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1 Introduction
Lecture 1,
Oct 30, 2006

The course will deal with convex symmetric bodies in Rn. In the first few lectures we
will formulate and prove Dvoretzky theorem, Theorem 1.2.

Definition 1.1. A convex, symmetric (around 0) body K ⊂ Rn is a compact set with
non-empty interior which is:

• convex: x, y ∈ K and λ ∈ [0, 1] =⇒ λx + (1− λ)y ∈ K

• symmetric: x ∈ K =⇒ −x ∈ K.

Examples: Consider the family of normed linear spaces `n
p over R which are just Rn

equipped with the norm:

‖x‖p =

( n∑
i=1

|xi|p
)1/p

for 1 ≤ p < ∞

and
‖x‖∞ = max

1≤i≤n
|xi|.

Then the unit balls of `n
p :

Bn
p = {x ∈ Rn : such that ‖x‖p ≤ 1}

are examples of convex, symmetric bodies.

(Examples of p = 1, 2,∞ for n = 2, 3)

∗These notes are based on notes that Boris Levant prepared following a similar course given by
me a few years ago
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Theorem 1.2. (A. Dvoretzky, 1960) For every ε > 0 there exists a constant c =
c(ε) > 0 such that for every n ∈ N and every convex symmetric body in K ⊂ Rn there
exists a subspace V ⊆ Rn satisfying:

1. dim V = k, where k ≥ c · log n.

2. V ∩K is “ε-euclidean”, which means that there exists r > 0, such that:

r · V ∩Bn
2 ⊂ V ∩K ⊂ (1 + ε)r · V ∩Bn

2 .

For example the unit ball of `n
∞ - the n-dimensional cube - is far from the Euclidean

ball. Its easy to see, that the ratio of radii of the bounding and the bounded ball is√
n:

Bn
2 ⊂ Bn

∞ ⊂ √
nBn

2

and
√

n is the best constant. Yet, according to Dvoretzky theorem, we can find a
subspace of Rn of dimension proportional to log n in which the ratio of bounding and
bounded balls will be 1 + ε.
Remark: The constant c in the formulation of Dvoretzky theorem depends on the
quality of approximation - ε. It is known, that: c1 · ε

(log 1
ε
)2
≤ c ≤ c2 · 1

log 1
ε

. Clearly,

there is a big gap between the upper and lower bounds and the exact dependence is
an important open question.

Proposition 1.3. For a non-empty set K denote ‖x‖K = inf{λ > 0 : x
λ
∈ K}

1. ‖x‖K is a norm ⇐⇒ K is a convex symmetric body.

2. Let K, L be two convex, symmetric bodies. K ⊂ L ⇐⇒ ∀x. ‖x‖K ≥ ‖x‖L.

The proof of the proposition is left as an exercise. Proposition 1.3 allows us to exercise

identify the class of convex symmetric bodies in Rn with the class of norms on Rn. It
justifies the following equivalent formulation of Dvoretzky theorem:

Theorem 1.4. For every ε > 0 there exist a constant c = c(ε) > 0 such that for
every n ∈ N and every norm ‖·‖ in Rn there exist a subspace V ⊆ Rn satisfying:

1. dim V = k, where k ≥ c · log n.

2. There exists 0 < M < ∞ such that for every x ∈ V :

M · ‖x‖2 ≤ ‖x‖ ≤ (1 + ε)M · ‖x‖2.

In other words, the norms ‖·‖2 and ‖·‖ are equivalent on V up to ε.
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Very vague sketch of the proof: Consider the unit sphere of `n
2 , the surface of

Bn
2 , which we will denote by Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. Let ‖x‖ be some

arbitrary norm in Rn. The first task will be to show that there exists a “large” set
Sgood ⊂ Sn−1 satisfying ∀x ∈ Sgood. |‖x‖ −M | < εM where M is the average of ‖x‖
on Sn−1. Moreover, we shall see that, dependeing on the Lipschitz constant of ‖ · ‖,
the set Sgood is “almost all” the sphere in the measure sense. This phenomenon is
called concentration of measure.
The next stage will be to pass from the “large” set to a large dimensional subspace
of Rn contained in it. Denote O(n) - the group of orthogonal transformations from
Rn into itself. Choose some subspace V0 of appropriate dimension k and fix an ε-net
N on V0 ∩ Sn−1. For some x0 ∈ N ,“almost all” transformations U ∈ O(n) will send
it into some point in Sgood. Moreover, if the “almost all” notion is good enough, we
will be able to find a transformation that sends all the points of the ε-net into Sgood.
Now there is a standard approximation procedure that will let us pass from the ε-net
to all points in the subspace.

2 Concentration of Measure

Denote by µ the normalized Haar measure on Sn−1 - the unique, probability measure
which is invariant under rotations. In other words, for all U ∈ O(n), the group of
orthogonal transformations, and every measurable set A ⊆ Sn−1: µ(A) = µ(UA).
There are many equivalent ways to define this measure. Here is one: µ(A) is the n
dimensional Lebesgue measure of the cone defined by A intersected with the ball, Bn

2 ,
and normalized (by divided by the measure of the whole ball). The uniqueness of
this measure will be important for us. The exact definition and proof of uniqueness
can be found in [MS].

Theorem 2.1. (P. Levy) Let, f : Sn−1 −→ R be a Lipshitz function with a constant
L:

∀x, y ∈ Sn−1. |f(x)− f(y)| ≤ L · ‖x− y‖2.

Then,

µ{x ∈ Sn−1 : |f(x)− Ef | > ε} ≤ Ce−
ε2n
16L2

for some specific absolute constant 0 < C < ∞.

Remark: The theorem also holds with the expectation of f replaced by its median.

Theorem 2.2. (Brunn–Minkowski inequality) Let, A,B be two measurable non-
empty sets in Rn. Then:

V ol(A + B)1/n ≥ V ol(A)1/n + V ol(B)1/n

We can reformulate the inequality in an equivalent multiplicative form:

3



Theorem 2.3. (Brunn–Minkowski inequality, multiplicative form) Let, A,B be two
measurable non-empty sets in Rn, 0 < λ < 1. Then:

V ol(λA + (1− λ)B) ≥ V ol(A)λ · V ol(B)1−λ.

Claim 2.4. The two inequalities in theorems 2.2 and 2.3 are equivalent.

Proof. 2.2⇒ 2.3)

V ol(λA + (1− λ)B)1/n ≥ V ol(λA)1/n + V ol((1− λ)B)1/n

= λV ol(A)1/n + (1− λ)V ol(B)1/n

≥ V ol(A)λ/n · V ol(B)(1−λ)/n.

Where the last inequality follows from the inequality of arithmetic and geometric
mean or equivalently by the concavity of the log function.

2.3⇒ 2.2) Assume, that V ol(A), V ol(B) > 0.

V ol(A + B)

(V ol(A)1/n + V ol(B)1/n)n
= V ol

(
A + B

V ol(A)1/n + V ol(B)1/n

)
=

= V ol

(
λ

A

V ol(A)1/n
+ (1− λ)

B

V ol(B)1/n

)
.

Where, λ = V ol(A)1/n

V ol(A)1/n+V ol(B)1/n . Applying theorem 2.3 we get:

V ol(A + B)

(V ol(A)1/n + V ol(B)1/n)n
≥ V ol

(
A

V ol(A)1/n

)λ

· V ol

(
B

V ol(B)1/n

)1−λ

= 1.

Remark: For convex bodies (with non-empty interiors), equality holds in (each of
the two versions of) the Brunn–Minkowski inequality if and only if the two bodies
are homothetic.

Before proving the Brunn–Minkowski inequality we prove a corollary - The clas-
sical isoperimetric inequality. We first need to define the measure of the boundary of
a body in Rn.

Definition 2.5. Let A ⊂ Rn with a smooth boundary. Then the volume of the
boundary of A is defined as:

V ol(∂A) = lim
t→0

V ol(A + tBn
2 )− V ol(A)

t
,

given that the limit exists.
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Proposition 2.6. Denote by vn = V ol(Bn
2 ) - the volume of the n-dimensional Euclid-

ean ball. Then Bn
2 has the smallest volume of the boundary among all bodies of volume

vn in Rn.

Proof. Let A ⊂ Rn be some body, which has a finite volume of the boundary defined
in definition 2.5 and V ol(A) = vn. Define the following function: f(t) = V ol(A+tBn

2 ).
According to Brunn-Minkowski inequality, the derivative of f(t)1/n at t = 0 satisfies:

(f(t)1/n)′t=0 = lim
t→0

V ol(A + tBn
2 )1/n − V ol(A)1/n

t
≥ lim

t→0

V ol(tBn
2 )1/n

t
= V ol(Bn

2 )1/n

with equality for A = Bn
2 . On the other hand:

(f(t)1/n)′t=0 =
1

n
· f(0)1/n−1 · f ′(0) =

1

n
· V ol(A)1/n−1 · V ol(∂A).

Combining these equalities we get the result:

V ol(∂A) ≥ n · V ol(Bn
2 )1/n · V ol(A)1−1/n = n · vn = V ol(∂Bn

2 ).

Instead of directly proving the Brunn–Minkowski inequality, we will formulate and Lecture 2,
Nov 6, 2006

prove a generalization - the Prekopa-Leindler inequality:

Theorem 2.7. (Prekopa–Leindler) Let f, g, m : Rn −→ [0,∞) be three measurable
non-negative functions satisfying for some 0 < λ < 1:

∀x, y ∈ Rn. m(λx + (1− λ)y) ≥ f(x)λ · g(y)1−λ. (2.0.1)

Then: ∫

Rn

m ≥
( ∫

Rn

f

)λ

·
( ∫

Rn

g

)1−λ

Remark: Before proving the theorem, we would like to note, that the Brunn–
Minkowski inequality immediately follows from the Prekopa–Leindler inequality. To
see this, let the functions f, g be the indicator functions of the sets A and B re-
spectively, and let the function m be the indicator of the set λA + (1 − λ)B. These
functions satisfy condition (2.0.1) for every 0 < λ < 1 (check). Hence, according to check

theorem 2.7

V ol(λA + (1− λ)B) =

∫

Rn

m ≥
( ∫

Rn

f

)λ

·
( ∫

Rn

g

)1−λ

= V ol(A)λ · V ol(B)1−λ.

Exercise: Show that the Prekopa–Leindler inequality follows from the exercise

Brunn–Minkowski inequality. (The one dimensional case will be proved below.)
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Proof. The proof will be by induction on the dimension n. We delay checking the
n = 1 case.
Assume, the theorem is true for Rn. Consider three non-negative functions f, g, m :
Rn+1 → [0,∞), satisfying (2.0.1) for some 0 < λ < 1. Fix x0, y0 ∈ R and denote
z0 = λx0 + (1 − λ)y0. Define new functions fx0 , gy0 ,mz0 : Rn → [0,∞) by fixing
the first coordinate in the respective original functions: fx0(x) = f(x0, x), gy0(y) =
g(y0, y), mz0(z) = m(z0, z). The new functions also satisfy condition (2.0.1) of the
Prekopa–Leindler inequality (check), hence by the induction hypothesis: check

∫

Rn

mz0(x)dx ≥
( ∫

Rn

fx0(x)dx

)λ

·
( ∫

Rn

gy0(x)dx

)1−λ

. (2.0.2)

Note, that the last inequality holds true for every x0, y0, z0 satisfying the relationship
z0 = λx0 + (1− λ)y0. Now again define three new functions f̃ , g̃, m̃ : R→ [0,∞):

f̃(u) =

∫

Rn

fu(x)dx

g̃(u) =

∫

Rn

gu(x)dx

m̃(u) =

∫

Rn

mu(x)dx

According to (2.0.2), the functions f̃ , g̃, m̃ satisfy condition (2.0.1) of the Prekopa–
Leindler inequality in the one-dimensional case. Applying the conclusion of theo-
rem 2.7 to those functions we get the desired result:

∫

Rn+1

m =

∫

R
m̃ ≥

( ∫

R
f̃

)λ

·
( ∫

R
g̃

)1−λ

=

( ∫

Rn+1

f

)λ

·
( ∫

Rn+1

g

)1−λ

.

This concludes the induction step. In order to complete the proof we need to
prove the theorem in the one-dimensional case. First, we will show the Brunn–
Minkowski inequality in R. The volume is invariant under translations along R, a
simple approximation procedure that we’ll not reproduce in these notes (but was
shown in class) shows that it’s enough to consider A ⊆ (−∞, +ε] and B ⊆ [−ε, +∞).
Moreover, assume that 0 ∈ A ∩B. Then, clearly, A ∪B ⊆ A + B. Hence:

V ol(A+B) ≥ V ol(A∪B) = V ol(A)+V ol(B)−V ol(A∩B) ≥ V ol(A)+V ol(B)− 2ε

Letting ε tend to 0 proves Theorem 2.2 in the one-dimensional case.

Now, let f, g,m : R −→ [0,∞) satisfy condition (2.0.1). Note, that by Fubini’s
theorem, we can represent the integral of the positive real function:

∫

R
f =

∫ ∞

0

|{x : f(x) ≥ t}|dt (2.0.3)
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(check). We may assume by simple approximation and normalization argument, that check

‖f‖∞ = ‖g‖∞ = 1, we get that the sets {x : f(x) ≥ t} and {y : g(y) ≥ t} are
non-empty for every 0 ≤ t < 1. Let x, y ∈ R and t ∈ [0, 1) such that f(x) ≥ t and
g(y) ≥ t. Then ∀λ ∈ [0, 1]. m(λx + (1− λ)y) ≥ t. Hence:

{z : m(z) ≥ t} ⊇ λ{x : f(x) ≥ t}+ (1− λ){y : g(y) ≥ t}.

Applying the one dimensional Brunn–Minkowski inequality we get:

|{z : m(z) ≥ t}| ≥ |λ{x : f(x) ≥ t}+ (1− λ){y : g(y) ≥ t}| ≥
≥ λ|{x : f(x) ≥ t}|+ (1− λ)|{y : g(y) ≥ t}|.

Using the (2.0.3) we get

∫

R
m ≥

∫ 1

0

|{z : m(z) ≥ t}|dt

≥ λ

∫ 1

0

|{x : f(x) ≥ t}|dt + (1− λ)

∫ 1

0

|{y : g(y) ≥ t}|dt

= λ

∫

R
f + (1− λ)

∫

R
g

≥
( ∫

R
f

)λ

·
( ∫

R
g

)1−λ

by the arithmetic geometric inequality.

Brunn’s inequality This is another application of the Brunn–Minkowski inequality:
Consider K - a convex body in Rn+1 and let u be a unit vector in Rn+1. For each x
let Hx be the hyperplane

{y ∈ Rn+1 : (y, u) = x},
where (·, ·) denotes the usual inner product in Rn+1. Then the original inequality
proved by Brunn stateds that the function

f(x) = V ol(K ∩Hx)
1/n

is concave on its support. To illustrate that statement pick u = (1, 0, . . . , 0). Then
the slice of K perpendicular to u at some point x will be

K ∩Hx = Kx = {y = (y1, . . . , yn) : (x, y1, . . . , yn) ∈ K}.

Hence, according to Brunn’s inequality, the function f : R −→ R, f(x) = V ol(Kx)
1/n

is concave on the set S = {x : V ol(Kx) > 0}.
Note, that Brunn’s inequality implies that if for each x we replace Kx with the Euclid-
ean ball Bx of an appropriate radius, such that V ol(Kx) = V ol(Bx), then the body
we obtain in such a process is again convex (check!). This procedure is called Steiner check
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symmetrization and is a tool in proving several inequalities in convex geometry.

The next step towards the proof of Levy’s concentration inequality is to formulate
and prove an approximate isoperimetric inequality for the sphere Sn−1 equipped with
the usual Euclidean metric d(x, y) = ‖x−y‖2. (The same result holds for the geodesic
metric.) For a set A in Sn−1 and ε > 0 we denote Aε = {x ∈ Sn−1 : d(x,A) ≤ ε}.
Theorem 2.8. There are constants 0 < c < C < ∞ such that for all n and all
measurable A ⊆ Sn−1.

µ((Aε)
c) ≤ C

µ(A)
· e−cε2n. (2.0.4)

(µ denotes the unique rotational invariant probability measure on Sn−1.)

Proof. (Due to Arias-de-Reyna, Ball, and Villa.) We will first prove a similar state-
ment not on the sphere, but for subsets of the unit ball Bn

2 . Let A,B be two sets in Bn
2 ,

such that the distance between them is positive: d(A,B) = supx∈A, y∈B d(x, y) ≥ ε.
For every x ∈ A, y ∈ B we have:

∥∥∥∥
x + y

2

∥∥∥∥
2

2

+
ε2

4
≤

∥∥∥∥
x + y

2

∥∥∥∥
2

2

+

∥∥∥∥
x− y

2

∥∥∥∥
2

2

=
‖x‖2

2 + ‖y‖2
2

2
≤ 1,

where the second equality is just the parallelogram equality. Hence, we get:

∥∥∥∥
x + y

2

∥∥∥∥
2

≤
(

1− ε2

4

)1/2

=⇒ A + B

2
⊆

(
1− ε2

4

)1/2

Bn
2

=⇒ V ol

(
A + B

2

)
≤

(
1− ε2

4

)n/2

V ol(Bn
2 ) ≤ e−ε2n/8 · V ol(Bn

2 ).

On the other hand the Brunn-Minkowski inequality gives:

V ol

(
A + B

2

)
≥ V ol(A)1/2 · V ol(B)1/2.

Combining the last two inequalities we get:

V ol(B)

V ol(Bn
2 )
≤ V ol(Bn

2 )

V ol(A)
· e−ε2n/4. (2.0.5)

If we take B = (Aε)
c, we get an inequality, for the normalized Lebesgue measure lecture 3,

Nov 13, 2006
on the ball, analogues to the one we seek for the sphere. It is not hard to pass from
one to the other: Let A be a set in Sn−1 and denote B = (Aε)

c. Define the sets
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Ã = [1
2
, 1] × A and iB̃ = [1

2
, 1] × B. Easily, d(Ã, B̃) ≥ ε

2
. The measure of A can be

defined it terms of the volume of the cone:

µ(A) =
V ol([0, 1]× A)

V ol(Bn
2 )

.

Trivially we have: V ol([0, 1]× A) = 2n · V ol([0, 1
2
]× A). Hence:

V ol(Ã)

V ol(Bn
2 )

=
V ol([1

2
, 1]× A)

V ol(Bn
2 )

=

(
1− 1

2n

)
V ol([0, 1]× A)

V ol(Bn
2 )

=

(
1− 1

2n

)
· µ(A).

Applying the inequality (2.0.5) to the last result we get:

(
1− 1

2n

)
· µ(B) =

V ol(B̃)

V ol(Bn
2 )
≤ V ol(Bn

2 )

V ol(Ã)
· e−ε2n/16 =

1(
1− 1

2n

)
· µ(A)

· e−ε2n/16.

Thus setting C = 4 ≥=

(
1− 1

2n

)−2

and c = 1
16

we get the result. (The constants are

not the best possible.)

Remark: There is actually an isoperimetric inequality which implies Theorem 2.8:
For all ε > 0, among all measurable subsets of Sn−1 of a given measure, a cap of that
measure is the one for which µ(Aε) is minimal.

The next theorem is equivalent to Theorem 2.8 although we will only show one
direction. The theorem states, that Lipschitz functions on the sphere are “almost
constants” on “almost all” the sphere.

Theorem 2.9. (P. Levy) There exist constants 0 < c, C < ∞ such that if f :
Sn−1 −→ R is a Lipschitz function with constant L, i.e:

∀x, y ∈ Sn−1 |f(x)− f(y)| ≤ L‖x− y‖2,

and M is the median of f , namely:

µ({x : f(x) ≤ M}) ≥ 1

2
and µ({x : f(x) ≥ M}) ≥ 1

2
.

Then, for all t ∈ R:

µ({x : |f(x)−M | > t}) ≤ C · e− ct2n
L2 .

Proof. Assume first that L = 1. Denote A = {x : f(x) ≤ M}. Clearly:

{x : f(x) > M + t} ⊆ Ac
t ,
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which follows from the fact that f(x) is Lipschitz with constant 1. Hence, according
to Theorem 2.8:

µ({f(x)−M > t}) ≤ µ(Ac
t) ≤

4

µ(A)
e−t2n/16 ≤ 8e−t2n/16.

Similarly, check

µ({f(x)−M < −t}) ≤ µ(Ac
t) ≤ 8e−t2n/16.

Combining the two last inequalities yields the result. For a general L 6= 1, we have:

µ({|f(x)−M | > t}) = µ

({∣∣∣∣
f(x)

L
− M

L

∣∣∣∣ >
t

L

})
≤ 16e−t2n/16L2

.

Exercise: Deduce Theorem 2.8 from Theorem 2.9. exercise

Remark: It is easy to deduce from the proofs of Theorems 2.8 and 2.9 versions of
these theorems which are valid not only for the Euclidean unit sphere, but for unit
spheres of other norms, which are sufficiently uniformly convex. Let K ⊆ Rn be
convex, centrally symmetric body, and let ‖·‖K be its induced norm. K is called
uniformly convex with modulus δ(·) > 0, if for all ε > 0 and all x, y ∈ K,

‖x− y‖K ≥ ε =⇒ ‖x + y‖K ≤ 2(1− δ(ε)).

In the versions alluded to above δ(ε) replaces ε2.

Theorem 2.9 remains valid if we change the median of f(x) to its expectation
Ef =

∫
fdµ:

Corollary 2.10. For some absolute constants 0 < c, C < ∞, if f : Sn−1 −→ R is a
Lipschitz function with constant L, then:

µ({x : |f(x)− Ef | > t}) ≤ C · e− ct2n
L2 .

Proof. As before, we can assume that L = 1. Denote by µ × µ - the Haar measure
on the product space Sn−1 × Sn−1. Then:

µ× µ{x, x ∈ Sn−1 : |f(x)− f(x)| > t} ≤
≤ µ× µ{x, x ∈ Sn−1 : |f(x)−M |+ |f(x)−M | > t} ≤
≤ 2µ{x ∈ Sn−1 : |f(x)−M | > t

2
} ≤ 32 · e−t2n/64.

Hence, using Fubini’s theorem we can estimate the expectation of eλ2|f(x)−Ef |2 : check
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ExExe
λ2|f(x)−f(x)|2 =

∫ ∞

0

2λ2teλ2t2µ× µ{|f(x)− f(x)| > t}dt ≤ 64λ2

∫ ∞

0

teλ2t2− t2n
64 dt.

Letting λ =
√

n
128

we get by simple calculations

ExExe
n

128
|f(x)−f(x)|2 ≤ 32.

Noting, that the function et2 is convex, we can apply Jensen inequality:

Eeλ|f(x)−Ef |2 ≤ ExExe
λ|f(x)−f(x)|2 ≤ 32.

Finally, Chebyshev’s inequality yields:

µ{|f(x)− Ef | > t} = µ{e n
128

|f(x)−Ef |2 > e
n

128
t2} = µ{e n

128
|f(x)−Ef |− n

128
t2 > 1} ≤

≤ Ee
n

128
|f(x)−Ef |− n

128
t2 ≤ 32e−

n
128

t2 .

Exercise: Deduce Theorem 2.9 from Corollary 2.10. exercise

Versions of Levy’s concentration inequality are known to hold for many natural
metric probability spaces of “high dimension”. Here are two discrete examples:

Example: Consider a space Ω = {0, 1}n, where the measure of the set is just the
normalized number of elements: ∀A ⊆ Ω, µ(A) = #A

2n . The metric we will consider is
the normalized Hamming distance:

∀x, y ∈ Ω. d(x, y) =
1

n
·#{i : xi 6= yi} =

1

n

n∑
i=1

|xi − yi|.

In this case we know the exact isoperimetric inequality, namely for every ε > 0 and
all the sets A of a given volume a, the minimal volume of Aε is attained for a ball of
a suitable radius.

Example: As a second example, consider the space Ω = Πn - the group of permu-
tations on n elements. Again, the measure of a set is just the normalized number
of elements in it: ∀A ⊆ Ω, µ(A) = #A

n!
. The metric will be again the normalized

Hamming distance:

∀π, ρ ∈ Ω. d(π, ρ) =
1

n
·#{i : π(i) 6= ρ(i)}.

In this case we do not know the exact solution for the isoperimetric problem. It is
known that it is not always a ball.

In both examples a version of Theorems 2.8 and 2.9 hold. For example for all
f : Sn−1 −→ R Lipschitz with constant L,

µ({x : |f(x)− Ef | > t}) ≤ Ce−
ct2n
L2

for some absolute 0 < c, C < ∞.
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3 Proof of Dvoretzky’s Theorem
lecture 4
Nov 20, 2006Our next goal is to prove:

Theorem 3.1. (V. Milman) For every ε > 0 there exists a constant c = c(ε) > 0
such that for every n ∈ N and every norm ‖·‖ in Rn there exists a subspace V ⊆ Rn

satisfying:

1. dim V = k, where k ≥ c ·
(

E
b

)2

n.

2. For every x ∈ V :

(1− ε)E · ‖x‖2 ≤ ‖x‖ ≤ (1 + ε)E · ‖x‖2.

Here E =
∫ n−1

S
‖x‖dx and b is the smallest constant satisfying ‖x‖ ≤ b‖x‖2.

The idea of the proof is to apply Corollary 2.10 to the function f(x) = ‖x‖. Note,
that in that case, b will be the Lipschitz constant of f . In addition we will need two
lemmas:

Definition 3.2. ε-net on Sn−1 is a set N ⊂ Sn−1 such that for every y ∈ Sn−1 there
exists x ∈ N satisfying ‖x− y‖2 ≤ ε.

Lemma 3.3. For every 0 < ε < 1 there exists an ε-net N on Sn−1 of cardinality

≤
(

1 + 2
ε

)n

.

Proof. Denote by B2 the unit ball of Rn. Let N = {xi}m
i=1 be a maximal set on Sn−1

such that for all x, y ∈ N ‖x − y‖2 ≥ ε. The maximality of N implies that it is an
ε-net on Sn−1. Consider {B(xi,

ε
2
)}m

i=1 - a collection of balls of radius ε
2

around each

xi. They are mutually disjoint and completely contained in

(
1 + ε

2

)
B2. Hence:

mV ol

(
B(x1,

ε

2
)

)
=

∑
V ol

(
B(xi,

ε

2
)

)
= V ol

( ⋃
B(xi,

ε

2
)

)
≤ V ol

((
1 +

ε

2

)
B2

)
.

We get m ≤
(

1+ε/2
ε/2

)n

=

(
1 + 2

ε

)n

.

Exercise: Show that the same lemma holds for the sphere of the unit ball of an exercise

arbitrary norm on Rn (where the distance is with respect to the same norm).

Exercise: Prove that cardinality of every ε-net on Sn−1 is ≥
(

1
ε

)n−1

. exercise

12



Lemma 3.4. Suppose, V is a finite dimensional Banach space equipped with norms
|·| and ‖·‖ satisfying:

(1− ε) ≤ ‖x‖ ≤ (1 + ε)

for every x ∈ N , where N is an δ-net on S|·| = {x : |x| = 1} for some 0 < δ < 1.
Then for every x ∈ V

1− ε− 2δ

1− δ
|x| ≤ ‖x‖ ≤ 1 + ε

1− δ
|x|.

Proof. Let x ∈ S|·| and take x1 ∈ N such that |x−x1| ≤ δ. In the next step we choose

x2 ∈ N such that

∣∣∣∣ x−x1

|x−x1|−x2

∣∣∣∣ ≤ δ and we get |x−x1−|x−x1|x2| ≤ δ|x−x1| ≤ δ2. By

repeating this approximation procedure we can choose an infinite sequence {xi} ⊆ N
and real numbers 0 < δi ≤ δi such that for every n:

∣∣∣∣x−
n∑

i=1

δixi

∣∣∣∣ ≤ δn.

Hence,
∑n

i=1 δixi converges to x both in (V, |·|) and in (V, ‖·‖) (because in the finite-
dimensional Banach space every two norms are equivalent). Moreover:

‖x‖ ≤ sup
n

∥∥∥∥
n∑

i=1

δixi

∥∥∥∥ ≤
∞∑
i=1

δi‖xi‖ ≤ (1 + ε)
∞∑
i=1

δi ≤ 1 + ε

1− δ
.

For the lower bound, let x ∈ B|·| and choose y ∈ N such that |x− y| ≤ δ. Then

‖x‖ = ‖y + x− y‖ ≥ ‖y‖ − ‖x− y‖ ≥ 1− ε− 1 + ε

1− δ
|x− y| ≥ 1− ε− 2δ

1− δ
.

Remark: Consider O(n) - the set of all n × n orthogonal matrices over R. It is
a multiplicative group, which is compact in the metrics of Rn2

. According to Haar
theorem there exists a unique probability (normalized) measure ν which is invariant
under multiplication by the member of the group: ν(A) = ν(gA) for all A ⊆ O(n)
and all g ∈ O(n). Consider µ - the Haar probability measure on Sn−1. Then for all
A ⊆ Sn−1 and some point x ∈ Sn−1:

µ(A) = ν({U ∈ O(n) : Ux ∈ A}).
We will stick to this notation in the sequel.

Proof. (of Theorem 3.1) Let ε < 1/5 and let V0 ⊆ Rn be a subspace of dimension k.

Denote Sk−1 = Sn−1
⋂

V0 and consider N - an ε-net on Sk−1 of cardinality ≤
(

3
ε

)k

.

Fix x0 ∈ N and consider two functions:

f : Sn−1 −→ R, f(x) = ‖x‖,

13



and
F : O(n) −→ R, F (U) = f(Ux0) = ‖Ux0‖.

First note that b is the Lipschitz constant of f :

|f(x)− f(y)| = |‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ b · ‖x− y‖2.

Considering the remark before the proof:

ν{U ∈ O(n) : |F (U)− EνF | > t} = µ{x ∈ Sn−1 : |f(x)− Eµf | > t}.
The same remark implies:

E = Eµf =

∫ n−1

S

f(x)dµ(x) =

∫

O(n)

F (U)dν(U) = EνF.

Now we are ready to apply Theorem 2.9:

ν{U ∈ O(n) : |‖Ux0‖ − E| > t} ≤ Ce−ct2n/b2

let t = εE ⇒ ν{U ∈ O(n) : |‖Ux0‖ − E| > εE} ≤ Ce−cn( εE
b

)2

⇒ ν{U ∈ O(n) : |‖Ux‖ − E| > εE for some x ∈ N} ≤ Ce−n( εE
b

)2 · |N |
⇒ ν{U ∈ O(n) : |‖Ux‖ − E| > εE for some x ∈ N} ≤ Ce−cn( εE

b
)2+k ln 3

ε .

Choosing k < c′ · ε2

ln 3
ε

(E
b
)2n we assure, that there exists (with some positive prob-

ability) U ∈ O(n) satisfying:

∀x ∈ N (1− ε)E ≤ ‖Ux‖ ≤ (1 + ε)E.

Hence, according to Lemma 3.4:

∀x ∈ V0 (1− 5ε)E‖x‖2 ≤ ‖Ux‖ ≤ (1 + 5ε)E‖x‖2.

The subspace we are looking for is V = UV0.

Remark: We got c(ε) ∼ ε2/ log 1/ε this can be improved to c((ε) ∼ ε2 and this is
best possible.

Let us see what Theorem 3.1 gives for the spaces `n
p , 1 ≤ p < ∞. For p > 2 we

have ‖x‖p ≤ ‖x‖2. For 1 ≤ p < 2:

‖x‖p
p =

n∑
i=1

|x|p =
n∑

i=1

1 · |x|p ≤ (
n∑

i=1

1
2

2−p )
2−p
2 · (

n∑
i=1

|x|2) p
2 = n

2−p
2 · ‖x‖p

2.

Hence, for 1 ≤ p < 2 we have ‖x‖p ≤ n
1
p
− 1

2 · ‖x‖2. Now we have to evaluate E.
Let x = (g1, . . . , gn) ∈ Rn be a vector of independent gaussian variables. Denote
x = 1

‖x‖2 x. Then: justify the
two equality
signs!

14



Eµ‖x‖p = E
(
∑

gp
i )

1/p

(
∑

g2
i )

1/2
=
E(

∑
gp

i )
1/p

E(
∑

g2
i )

1/2
.

To bound the last quantity from below we will use the following inequality:

√
2/π · n1/r = (

∑
(E|gi|)r)1/r ≤ E(

∑
gr

i )
1/r ≤ (E

∑
gr

i )
1/r = cr · n1/r

Hence:
E = Eµ‖x‖p ≥ cp · n

1
p
− 1

2 .

Finally we have:

k ≥
{

cp(ε) · n
2
p , 2 < p < ∞

cp(ε) · n, 1 ≤ p < 2.

In order to prove Dvoretzky’s theorem (Theorem 1.2) we need to estimate E and Lecture 5
Nov 27, 2006

b. By multiplying our symmetric convex body (or the corresponding norm) by a con-
stant we can always assume that b = 1 which exactly means that the Euclidean ball
lies completely inside B‖·‖ - the unit ball of the new norm. But if the euclidian ball is
much smaller than B‖·‖ , then we get nothing, because in such a case E would also be
very small and our estimate of the dimension would be meaningless. It is thus better
to choose the multiple in such a manner that the Euclidean ball will touch the unit
sphere of our norm from the inside. Even then it is possible that E is arbitrarily small.

The way to overcome this difficulty is to deal first with more general Euclidean
norms than the canonical one, replacing the `2 norm with more general inner prod-
uct norms, or equivalently replacing the Euclidean ball with a general ellipsoid and
proving a similar theorem (Theorem 3.7 below). We shall see later that deducing
Theorem 1.2 from the existence of large dimensional Ellipsoidal sections is easy.

Definition 3.5. An ellipsoid n-dimensional ellipsoid E ∈ Rn is a set of the form

E = {
n∑

i=1

aixi :
n∑

i=1

a2
i ≤ 1},

for some linearly independent x1, . . . , xn ∈ Rn. If we define a linear automorphism T
of Rn by Tei = xi (where ei is the standard basis of Rn) we get that E = TBn

2 . The
inner product induced by the ellipsoid E is just

< ·, · >E=< T−1x, T−1y > .

The next lemma shows that at least in some sense the unit spheres of the given
norm and of some contained ellipsoid are not too far apart.
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Lemma 3.6. (Dvoretzky-Rogers) Let ‖·‖ be some norm on Rn and denote its unit
ball by K = B‖·‖. Let E be the (unique) ellipsoid of maximal volume inscribed in K
and |·| - the norm induced by E. Then there exist x1, . . . , xn ∈ ∂E (the boundary of
E) orthonormal with respect to the inner product < ·, · >E such that

e−1(1− i− 1

n
) ≤ ‖xi‖ ≤ 1, for all 1 ≤ i ≤ n.

Remark: This is a weaker version of the original Dvoretzky-Rogers lemma. It
shows in particular that half of the xi-s have norm bounded from below: for all
1 ≤ i ≤ bn

2
c ‖xi‖ ≥ (2e)−1. This is what will be used in the proof of the main

theorem.

Proof. First of all choose an arbitrary x1 ∈ ∂E of maximal norm. Of course, ‖x1‖ =
|x1| = 1. Suppose we have chosen {x1, . . . , xi−1} that are orthonormal with respect
to E . Choose xi as the one having the maximal norm among all x ∈ ∂E that are
orthogonal to {x1, . . . , xi−1}. Our original ellipsoid is E = {∑n

i=1 aixi :
∑n

i=1 a2
i ≤ 1}.

Define a new ellipsoid which is smaller in some directions and bigger in others:

E = {
n∑

i=1

aixi :

j−1∑
i=1

a2
i

a2
+

n∑
i=j

a2
i

b2
≤ 1}.

Suppose,
∑n

i=1 bixi ∈ E . Then for each x ∈ span{xj, . . . , xn}
⋂

∂E we have ‖x‖ ≤
‖xj‖. Moreover

∑j−1
i=1 bixi ∈ aE , hence ‖∑j−1

i=1 bixi‖ ≤ a; and
∑n

i=j bixi ∈ bE , hence
‖∑n

i=j bixi‖ ≤ ‖xj‖b. Thus

‖
n∑

i=1

bixi‖ ≤ ‖
j−1∑
i=1

bixi‖+ ‖
n∑

i=j

bixi‖ ≤ a + ‖xj‖ · b.

The relation between the volumes of E and E is V ol(E) = aj−1bn−j+1V ol(E). If
a + ‖xj‖ · b ≤ 1, then E ⊆ K. Using the fact that E is the ellipsoid of the maximal
volume inscribed in K we conclude that

∀a, b, j s.t. a + ‖xj‖ · b = 1, aj−1bn−j+1 ≤ 1.

Substituting b = 1−a
‖xj‖ and a = j−1

n
it follows that for every j ≥ 2

‖xj‖ ≥ a
j−1

n−j+1 (1− a) =

(
j − 1

n

) j−1
n−j+1

(
1− j − 1

n

)
≥ e−1

(
1− j − 1

n

)
.

check

Exercise: exercises
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1*. Let ‖·‖ be some norm on Rn and E - the ellipsoid of a maximum volume inscribed
in B‖·‖ , then:

B‖·‖ ⊆
√

nE .

2. The previous exercise may be hard; prove at least that there exists an absolute
constant C > 0 such that:

B‖·‖ ⊆ C
√

nE .

Theorem 3.7. (Dvoretzky) For every ε > 0 there exists a positive constant c(ε) such
that if ‖·‖ is some norm on Rn then there exists a subspace V ⊆ Rn and an ellipsoid
E satisfying:

1. dim V = k, where k ≥ c(ε) log n.

2. For every x ∈ V :
(1− ε)‖x‖E ≤ ‖x‖ ≤ (1 + ε)‖x‖E .

Proof. Let E be (the) ellipsoid of maximal volume inscribed in K = B‖·‖ and T - a
linear automorphism of Rn such that TBn

2 = E . Denote H = T−1K. Then the Euclid-
ean ball Bn

2 will be the ellipsoid of the maximal volume inscribed in H. It is sufficient check

to prove the theorem for the norm ‖·‖H (the norm for which H serves as the unit ball).

Suppose we have proved, that

E =

∫

Sn−1

‖x‖Hdx ≥ c

√
log n

n
, (3.0.6)

for some absolute constant c > 0. Then by letting b = 1 (because Bn
2 ⊆ H) and

applying Theorem 3.1 we get that there exists a subspace V ⊆ Rn of dimension
k ≥ c log n satisfying for every x ∈ V

(1− ε)E · ‖x‖2 ≤ ‖x‖H ≤ (1 + ε)E · ‖x‖2,

which will finish the proof.

We now turn to prove the inequality 3.0.6. According to Dvoretzky-Rogers lemma 3.6
there exist orthonormal vectors x1, . . . , xn such that for all 1 ≤ i ≤ bn

2
c ‖xi‖H ≥ e/2.
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Note that Sn−1 = {∑n
i=1 aixi :

∑n
i=1 a2

i = 1}, hence,

∫

Sn−1

‖x‖Hdx =

∫

Sn−1

‖
n∑

i=1

aixi‖Hda =

=

∫

Sn−1

1

2
(‖

n−1∑
i=1

aixi + anxn‖H + ‖
n−1∑
i=1

aixi − anxn‖H)da ≥

≥
∫

Sn−1

max{‖
n−1∑
i=1

aixi‖H , ‖anxn‖H}da ≥

≥
∫

Sn−1

max{‖
n−2∑
i=1

aixi‖H , ‖an−1xn−1‖H , ‖anxn‖H}da ≥ · · · ≥

≥
∫

Sn−1

max
1≤i≤n

{‖aixi‖H}da ≥ e

2

∫

Sn−1

max
1≤i≤bn

2
c
{|ai|}da

The measure da is the normalized measure on the sphere. So the last integral
is exactly the expectation of the vector with the normally distributed independent
coordinates, normalized in the `2 norm:

∫

Sn−1

max
1≤i≤bn

2
c
{|ai|}da = E

max1≤i≤bn
2
c{|gi|}

(
∑n

i=1 g2
i )

1/2
=
Emax1≤i≤bn

2
c{|gi|}

E(
∑n

i=1 g2
i )

1/2
(3.0.7)

why?

To evaluate the denominator observe, that by concavity of the root function and
Jensen inequality:

E(
n∑

i=1

g2
i )

1/2 ≤ (E
n∑

i=1

g2
i )

1/2 =
√

n.

Next we use the properties of the normal distribution to get P(|gi| > t) ≥ ce−t2/2

for some constant c > 0. Let m = bn
2
c.

P( max
1≤i≤m

|gi| > t) = 1−
m∏

i=1

P(|gi| ≤ t) = 1−
m∏

i=1

(1−P(|gi| > t)) ≥ 1− (1− ce−t2/2)m.

Substituting t =
√

2 log m we get:

P( max
1≤i≤m

|gi| >
√

2 log m) = 1− (1− c

m
)m ≈ 1− e−c ≥ c′,

for some absolute constant c′ > 0. Apply Chebyshev’s inequality to get the estimate
on expectation:

Emax|gi| ≥
√

2 log mP(max|gi| >
√

2 log m) ≥ c′′
√

log n.
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Plugging in the last estimate into 3.0.7 we finish the proof:

E =

∫

Sn−1

‖x‖Hdx ≥ c′′
√

log n

n
.

To deduce the The Proof of Dvoretzky’s theorem 1.2 from Theorem 3.7 it
is enough to prove the following claim.

Claim 3.8. Let E be some ellipsoid in Rk. Then there exists a subspace W ⊆ Rk of
dimension l = bk

4
c and 0 < r < ∞ such that: can improve

to d k
4 e

and even to
d k

2 er(Bk
2

⋂
W ) = E

⋂
W.

THIS WILL MOST PROBABLY BE THE LAST LECTURE TO BE Lecture 6
Dec 4, 2006

TYPED AND PUT ON THIS SITE FOR A WHILE. YOU MAY WANT
TO TAKE NOTES DURING FUTURE LECTURES.

VOLUNTEERS FOR TeXing NOTES ARE MOST WELCOME.

Proof. First of all we will find bk
2
c vectors that are orthogonal both with respect to

the usual inner product < ·, · > and with respect to the inner product < ·, · >E
induced by E . Let E be some subspace of Rk, then we denote by

E⊥ = {x : ∀y ∈ E < x, y >= 0}
the orthogonal complement of E and by

E⊥
E = {x : ∀y ∈ E < x, y >E= 0}

the complement subspace of E, orthogonal to E with respect to E .

Choose some v1 ∈ Rk such that ‖v1‖2 = 1. Notice, that the dimension of the
subspace (span{v1})⊥

⋂
(span{v1})⊥E is at least k− 2. Hence, we can choose a vector

v2 satisfying ‖v1‖2 = 1 and in addition < v1, v2 >= 0 and < v1, v2 >E= 0. We can

repeat this iterative procedure bk
2
c times and get a set of vectors {vi}b

k
2
c

i=1 which are
orthonormal with respect to the euclidean ball and orthogonal with respect to E .

Now using the above sequence of vectors, we are going to construct bk
4
c vectors

which are of the same length and orthogonal both in the euclidean norm and in the
norm induced by E . Suppose we arranged the vectors in such a way, that ‖v1‖E ≥
‖v2‖E ≥ · · · ≥ ‖vb k

2
c‖E > 0. Pick some number ‖vb k

4
c‖E ≥ a ≥ ‖vb k

4
c+1‖E .

Now for every 1 ≤ i ≤ bk
4
c we choose 0 < λi ≤ 1 in such a way that

λi‖vi‖2
E + (1− λi)‖vb k

2
c−i+1‖2

E = a2.
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Now construct a sequence of bk
4
c vectors ui =

√
λivi +

√
(1− λi)vb k

2
c−i+1. Of

course those vectors are again orthogonal both in euclidian norm and in the norm
induced by E . Moreover

‖ui‖2
2 = λi‖vi‖2

2 + (1− λi)‖vb k
2
c−i+1‖2

2 = 1,

and
‖ui‖2

E = λi‖vi‖2
E + (1− λi)‖vb k

2
c−i+1‖2

E = a2.

Hence, we can choose W = span{u1, . . . , ub k
4
c} and

Bn
2

⋂
W = {

b k
4
c∑

i=1

aiui : ‖
b k

4
c∑

i=1

aiui‖2 = (

b k
4
c∑

i=1

a2
i )

1/2 ≤ 1} =

= {
b k

4
c∑

i=1

aiui : ‖
b k

4
c∑

i=1

aiui‖E = a · (
b k

4
c∑

i=1

a2
i )

1/2 ≤ a} = a · E
⋂

W.

We have seen in previous lectures, that `n
p has a (1 + ε)-euclidian section of di-

mension

k ≥
{

cp(ε) · n
2
p , 2 < p < ∞

cp(ε) · n, 1 ≤ p < 2

Exercise: Prove, that for 2 < p < ∞ one can get an estimation k ≥ c(ε)pn
2
p , where exercise

c(ε) depends only on ε.
Hint: in the proof of the case 2 < p < ∞ show that E(

∑n
i=1|gi|p)1/p ≥ c

√
pn1/p.

In the next claim we prove that the dependance on n in the estimation of k for
the case 2 < p < ∞ is the best possible, namely:

Claim 3.9. Let 2 < p < ∞ and suppose we have that `k
2 (1 + ε)-embeds into `n

p ,
meaning that there exists a linear operator T : Rk → Rn such that

‖x‖2 ≤ ‖Tx‖p ≤ (1 + ε)‖x‖2,

then k ≤ cp(ε)n
2/p.

Proof. Let T : Rk → Rn, T = (aij)
n
i=1

k
j=1 be the linear operator from the statement

of the claim. Then for every x ∈ Rk:

(
k∑

j=1

x2
j)

1/2 ≤ (
n∑

i=1

|
k∑

j=1

aijxj|p)1/p ≤ (1 + ε)(
k∑

j=1

x2
j)

1/2. (3.0.8)
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In particular, for every 1 ≤ l ≤ n, substituting instead of x the l-th row of T we
get:

(
k∑

j=1

a2
lj)

p ≤
n∑

i=1

|
k∑

j=1

aijalj|p ≤ (1 + ε)p(
k∑

j=1

a2
lj)

p/2.

Hence, for every 1 ≤ l ≤ n:

(
k∑

j=1

a2
lj)

p/2 ≤ (1 + ε)p.

Let g1, . . . , gk be independent standard normal random variables. Then using the
fact that

∑k
j=1giaj has the same distribution as (

∑k
j=1a

2
j)

1/2g1 and the left hand side
of the inequality 3.0.8 we have

E(
k∑

j=1

g2
j )

p/2 ≤ E(
n∑

i=1

|
k∑

j=1

gjaij|p) =
n∑

i=1

E(|g1|p(
k∑

j=1

a2
ij)

p/2) =

= E|g1|p ·
n∑

i=1

(
k∑

j=1

a2
ij)

p/2 ≤ (1 + ε)pE|g1|pn.

On the other hand we can evaluate E(
∑k

j=1g
2
j )

p/2 from below using the convexity
of the exponent function for p/2 > 1:

E(
k∑

j=1

g2
j )

p/2 ≥ (E
k∑

j=1

g2
j )

p/2 = kp/2.

Combining the last two inequalities we finally get the upper bound for k:

k ≤ (1 + ε)2(E|g1|p)2/pn2/p.

Remark:

1. There exist absolute constants 0 < c ≤ C < ∞ such that c
√

p ≤ (E|g1|p)1/p ≤
C
√

p. This can be proved by integrating by parts. Hence, for p = log n we have: exercise

k ≤ (1 + ε)2 log(n)n2/ log n.

Note, that log(n1/ log n) = 1, thus:

k ≤ (1 + ε)2e2 log(n).

Hence, if we (1+ ε)-embed `k
2 into `n

log n, then k ≤ (1+ ε)2e2 log(n), which means
that the log n bound in the Dvoretzky’s theorem is sharp.
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2. However, the exact dependence on ε is an open question. From the proof of
Dvoretzky’s theorem we got an estimation k ≥ cε2

log(1/ε)
log n, see the Open Prob-

lems below for the best that is known.

Now we will see another way of obtaining an upper bound on k, which, unlike the
estimate in Remark 1, tend to 0 as ε → 0. It still leaves a big gap with the lower
bound above.

Claim 3.10. If `k
2 (1 + ε)-embeds into `n

∞, then

k ≤ C log n

log(1/cε)
,

for some absolute constants 0 < c,C < ∞.

Proof. Assume we have (1 + ε)-embedding of `k
2 into `n

∞ using the linear operator
T = (aij)

n
i=1

k
j=1. Then every x ∈ Rk satisfies

(1− ε)(
k∑

j=1

x2
j)

1/2 ≤ max
1≤i≤n

|
k∑

j=1

aijxj| ≤ (
k∑

j=1

x2
j)

1/2. (3.0.9)

This means that there exist vectors v1, . . . , vn ∈ Rk such that for every x ∈ Rk:

(1− ε)‖x‖2 ≤ max
1≤i≤n

< vi, x >≤ ‖x‖2. (3.0.10)

In particular, ‖vi‖2 ≤ 1 for every 1 ≤ i ≤ n.

Suppose x ∈ Sk−1, then the left hand side of 3.0.10 states that there exists an
1 ≤ i ≤ n such that < vi, x >≥ (1− ε), hence:

‖x− vi‖2
2 = ‖x‖2

2 + ‖vi‖2
2 − 2 < vi, x >≤ 2− 2(1− ε) = 2ε.

Thus, the vectors v1, . . . , vn form a
√

2ε-net on the Sk−1, which means that n is
much larger (exponentially) then k.

In order to formalize the last statement we are going to use volume arguments,
just as in proof of the cardinality of ε-nets. We have

n⋃
i=1

B(vi, 2
√

2ε) ⊇ Bk
2 \ (1−

√
2ε)Bk

2

⇒ nV olB(0, 2
√

2ε) ≥ V olB(0, 1)− V olB(0, 1−
√

2ε)

⇒ n(2
√

2ε)k ≥ 1− (1−
√

2ε)k ≥
√

2εk(1−
√

2ε)k−1.
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This gives for ε < 1
32

and k ≥ 12

n ≥ k

2
(

1

4
√

2ε
)k−1 ≥ (

1

4
√

2ε
)k/2,

or

k ≤ 4 log n

log 1
32ε

.

Open problems

1. The best known estimates for c(ε) in Dvoretzky’s Theorem 1.2 are

cε

(log 1/ε)2
≤ c(ε) ≤ C

log 1/ε
.

There is still a big gap between the two estimates. One can also ask for the best
dependence on ε of ε Euclidean sections of specific bodies, in particular the `p

balls.

2. Construction of explicit embeddings of close to the best possible dimensions.
The only satisfactory results are for `n

4 and `n
∞.

Exercise: Show that `k
2 (1 + ε)-embeds into `n

∞ for exercise

k ≥ c

log(1/ε)
log(n).

Hint: Follow the proof of the claim 3.10 in opposite direction starting with ε-net in
Sk−1.

Lecture 7 lecture 7
Dec 11, 2006

• Construction of Haar measure on homogeneous spaces of compact groups. (The
first few pages in [MS].)

• The Johnson–Lindenstrauss Lemma. ([S])

Lecture 8 lecture 8
Dec 18, 2006

• Continuation of the J–L Lemma.

• Survey of tight embedding results in `n
p spaces. ([JS])

• Finite dimensional subspaces of L1 and zonoids.
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• `n
p embeds in L1 if 1 ≤ p ≤ 2.

Lecture 9 lecture 9
Dec 25, 2006

• Change of density and Lewis’ lemma.

Lecture 10 lecture 10
Jan 1, 2007

• Splitting of atoms.

• Concentration of Rademacher sums.

• Embedding n-dimensional subspace of Lp in `Cn2

p , 1 ≤ p ≤ 2.

Exercise: Extend to p > 2.

Exercise: Show that any n-point set in L1 (1 + ε) embeds into `
Cn log n/ε2

1 .

• Introduction to K convexity.

Lecture 11 lecture 11
Jan 8, 2007

• More on K covexity: K(Lp) is of the order of max{p, p/(p− 1)}, K(X) is of the

order of
√

dim(X) for subspaces of L1.

• Khinchine’s inequality with asymptotically best constant.

• Statement of Th: X n-dimensional subspace of L1, then X (1 + ε) embeds into
`m
1 with m at most C

ε2
K(X)n.

• Beginning of proof: Reduction to Gaussians, Consequence of Slepian’s lemma
(delaying full statement and proof of Slepian for week after next), Statement of the
two propositions from [JS] with indication how to finish the proof of the theorem
based on them.

Lecture 12 lecture 12
Jan 15, 2007

• Proof of the two propositions.
• Statement of Slepian’s Lemma. Introduction to Gaussian processes.

Lecture 12 lecture 13
Jan 22, 2007

• Continuation of the introduction to Gaussian processes/vectors. Proof of Slepian’s
lemma.

• Take-home exam given.
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