖·‖C

1− τ

(
1 +

diam‖·‖C − r‖·‖(C)

r‖·‖(C)
(2− τ )

)
,

where
r‖·‖(C) = min{inr‖·‖(K) : K ∈ γ‖·‖(C)}

and inr‖·‖(K) denotes the inner radius of K (the supremum of the

radius of balls contained in K). If X is a normed space of infinite
dimension and Js‖·‖(X) < 1, the same result as in Proposition 4

holds for any convex set C ∈ H with nonempty interior. In this case,
r‖·‖(C) can be replaced directly by inr‖·‖C.



Continuous selections of multivalued mappings have various appli-
cations in geometry of Banach spaces, convex sets, fixed point theory,
approximation theory, and other fields. It is a natural question to ask
whether the diametric completion mapping γ admits a continuous
selection. We show that this is the case in finite dimensional, strictly
convex spaces.

Theorem 5. In a finite dimensional space X with strictly convex
norm, the maximal volume completion ζ is a continuous selection
for γ.

We use a result of Groemer [6]. He showed that among the tight
covers of C there is one of maximal volume, that this is a completion
of C, and that it is uniquely determined if the norm is strictly convex.



One may ask whether general results on the existence of continuous
selections can be applied in the case of the mapping γ. The main
difficulty is that most of them are valid only for convex valued map-
pings. The diametric completion mapping γ is in general not convex,
as we point out with the next result.

Proposition 6.A finite dimensional normed space satisfies prop-
erty (A) if and only if the set γ(C) is convex, for every C ∈ H.

A normed space X has property A if every diametrically maximal set
in X has constant width (Egglestone [3]). Our last result improves a
previous result by Yost [12].

Proposition 7. In a finite dimensional space X, the set of all
norms satisfying property (A) is closed.
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