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ABSTRACT. It is known that for real Banach spaces the famous
Lomonosov Invariant Subspace Theorem may fail. In our pa-
per we will give a complete characterization of operators on real
Banach spaces for which this theorem holds true.

1. INTRODUCTION

Let T be a continuous linear operator on a Banach space X, and Y be a linear
subspace of X. Recall that Y is T -invariant if T(Y) ⊆ Y , and Y is T -hyperinvariant
if it is invariant under every continuous operator that commutes with T . The
Invariant Subspace Problem is the problem of finding nontrivial closed invariant
subspaces for continuous operators.

In 1973 Victor Lomonosov [7] obtained a remarkable result that has caused
enormous progress on the existence of nontrivial invariant and hyperinvariant
subspaces for compact-related operators. This result has become known as the
“Lomonosov invariant subspace theorem.” A survey on these results and many
applications can be found in [2, 3, 10].

Theorem 1.1 (Lomonosov, [7]). If a non-scalar operator T on a complex Banach
space commutes with a non-zero compact operator, then T has a non-trivial closed
hyperinvariant subspace.

The fact that this theorem in general is valid for complex Banach spaces
only was addressed by N.D. Hooker in [4] and recently by Y. Abramovich and
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C. Aliprantis in [1, Chapter 10]. Hooker showed that if an operator T : X → X
on a real Banach space X does not satisfy any irreducible polynomial equation,
then the Lomonosov theorem remains valid for T . In the present paper we will
show that the condition above actually characterizes when the Lomonosov theo-
rem works in real Banach spaces. Some other sufficient conditions that are easier
to check will be provided. It will follow that the Lomonosov theorem is always
true for positive operators. We will also provide a straightforward proof of the
Hooker’s result.

We begin with several definitions that might be found, for instance, in [1]. If
X is a real vector space, then the complexification of X is the complex vector space

XC = X ⊕ ıX = {x + ıy | x, y ∈ X},
whose vector space operations are defined by

(x1 + ıy1)+ (x2 + ıy2) = (x1 + x2)+ ı(y1 +y2),
(α+ ıβ)(x + ıy) = (αx − βy)+ ı(βx +αy).

If X is also a normed space with norm ‖ · ‖, then we can extend the norm
‖ · ‖ to a norm on XC. Moreover, if X is a Banach space, then XC is also a Banach
space.

Every operator T : X → Y between two real vector spaces gives rise naturally
to a complex linear operator TC : XC → YC defined via the formula

TC(x + ıy) = Tx + ıTy.
Moreover, if X and Y are normed spaces and T : X → Y is a bounded operator,
then the operator TC : XC → YC is also bounded and satisfies ‖TC‖ = ‖T‖.

Let X be a Banach space. For an operator T ∈ L(X), the following set

σ(T) = {λ ∈ C | λI − T is not invertible in L(X)}
is known as the spectrum of the operator. As usual we may write λ− T instead of
λI−T . Clearly, if X is a real Banach space, then the spectrum of T consists of real
numbers. Moreover, in that case it is not hard to notice that

σ(T) = σ(TC)∩R.
The spectral radius of T is defined as usual by r(T) = supλ∈σ(T) |λ|. An algebra
A of operators is said to be transitive, if it has no non-trivial closed A-invariant
subspaces. All terminology employed but not defined here can be found in [1].

2. A MODIFICATION OF THE LOMONOSOV THEOREM FOR
REAL BANACH SPACES

Our main goal is to prove the following modification of the Lomonosov theorem
for real Banach spaces.
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Theorem 2.1. Consider a real Banach space X and a non-scalar operator T ∈
L(X) commuting with a non-zero compact operator. Then the following two state-
ments are equivalent:
(a) T has a non-trivial closed hyperinvariant subspace.
(b) For each pair of real numbers α, β with β 6= 0 we have (α− T)2 + β2 6= 0.

Proof. First, we prove that (a) implies (b). Let T : X → X be a non-scalar
operator acting on a real Banach space. Let us assume that for some real numbers
α, β with β 6= 0 the operator (α − T)2 + β2 is zero. Notice that without loss of
the generality we may assume that

(2.1) T 2 + I = 0.

Indeed, letting T1 = (α − T)/β we see that the commutant of T1 is equal to
the commutant of T and, thus, any T -hyperinvariant subspace of X will be T1-
hyperinvariant. In addition, T1 satisfies (2.1).

Next we will use the operator T to define a complex structure on X. To do so
we need to define a multiplication by ı on X. We let

ıx = Tx

for each x ∈ X. It is easy to check that equation (2.1) is enough to guarantee that
the multiplication introduced is well-defined, and with respect to this multiplica-
tion X becomes a vector space over C. Let us denote the space X equipped with
this complex structure by XT . It is also easy to check that the formula

‖x‖C = sup{‖(a+ ıb)x‖ : a,b ∈ R, |a+ ıb| = 1}

defines a norm on the complex vector space XT , and for every x ∈ X the following
inequality holds

(2.2) ‖x‖ ≤ ‖x‖C ≤ (1+ ‖T‖)‖x‖.

In particular, it follows that (XT ,‖ · ‖C) is a complex Banach space. Moreover, if
Y is a closed subspace of X such that TY ⊂ Y (that is, Y is closed with respect to
the multiplication by ı), then the complex space YT is a closed subspace of XT .

Denote by L(XT ) the space of continuous complex linear operators on XT .
We claim that

{T}′ = L(XT ),
where, as usual, {T}′ = {S : X → X | ST = TS}. Fix S ∈ {T}′; then S :
XT → XT is clearly additive. To see that S is complex linear we need the complex
homogeneity. We have S(ıx) = S(Tx) = TSx = ıSx, i.e., we get what is needed.
The continuity of S : XT → XT follows from (2.2). Hence we have obtained the
inclusion {T}′ ⊂ L(XT ).
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To show the converse inclusion, fix S ∈ L(XT ). Then S : X → X is clearly
a linear operator that is bounded in view of (2.2) and commutes with T because
STx = S(ıx) = ıSx = TSx for all x ∈ X. Thus, {T}′ = L(XT ).

Assume now that T has a non-trivial closed hyperinvariant subspace Y . Then,
in particular, Y is T -invariant and, therefore, YT is a non-trivial closed subspace
of XT . Moreover, since Y is {T}′-invariant and {T}′ = L(XT ), we can conclude
that YT is L(XT )-invariant. But this is impossible, and so we get a contradiction.

The implication (b)⇒(a) has been proved in [4]. Here we present a straightfor-
ward proof. For this we need the following fact known as “Lomonosov’s lemma.”

Theorem 2.2 (Lomonosov, [7]). If A is a transitive algebra of operators on a
real or complex Banach space, then for each non-zero compact operator K there exists
some A ∈ A such that the compact operator AK has a non-zero fixed point, i.e.,
AKu = u for some u 6= 0.

Assume that T ∈ L(X) is a non-scalar operator and that for some non-zero
compact operator K ∈ L(X) we have TK = KT . To establish the existence of a
non-trivial closed T -hyperinvariant subspace, it suffices to show that the commu-
tant of T , {T}′ = {S ∈ L(X) | ST = TS}, is non-transitive.

To verify this assume by way of contradiction that the commutant {T}′ is a
transitive algebra. So, by Theorem 2.2, there exists some A ∈ {T}′ such that the
operator AK has a non-zero fixed point. Let

F = {x ∈ X | AKx = x}.
Clearly, F is a non-zero closedAK-hyperinvariant subspace. SinceAK is a compact
operator and it is the identity on F , it follows that F is finite dimensional. Since
T commutes with AK and F is AK-hyperinvariant, we see that F is T -invariant.

Consider next the complexification XC of X and the operator TC : XC → XC.
Notice that since the subspace F ⊂ X is T -invariant, the subspace FC ⊂ XC is
TC-invariant. From this and from the fact that FC is a finite dimensional complex
Banach space, it follows that the operator TC : FC → FC has an eigenvalue λ =
α + ıβ ∈ C. Let x + ıy 6= 0 be an eigenvector of TC corresponding to λ, i.e.,
TC(x + ıy) = λ(x + ıy) for some x, y ∈ X.

Consider first the case β = 0. Then Tx + ıTy = TC(x + ıy) = α(x + ıy).
Therefore, Tx = αx and Ty = αy . Since at least one of the vectors x, y is
non-zero, it follows that the operator T has an eigenvector, too. And since T is
non-scalar, the eigenspace corresponding to this real eigenvalue α is a non-trivial
closed T -hyperinvariant subspace of X. This contradicts our assumption, and so
the case β = 0 is impossible.

So, we may assume that β 6= 0. Notice that if x + ıy ∈ XC is an eigenvector
of TC having the eigenvalue λ, then x 6= 0 and TC(x + ıy) = λ(x + ıy) =
(α+ ıβ)(x + ıy), whence

(∗)

{
Tx = αx − βy,
Ty = βx +αy.
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Note that, under the assumption β 6= 0, we may eliminate vector y from the
system (∗) and obtain that the equation

(∗∗) ((α− T)2 + β2)x = 0

has a non-trivial solution. That is, if TC(x + ıy) = (α + ıβ)(x + ıy), then the
null space

Xλ = Ker((α− T)2 + β2)

of the operator (α − T)2 + β2 is non-zero. In addition, Xλ is closed and ((α −
T)2 + β2)-hyperinvariant. Obviously, {T}′ ⊂ {((α − T)2 + β2)}′, and thus Xλ
is a non-zero closed {T}′-invariant subspace of X. However, by our assumption
the algebra {T}′ is transitive, and so we must have Xλ = X. That is, the equation
(∗∗) is satisfied by all x ∈ X. This contradicts our hypothesis that the operator
(α− T)2 + β2 is non-zero. ❐

A somewhat weaker sufficient condition that nevertheless might be easier to check
is given next.

Corollary 2.3. Let X be a real Banach space, and let a non-scalar operator
T ∈ L(X) commutes with a non-zero compact operator. If the spectrum σ(T) is
non-empty or, in other words, σ(TC) ∩ R 6= ∅, then T has a non-trivial closed
hyperinvariant subspace.

Proof. For the conclusion of our corollary it is enough to show that for each
pair of real numbers α, β with β 6= 0 we have (α − T)2 + β2 6= 0. Assume to
the contrary that there are α, β ∈ R with β 6= 0 such that (α − T)2 + β2 = 0.
Then by the Spectral Mapping Theorem, the equation (α − λ)2 + β2 = 0 holds
for every λ ∈ σ(TC). In particular, it must hold for a real number λ ∈ σ(TC)∩R
that exists according to the hypothesis of the corollary. It follows that α = λ and
β = 0. This contradicts the assumption that β 6= 0. ❐

The hypothesis of the last corollary is always true for positive operators. That gives
us another corollary of Theorem 2.1.

Corollary 2.4. Let T : E → E be a non-scalar positive operator on a real Banach
lattice. If T commutes with a non-zero compact operator, then there exists a non-trivial
T -hyperinvariant subspace of E.

Proof. It is well known (see, for instance [1, Theorem 7.9]) that the spectral
radius of a positive operator necessarily belongs to its spectrum. Therefore, the
previous corollary is applicable. ❐

Let us mention several things in conclusion.
(1) The result of H.W. Kim, C. Pearcy, and A. Shields [6] can be proved for real

Banach spaces in the form of Theorem 2.1;
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(2) For any real Banach space X with a symmetric basis there exists an operator
T : X → X that commutes with a compact operator and does not have a
non-trivial hyperinvariant subspace (see [4]);

(3) For any operator T : J → J on the James’s space J [5] the Lomonosov theorem
remains valid.

The latter is true since J is a real Banach space which does not admit complex
structure.

The author wishes to thank Professor Yuri Abramovich for introducing him to
the topic, help and useful remarks regarding this work, Professors Hari Bercovici
and Lawrence Brown for suggestions leading to some advances in the present work.
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