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NOTES
Edited by Ed Scheinerman

A Simpler Proof of the Von Neumann
Minimax Theorem

Hichem Ben-El-Mechaiekh and Robert W. Dimand

Abstract. This note provides an elementary and simpler proof of the Nikaidô-Sion version of
the von Neumann minimax theorem accessible to undergraduate students. The key ingredient
is an alternative for quasiconvex/concave functions based on the separation of closed convex
sets in finite dimension, a result discussed in a first course in optimization or game theory.

1. INTRODUCTION. The minimax theorem, proving that a zero-sum two-person
game must have a solution, was the starting point of the theory of strategic games as
a distinct discipline. It is well known that John von Neumann [15] provided the first
proof of the theorem, settling a problem raised by Emile Borel (see [2, 8] for detailed
historical accounts).

Proofs of the minimax theorem based on the Brouwer fixed point theorem or the
Knaster-Kuratowski-Mazurkiewicz (KKM) principle are elegant and short (see, e.g.,
[2, 8]) but cannot be considered elementary. Indeed, both fundamental results require
substantial groundwork going beyond the typical North American undergraduate cur-
riculum (e.g., such deep results as the nonretraction theorem of the unit ball onto its
boundary in a Euclidean space or Sperner’s lemma on the existence of complete la-
belings for a Euclidean simplex). A number of elementary proofs for the nonlinear
case are worth mentioning. H. Brézis [4] and G. Garnir [5] provide elementary and
simple proofs in the convex/concave case. Another elementary proof is given by I. Joó
[6], who bases his argument on a lemma of F. Riesz on the nonempty intersection
of a family of compact sets having the finite intersection property. A fourth, elemen-
tary but in our opinion not simple proof is due to J. Kindler and has appeared in the
MONTHLY [7].

The aim of this note is to provide a simpler and very elementary proof of the
Nikaidô-Sion version of the minimax theorem which is accessible to students in an
undergraduate course in game theory. The proof is based on a result of Victor Klee [9]
on convex covers of closed convex subsets of a Euclidean space. Klee’s result derives
in an easy way from the separation of convex sets in Euclidean spaces, a result often
discussed in a first course on continuous optimization (which, in many curricula, is a
prerequisite to the game theory course).

2. AN ALTERNATIVE FOR NONLINEAR SYSTEMS OF INEQUALITIES
AND MINIMAX. Although von Neumann originally formulated the minimax theo-
rem for linear forms, he quickly became well aware that convexity of level sets of the
functionals involved was sufficient for the proof to hold true, thus providing an early
definition of the concept of quasiconvexity before its time [15]. It was not until 1954
that H. Nikaidô [11] and later in 1958 M. Sion [13] formulated the minimax theorem
for quasiconvex/concave and lower/upper semicontinuous functions.
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Throughout this paper, all topological vector spaces are assumed to be vector spaces
over the field R of real numbers equipped with a Hausdorff topology.

Definition 1. A real function f : X −→ R defined on a subset X of a topological
vector space is:

(i) quasiconvex if ∀λ ∈ R, the level set {x ∈ X : f (x) < λ} is a convex subset of
X ;

(ii) upper semicontinuous (u.s.c.) if ∀λ ∈ R, the level set {x ∈ X : f (x) < λ} is an
open subset of X .

A function f is quasiconcave if − f is quasiconvex; it is lower semicontinuous
(l.s.c.) if − f is u.s.c. Note that f is quasiconvex on X if and only if f (µx1 + (1 −
µ)x2) ≤ max{ f (x1), f (x2)} for all x1, x2 ∈ X and all µ ∈ [0, 1]. Convex functions are
clearly quasiconvex.

The connection between the minimax theorem and the solvability of systems of lin-
ear inequalities and the crucial role played by convexity were first outlined by Jean
André Ville in 1938, when he published the first elementary proof of the minimax
theorem in an appendix to lecture notes of Emile Borel’s Sorbonne course on the ap-
plication of probability theory to games of chance [14] (Ville was a student of Borel).

Ville’s fundamental result for the proof of the minimax theorem is in fact—as von
Neumann and Morgenstern said in their celebrated Theory of Games and Economic
Behavior [16]—an alternative for the solvability of linear systems of inequalities. This
linear alternative can be extended to an alternative for nonlinear systems of inequal-
ities: the key ingredient, here, for the Nikaidô-Sion versions of the von Neumann
theorem.

Theorem 2 (An Alternative for Nonlinear Systems of Inequalities). Let X and Y
be two convex subsets of topological vector spaces, with Y compact, and let f̃ , f , g,
g̃ : X × Y −→ R be four functions satisfying:

(i) f̃ (x, y) ≤ f (x, y) ≤ g(x, y) ≤ g̃(x, y) for all (x, y) ∈ X × Y ;
(ii) y 7→ f̃ (x, y) is lower semicontinuous and quasiconvex on Y , for each fixed

x ∈ X;
(iii) x 7→ f (x, y) is quasiconcave on X, for each fixed y ∈ Y ;
(iv) y 7→ g(x, y) is quasiconvex on Y , for each fixed x ∈ X; and
(iv) x 7→ g̃(x, y) is upper semicontinuous and quasiconcave on X, for each fixed

y ∈ Y .

Then for any λ ∈ R, the following alternative holds:

(A) there exists x̄ ∈ X such that g̃(x̄, y) ≥ λ, for all y ∈ Y ; or
(B) there exists ȳ ∈ Y such that f̃ (x, ȳ) ≤ λ, for all x ∈ X.

Ville’s result [14] corresponds to the case λ = 0, X = Rn
+

(the positive cone in
Rn), Y = 1 (the standard n-simplex, clearly a closed, bounded, and hence compact
set), and f̃ (x, y) = f (x, y) = g(x, y) = g̃(x, y) = −

∑p
j=1 y jϕ j (x), a bilinear form

in the variables (x, y = (y j )) ∈ Rn
+
×1 (ϕ j (x) being linear forms).

Corollary 3. Under the same hypotheses as in Theorem 2, we have:

α̃ = sup
X

inf
Y

g̃(x, y) ≥ min
Y

sup
X

f̃ (x, y) = β̃.
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Proof. Assume that α̃ < β̃. Let λ be an arbitrary but fixed real number strictly between
α̃ and β̃. By Theorem 2, either there exists ȳ ∈ Y such that f̃ (x, ȳ) ≤ λ for all x ∈ X,
and thus β̃ ≤ λ < β̃ which is impossible, or there exists x̄ ∈ X such that g̃(x̄, y) ≥ λ
for all y ∈ Y, and thus α̃ ≥ λ > α̃, which is absurd. Hence α̃ ≥ β̃.

Note that the inequality in Corollary 3 is in fact equivalent to the alternative for
nonlinear systems of inequalities. Indeed, if α̃ ≥ β̃ and conclusion (A) in Theorem 2
fails, then ∃ȳ ∈ Y such that supX f̃ (x, ȳ) ≤ λ and (B) is thus satisfied. Note also that
the minY in Corollary 3 is justified by the fact that the supremum of a family of lower
semicontinuous functions is also lower semicontinuous, and that a lower semicontinu-
ous function on a compact domain achieves its minimum.

The Nikaidô-Sion formulation [11, 13] of the minimax theorem of von Neumann
[15, Theorem 3.4] follows immediately with f̃ = f = g = g̃.

Theorem 4. Let X and Y be convex subsets of topological vector spaces, with Y com-
pact, and let f be a real function on X × Y such that:

(i) x 7→ f (x, y) is upper semicontinuous and quasiconcave on X for each fixed
y ∈ Y ; and

(ii) y 7→ f (x, y) is lower semicontinuous and quasiconvex on Y for each fixed
x ∈ X.

Then:

sup
X

min
Y

f (x, y) = min
Y

sup
X

f (x, y).

Proof. Let α̃ = α = supX minY f (x, y) and β̃ = β = minY supX f (x, y). Since the
inequality α ≤ β is always true, it follows from Corollary 3 that α = β.

3. A SIMPLER PROOF OF THE ALTERNATIVE. The basis for the proof of the
alternative for nonlinear systems of inequalities is the following result of Victor Klee
[9] (see also Claude Berge [3] for extensions).

Lemma 5. Let C and C1, . . . ,Cn be closed convex sets in a Euclidean space satis-
fying: (i) C ∩

⋂n
i=1,i 6= j Ci 6= ∅ for j = 1, 2, . . . , n; and (ii) C ∩

⋂n
i=1 Ci = ∅. Then

C 6⊆
⋃n

i=1 Ci .

Proof. (We reproduce Victor Klee’s proof as, truly, one cannot do any better.) One
may assume with no loss of generality that the sets C and Ci , i = 1, . . . , n, are all
compact (otherwise, one may replace C by the compact convex finite polytope C ′ :=
Conv{y j : j = 1, . . . , n}, where the y j ∈ C ∩

⋂n
i=1,i 6= j Ci are provided by (i), and Ci

by C ′i := Ci ∩ C ′). The proof is by induction on n.
If n = 1, (i) asserts that C is nonempty and (ii) that C and C1 are disjoint. Thus,

clearly C 6⊆ C1. Suppose that the thesis holds for n = k − 1 and consider the case
n = k, i.e., assume that {C, {Ci }

k
i=1} is a collection of compact convex sets such that

for j = 1, . . . , k, C ∩
⋂k

i=1,i 6= j Ci 6= ∅, and (C ∩ Ck) ∩
⋂k−1

i=1 Ci = ∅. The disjoint

compact convex sets (C ∩ Ck) and
⋂k−1

i=1 Ci can be strictly separated by a hyperplane
H (a short and elementary proof of the separation theorem in finite dimensions can be
found in [10]). Putting C ′ := H ∩C and C ′i := H ∩Ci , it follows that C ′ ∩

⋂k−1
i=1 C ′i =

∅. Moreover, for a given arbitrary j0 ∈ {1, . . . , k − 1}, let y0 ∈ C ∩
⋂k

i=1,i 6= j0
Ci , so
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that y0 ∈ C ∩ Ck , and let yk ∈ C ∩
⋂k−1

i=1 Ci be arbitrary. Clearly, the points y0 and
yk are strictly separated by H . The intersection z̄ of the line segment [y0, yk] with
H belongs to C as well as to

⋂k−1
i=1,i 6= j0

Ci . The integer j0 being arbitrary, hypotheses

(i) and (ii) are verified for the collection {C ′, {C ′i }
k−1
i=1 }. By the induction hypothesis,

C ′ = H ∩ C 6⊆
⋃k−1

i=1 C ′i =
⋃k−1

i=1 Ci ∩ H . Since (H ∩ C) ∩ Ck = ∅, it follows that
H ∩ C 6⊆

⋃k
i=1 Ci ∩ H , and thus C 6⊆

⋃k
i=1 Ci .

Proof of Theorem 2. Suppose that the alternative for nonlinear systems of inequalities
does not hold, i.e., both (A) and (B) fail. This amounts to saying that the collection
of open level sets {Uy := {x ∈ X : g̃(x, y) < λ} : y ∈ Y } is a cover of X and the
collection {Vx := {y ∈ Y : f̃ (x, y) > λ} : x ∈ X} is an open cover of Y (Uy and Vx

are open due to the semicontinuity hypotheses).
Since Y is compact, {Vx : x ∈ X} admits a finite subcover {Vxk : k = 1, . . . ,m}.

The convex polytope C := Conv{xk : k = 1, . . . ,m} lies in a finite-dimensional sub-
space L of the underlying linear topological space containing X . The subspace L be-
ing homeomorphic to a Euclidean space (see, e.g., Rudin [12]), C is also compact.
Thus, it can be covered by a finite subcollection {Ui = Uyi ∩ L : i = 1, . . . , n}. One
can drop indices from i = 1, . . . , n so as to make the cover {Ui } minimal, in the
sense that C ⊆

⋃n
i=1 Ui but C 6⊆

⋃n
i=1,i 6= j Ui for j = 1, . . . , n. For i = 1, 2, . . . , n, let

Ci := {x ∈ L : g̃(x, yi ) ≥ λ} = L \Ui , a closed convex subset of L . The fact that C is
covered by {Ui } is precisely the emptiness of the intersection C ∩

⋂n
i=1 Ci . The min-

imality of {Ui } is nothing else than C ∩
⋂n

i=1,i 6= j Ci 6= ∅ for j = 1, 2, . . . , n. Lemma
5 implies the existence of x0 ∈ C with x0 /∈ Ci , and thus g(x0, yi ) ≤ g̃(x0, yi ) < λ for
i = 1, 2, . . . , n. The quasiconvexity of g(x0, ·) implies the existence of x0 ∈ C such
that

g(x0, y) < λ,∀y ∈ D := Conv{yi : i = 1, . . . , n}.

A similar argument (left to the reader) yields the existence of y0 ∈ D such that:

f (x, y0) > λ, ∀x ∈ C.

Thus,

λ < f (x0, y0) ≤ g(x0, y0) < λ,

a contradiction.

4. CONCLUDING REMARKS. A related alternative was provided in [1], based on
the Brouwer fixed point theorem.

One can opt for a more geometric expression of the infsup inequality in Corollary
3 as an alternative between the existence of a coincidence between “assymmetric” re-
lations representing level sets of numerical functions, and the existence of what game
theorists call maximal elements for those relations. Such a coincidence result is in-
strumental in proving the existence of an equilibrium for generalized games involving
more than one preference relation. We elect to include it here, not only for the sim-
plicity of its proof, but also in order to come back to a geometric point of view which
might be more appealing to some students.

Given a subset A in a cartesian product of sets X × Y , denote by Ac its complement,
and by A[x] and A[y] the sections {y ∈ Y : (x, y) ∈ A} and {x ∈ X : (x, y) ∈ A} re-
spectively; also, denote by A−1 the inverse relation {(y, x) ∈ Y × X : (x, y) ∈ A} and
by 1A the characteristic function of A: 1A(x, y) := 1 if (x, y) ∈ A, and 0 otherwise.
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Let us now call a pair of relations ( Ã, A) in a cartesian product X × Y of subsets of
topological vector spaces a von Neumann pair if

(i) Ã ⊆ A,
(ii) A[y] is convex, for all y ∈ Y , and

(iii) Ã[x] is open and Y \ Ã[x] is convex for all x ∈ X .

Theorem 6. Let ( Ã, A) and (B̃, B) be two pairs of relations in the cartesian product
X × Y of two nonempty convex subsets X and Y in topological vector spaces. Assume
that Y is compact and that ( Ã, A) and (B̃−1, B−1) are von Neumann pairs.

Then one of the following must hold:

(1) (Maximal Element) Ã[ȳ] = ∅ for some ȳ ∈ Y or B̃[x̄] = ∅ for some x̄ ∈ X.
(2) (Coincidence) A ∩ B 6= ∅.

Proof. Assume possibility (1) fails, that is:

Ã[y] 6= ∅ for all y ∈ Y and B̃[x] 6= ∅ for all x ∈ X.

We show that A and B must have a coincidence.
Define f̃ , f, g, g̃ : X × Y −→ R as:

f̃ := 1 Ã, f := 1A, g := 1Bc , and g̃ := 1B̃c ,

and let λ = 1/2 in Theorem 2.
The reader can readily verify that:

• f̃ ≤ f and g ≤ g̃;
• the failure of possibility (1) amounts to the failure of the infsup inequality

supX infY g̃(x, y) ≥ minY supX f̃ (x, y) in Corollary 3, and equivalently to the
failure of the conclusion of Theorem 2 ( Ã[y] 6= ∅ for all y ∈ Y is the negation of
alternative (B), while B̃[x] 6= ∅ for all x ∈ X negates alternative (A));

• all hypotheses (ii) to (iv) of Theorem 2 hold true (for arbitrary λ ∈ R, level sec-
tions of the numerical functions defined above are either ∅, all of X or Y , or the
appropriate sections of the relations involved).

Naturally, the only remaining possibility is that the middle inequality in hypothesis
(i) of Theorem 2 fails, that is:

∃(x0, y0) ∈ X × Y with g(x0, y0) < f (x0, y0).

This can only happen when g(x0, y0) = 0 < λ = 1
2 < 1 = f (x0, y0), i.e.,

(x0, y0) ∈ A ∩ B.

ACKNOWLEDGMENTS. We wish to thank an anonymous referee for constructive remarks and the correc-
tion of a few errors, and for bringing to our attention references [4, 5], where other elementary proofs for the
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Probabilistically Proving that ζ(2) = π2/6

Luigi Pace

Abstract. We give a short proof of the identity ζ(2) = π2/6 using tools from elementary
probability. Related identities, due to Euler, are also briefly discussed.

1. INTRODUCTION. Let us consider the zeta function

ζ(s) =
∞∑

k=1

1

ks

for real s > 1. The purpose of this note is to give a short, natural proof of the iden-
tity ζ(2) = π2/6 using tools from elementary probability. Inspiration comes from the
simple proof given in [2]. Probability contributes in two ways. First, it adds motivation
to the starting point of calculations, which is viewed as the solution of a general prob-
lem. Second, it puts the later steps into a smooth flow, exploiting a simple symmetry.
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