Teorema de Lomonosov

Cabrera, Ana María(UGR)
Jiménez, Ronald(UPV)
Martín, Juan(UCM)
Martínez, Gonzalo(UM)
Medina, Beatriz(ULL)
Rodríguez, Daniel(UZ)
Bajo la supervisión de Joan Cerdà(UB)

II Escuela-Taller La Manga del Mar Menor.

18 de abril del 2012

Índice

- Versión Compleja
 - Definiciones
 - Lema de Lomonosov
 - Teorema de Lomonosov

- 2 Versión Real
 - Teorema de Lomonosov Real
 - Corolario

Definiciones

Espacio Invariante e Hiperinvariante

Dado un X espacio de Banach (real o complejo) y un $T \in \mathcal{L}(X)$:

- **1** Diremos que un subespacio $F \subset X$ es T-Invariante si es cerrado y tal que $TF \subset F$.
- ② Diremos que un subespacio $F \subset X$ es T-Hiperinvariante si es cerrado y tal que

$$SF \subset F, \forall S \in \{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$$

A este último conjunto se le denomina conmutante de T.

Definiciones Lema de Lo

Lema de Lomonosov Teorema de Lomonosov

Definiciones

Algebra Transitiva

Sea X un espacio de Banach (real o complejo) y $\mathcal{A} \subseteq \mathcal{L}(X)$ un álgebra de operadores. Diremos que \mathcal{A} es transitiva si no posee subespacios cerrados invariantes no triviales.

Definiciones Lema de Lomonosov Teorema de Lomonosov

Definiciones

Algebra Transitiva

Sea X un espacio de Banach (real o complejo) y $\mathcal{A} \subseteq \mathcal{L}(X)$ un álgebra de operadores. Diremos que \mathcal{A} es *transitiva* si no posee subespacios cerrados invariantes no triviales.

Ejemplo: $\{T\}'$ es una álgebra de operadores.

Lema de Lomonosov

Sea $\mathcal A$ un álgebra de operadores transitiva sobre un espacio de Banach X (real o complejo). Entonces para cada operador compacto no nulo K, existe un $A \in \mathcal A$ tal que el operador AK posee un punto fijo no nulo, esto es,

 $\exists u \neq 0 \text{ tal que } AKu = u$

Definiciones Lema de Lomonosov Teorema de Lomonosov

Lema de Lomonosov

Ideas de la demostración:

1 Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.

- Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.
- 2 Probar que $\overline{Ax} = X$, $\forall x \neq 0$.

- Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.
- **2** Probar que $\overline{\mathcal{A}x} = X$, $\forall x \neq 0$.
- **3** Buscar un recubrimiento de $\overline{K(U_0)}$ con una propiedad especial.

- Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.
- **2** Probar que $\overline{\mathcal{A}x} = X$, $\forall x \neq 0$.
- **3** Buscar un recubrimiento de $\overline{K(U_0)}$ con una propiedad especial.
- **4** Construir un aplicación $\phi: U_0 \to X$ y restrigirla a un subconjunto convexo y compacto.

- **1** Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.
- 2 Probar que $\overline{\mathcal{A}x} = X$, $\forall x \neq 0$.
- **3** Buscar un recubrimiento de $\overline{K(U_0)}$ con una propiedad especial.
- **4** Construir un aplicación $\phi: U_0 \to X$ y restrigirla a un subconjunto convexo y compacto.
- **3** Aplicar un Teorema del punto fijo para ϕ .

- **1** Tomar $x_0 \in X$ tal que $0 \notin U_0 = B(x_0, 1)$ y que $0 \notin \overline{K(U_0)}$.
- 2 Probar que $\overline{\mathcal{A}x} = X$, $\forall x \neq 0$.
- **3** Buscar un recubrimiento de $\overline{K(U_0)}$ con una propiedad especial.
- **4** Construir un aplicación $\phi: U_0 \to X$ y restrigirla a un subconjunto convexo y compacto.
- **5** Aplicar un Teorema del punto fijo para ϕ .
- **6** Construir un operador $A \in \mathcal{A}$ tal que el punto fijo obtenido en el paso anterior sea punto fijo del operador AK.

Sin pérdida de generalidad, podemos suponer que $\|K\|=1$. Además, siempre existe $x_0\in X$ tal que $\|Kx_0\|>1$ y por lo tanto se tiene que

- $0 \notin U_0$.
- $0 \notin \overline{K(U_0)}$.

Sin pérdida de generalidad, podemos suponer que $\|K\|=1$. Además, siempre existe $x_0\in X$ tal que $\|Kx_0\|>1$ y por lo tanto se tiene que

- $0 \notin U_0$.
- $0 \notin \overline{K(U_0)}$.

Como \mathcal{A} es un álgebra tenemos que $\overline{\mathcal{A}x}$ es un subespacio cerrado y además \mathcal{A} -invariante, para todo $x \in X$.

Sin pérdida de generalidad, podemos suponer que $\|K\|=1$. Además, siempre existe $x_0\in X$ tal que $\|Kx_0\|>1$ y por lo tanto se tiene que

- $0 \notin U_0$.
- $0 \notin \overline{K(U_0)}$.

Como \mathcal{A} es un álgebra tenemos que $\overline{\mathcal{A}x}$ es un subespacio cerrado y además \mathcal{A} -invariante, para todo $x \in X$.

Para ver que $\overline{\mathcal{A}x} = X$ es suficiente ver que $\overline{\mathcal{A}x} \neq \{0\}$, ya que \mathcal{A} es transitiva.

Sin pérdida de generalidad, podemos suponer que $\|K\|=1$. Además, siempre existe $x_0\in X$ tal que $\|Kx_0\|>1$ y por lo tanto se tiene que

- $0 \notin U_0$.
- $0 \notin \overline{K(U_0)}$.

Como \mathcal{A} es un álgebra tenemos que $\overline{\mathcal{A}x}$ es un subespacio cerrado y además \mathcal{A} -invariante, para todo $x \in X$.

Para ver que $\overline{\mathcal{A}x} = X$ es suficiente ver que $\overline{\mathcal{A}x} \neq \{0\}$, ya que \mathcal{A} es transitiva.

Si suponemos que $\overline{\mathcal{A}x} = \{0\}$ para algún $x \in X \setminus \{0\}$ tendríamos que el espacio cerrado no trivial span $\{x\}$ sería \mathcal{A} -invariante.

Sin pérdida de generalidad, podemos suponer que $\|K\|=1$. Además, siempre existe $x_0 \in X$ tal que $\|Kx_0\|>1$ y por lo tanto se tiene que

- $0 \notin U_0$.
- $0 \notin \overline{K(U_0)}$.

Como \mathcal{A} es un álgebra tenemos que $\overline{\mathcal{A}x}$ es un subespacio cerrado y además \mathcal{A} -invariante, para todo $x \in X$.

Para ver que $\overline{\mathcal{A}x} = X$ es suficiente ver que $\overline{\mathcal{A}x} \neq \{0\}$, ya que \mathcal{A} es transitiva.

Con esto podemos concluir que para cada $x \in \overline{K(U_0)}$ existe un $S \in \mathcal{A}$ y tal que $||Sx - x_0|| < 1$.

Podemos considerar el recubrimiento por abiertos

$$\overline{K(U_0)} \subset \bigcup_{S \in \mathcal{A}} \{ y \in X : \|Sy - x_0\| < 1 \}$$

Podemos considerar el recubrimiento por abiertos

$$\overline{K(U_0)} \subset \bigcup_{S \in A} \{ y \in X : \|Sy - x_0\| < 1 \}$$

Por la compacidad de $\overline{K(U_0)}$ podemos extraer un subrecubrimiento finito, a saber,

$$\overline{K(U_0)} \subset \bigcup_{i=1}^m \{ y \in X : ||S_i y - x_0|| < 1 \}$$

donde $S_1, \ldots, S_m \in \mathcal{A}$.

Con los operadores anteriores definimos las aplicaciones continuas no negativas

$$f_i(z) = \max\{0, 1 - \|S_i z - x_0\|\}, \quad \forall i = 1, \dots, m$$

Con los operadores anteriores definimos las aplicaciones continuas no negativas

$$f_i(z) = \max\{0, 1 - \|S_i z - x_0\|\}, \quad \forall i = 1, \dots, m$$

Por definición
$$f_i(z) > 0 \Longleftrightarrow ||S_i z - x_0|| < 1$$

Con los operadores anteriores definimos las aplicaciones continuas no negativas

$$f_i(z) = \max\{0, 1 - \|S_i z - x_0\|\}, \quad \forall i = 1, \dots, m$$

Se tiene que:

$$f(z) := \sum_{i=1}^m f_i(z) > 0, \quad \forall z \in \overline{K(U_0)}$$

Con los operadores anteriores definimos las aplicaciones continuas no negativas

$$f_i(z) = \max\{0, 1 - \|S_i z - x_0\|\}, \quad \forall i = 1, \dots, m$$

Se tiene que:

$$f(z) := \sum_{i=1}^m f_i(z) > 0, \quad \forall z \in \overline{K(U_0)}$$

Normalizando, podemos definir una aplicaciones continuas, también no negativas, de la forma

$$g_i(z) := \frac{f_i(z)}{f(z)}, \quad \forall z \in \overline{K(U_0)}, \quad \forall i = 1, \dots, m$$

Con los aplicaciones continuas anteriores cumplen la condición de

$$\sum_{i=1}^m g_i(z) = 1 \quad \forall z \in \overline{K(U_0)}$$

Con los aplicaciones continuas anteriores cumplen la condición de

$$\sum_{i=1}^m g_i(z) = 1 \quad \forall z \in \overline{K(U_0)}$$

En particular para todo $x \in U_0$ se tiene

$$\sum_{i=1}^m g_i(Kx) = 1$$

Con los aplicaciones continuas anteriores cumplen la condición de

$$\sum_{i=1}^{m} g_i(z) = 1 \quad \forall z \in \overline{K(U_0)}$$

En particular para todo $x \in U_0$ se tiene

$$\sum_{i=1}^m g_i(Kx) = 1$$

Con estas aplicaciones, podemos definir la aplicación continua $\phi: U_0 \to X$ de la forma

$$\phi(x) := \sum_{i=1}^{m} g_i(Kx) S_i(Kx)$$

Definiciones Lema de Lomonosov Teorema de Lomonosov

Demostración

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Por la convexidad de U_0 tenemos:

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Por la convexidad de U_0 tenemos:

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Por la convexidad de U_0 tenemos:

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Por la convexidad de U_0 tenemos:

Aplicando el Teorema de Mazur tenemos que C es un convexo compacto. Por lo tanto, podemos restringir el operador

$$\phi: C \cap U_0 \to C \cap U_0$$

donde $C \cap U_0$ es un convexo y compacto no vacío.

Ahora, buscamos el subconjunto convexo y compacto de U_0 donde aplicar un teorema del punto fijo.

Por la convexidad de U_0 tenemos:

Aplicando el Teorema de Mazur tenemos que C es un convexo compacto. Por lo tanto, podemos restringir el operador

$$\phi: C \cap U_0 \to C \cap U_0$$

donde $C \cap U_0$ es un convexo y compacto no vacío.

Aplicando el Teorema del punto fijo de Schauder a ϕ , existe un $u \in U_0$ tal que $\phi(u) = u$.

Definiciones Lema de Lomonosov Teorema de Lomonosov

Demostración

Tenemos que $u \neq 0$, pues $u \in U_0$

Tenemos que $u \neq 0$, pues $u \in U_0$

Tomando como

$$A = \sum_{i=1}^{m} g_i(Ku)S_i \in \mathcal{A}$$

Tenemos que $u \neq 0$, pues $u \in U_0$

Tomando como

$$A = \sum_{i=1}^{m} g_i(Ku)S_i \in \mathcal{A}$$

Con lo que resulta

$$AKu = \sum_{i=1}^{m} g_i(Ku)S_i(Ku) = \phi(u) = u$$

Teorema de Lomonosov (Versión Complejo)

Teorema de Lomonosov

Sea $T \in \mathcal{L}(X)$ no escalar $(T \neq \lambda Id)$ sobre un espacio de Banach X **complejo** y sea K un operador compacto que conmuta con T. Entonces T admite un subespacio cerrado Hiperinvariante no trivial.

Teorema de Lomonosov (Versión Complejo)

Teorema de Lomonosov

Sea $T \in \mathcal{L}(X)$ no escalar $(T \neq \lambda Id)$ sobre un espacio de Banach X **complejo** y sea K un operador compacto que conmuta con T. Entonces T admite un subespacio cerrado Hiperinvariante no trivial.

Recordar que $\{T\}'$ es transitiva

Definiciones Lema de Lomonosov Teorema de Lomonosov

Demostración

Probar el resultado equivale a demostrar que $\left\{T\right\}'$ no es transitiva.

Definiciones Lema de Lomonosov Teorema de Lomonosov

Demostración

Probar el resultado equivale a demostrar que $\{T\}^{'}$ no es transitiva.

Supongamos lo contrario, esto es, que $\{T\}'$ es transitiva.

Probar el resultado equivale a demostrar que $\{T\}'$ no es transitiva.

Supongamos lo contrario, esto es, que $\{T\}'$ es transitiva. Aplicando el lema de Lomonosov, existe $A \in \{T\}'$ tal que

$$F = \{x \in X : AKx = x\}$$

es un subespacio cerrado, no nulo AK-Hiperinvariante, y por tanto es T-Invariante.

Probar el resultado equivale a demostrar que $\{T\}^{'}$ no es transitiva.

Supongamos lo contrario, esto es, que $\{T\}'$ es transitiva. Aplicando el lema de Lomonosov, existe $A \in \{T\}'$ tal que

$$F = \{x \in X : AKx = x\}$$

es un subespacio cerrado, no nulo AK-Hiperinvariante, y por tanto es T-Invariante.

Aplicando la compacidad del operador K tenemos que F es finito dimensional.

Probar el resultado equivale a demostrar que $\{T\}^{'}$ no es transitiva.

Supongamos lo contrario, esto es, que $\{T\}'$ es transitiva. Aplicando el lema de Lomonosov, existe $A \in \{T\}'$ tal que

$$F = \{x \in X : AKx = x\}$$

es un subespacio cerrado, no nulo AK-Hiperinvariante, y por tanto es T-Invariante.

Aplicando la compacidad del operador K tenemos que F es finito dimensional.

Tenemos que el operador $T: F \to F$ posee un autovalor $\lambda \in \mathbb{C}$.

Probar el resultado equivale a demostrar que $\{\mathcal{T}\}^{'}$ no es transitiva.

Supongamos lo contrario, esto es, que $\{T\}'$ es transitiva. Aplicando el lema de Lomonosov, existe $A \in \{T\}'$ tal que

$$F = \{x \in X : AKx = x\}$$

es un subespacio cerrado, no nulo AK-Hiperinvariante, y por tanto es T-Invariante.

Aplicando la compacidad del operador K tenemos que F es finito dimensional.

Tenemos que el operador $T: F \to F$ posee un autovalor $\lambda \in \mathbb{C}$. Definimos

$$N_{\lambda} := \{x \in X : Tx = \lambda x\}$$

subespacio cerrado no trivial *T*-Hiperinvariante.

Definiciones Lema de Lomonosov Teorema de Lomonosov

Corolario

Corolario

Si el operador T es polinomialmente compacto, entonces admite un subespacio cerrado Hiperinvariante no trivial.

Teorema de Lomonosov (Versión Real)

Teorema

Sea X un espacio de Banach real y $T \in \mathcal{L}(X)$ operador no escalar que conmuta con un operador compacto no nulo. Entonces las siguientes afirmaciones son equivalentes:

- a) T tiene un subespacio cerrado no trivial Hiperinvariante.
- b) Para cada par de números reales α , β con $\beta \neq 0$ tenemos que

$$(\alpha - T)^2 + \beta^2 \neq 0$$

$$a) \Rightarrow b)$$

Sea $T: X \to X$ un operador no escalar actuando en un espacio de Banach. Veamos que $\neg b) \Rightarrow \neg a$).

 $a) \Rightarrow b)$

Sea $T: X \to X$ un operador no escalar actuando en un espacio de Banach. Veamos que $\neg b$) $\Rightarrow \neg a$).

• Sin pérdida de generalidad podemos suponer que $T^2 + I = 0$.

 $a) \Rightarrow b)$

Sea $T: X \to X$ un operador no escalar actuando en un espacio de Banach. Veamos que $\neg b$) $\Rightarrow \neg a$).

- Sin pérdida de generalidad podemos suponer que $T^2 + I = 0$.
- Definimos una estructura compleja sobre X, X_T , tomando ix = Tx y considerando

$$||x||_{\mathbb{C}} = \sup\{||(a+ib)x|| : a, b \in \mathbb{R}, |a+ib| = 1\}$$

 $a) \Rightarrow b$

Sea $T: X \to X$ un operador no escalar actuando en un espacio de Banach. Veamos que $\neg b$) $\Rightarrow \neg a$).

- Sin pérdida de generalidad podemos suponer que $T^2 + I = 0$.
- Definimos una estructura compleja sobre X, X_T , tomando ix = Tx y considerando

$$||x||_{\mathbb{C}} = \sup\{||(a+ib)x|| : a, b \in \mathbb{R}, |a+ib| = 1\}$$

Se verifica

$$||x|| \le ||x||_{\mathbb{C}} \le (1 + ||T||)||x||$$

y en particular, se sigue que $(X_T, \|\cdot\|_{\mathbb{C}})$ es un espacio de Banach complejo.

• Si tenemos Y un subespacio cerrado T-invariante, entonces Y_T es un subespacio complejo cerrado de X_T .

• Si tenemos Y un subespacio cerrado T-invariante, entonces Y_T es un subespacio complejo cerrado de X_T .

$$\bullet \ \{T\}' = \mathcal{L}(X_T).$$

- Si tenemos Y un subespacio cerrado T-invariante, entonces Y_T es un subespacio complejo cerrado de X_T .
- $\bullet \ \{T\}' = \mathcal{L}(X_T).$
- Si Y es subespacio T-Hiperinvariante, entonces Y_T es $\mathcal{L}(X_T)$ -invariante. ABSURDO!!!

Lema de Lomonosov:

Sea $\mathcal A$ un álgebra transitiva de operadores en un espacio de Banach real o complejo. Entonces para cada operador compacto no nulo K existe un $A \in \mathcal A$ tal que el operador compacto AK tiene un punto fijo distinto de cero, esto es, AKu = u para algún $u \neq 0$.

$$b) \Rightarrow a)$$

• Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.
- Procederemos por reducción al absurdo:

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.
- Procederemos por reducción al absurdo:
 - Por el lema de Lomonosov, existe $A \in \{T\}'$ tal que AK tiene un punto fijo no nulo. Sea $F = \{x \in X : AKx = x\}$.

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.
- Procederemos por reducción al absurdo:
 - Por el lema de Lomonosov, existe $A \in \{T\}'$ tal que AK tiene un punto fijo no nulo. Sea $F = \{x \in X : AKx = x\}$.
 - F es AK-Hiperinvariante y como AK es compacto, entonces F es de dimensión finita. En particular, F es T-invariante.

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.
- Procederemos por reducción al absurdo:
 - Por el lema de Lomonosov, existe $A \in \{T\}'$ tal que AK tiene un punto fijo no nulo. Sea $F = \{x \in X : AKx = x\}$.
 - F es AK-Hiperinvariante y como AK es compacto, entonces F es de dimensión finita. En particular, F es T-invariante.
 - Consideramos $X_{\mathbb{C}}$ la complexificación de X y el operador $T_{\mathbb{C}}: X_{\mathbb{C}} \to X_{\mathbb{C}}.$

$$b) \Rightarrow a)$$

- Sea $T \in \mathcal{L}(X)$ un operador no escalar y K compacto no nulo tal que TK = KT.
- $\{T\}' = \{S \in \mathcal{L}(X) : ST = TS\}$ es no transitivo.
- Procederemos por reducción al absurdo:
 - Por el lema de Lomonosov, existe $A \in \{T\}'$ tal que AK tiene un punto fijo no nulo. Sea $F = \{x \in X : AKx = x\}$.
 - F es AK-Hiperinvariante y como AK es compacto, entonces F es de dimensión finita. En particular, F es T-invariante.
 - Consideramos $X_{\mathbb{C}}$ la complexificación de X y el operador $T_{\mathbb{C}}: X_{\mathbb{C}} \to X_{\mathbb{C}}.$
 - Como $F \subset X$ es subespacio T-invariante entonces $F_{\mathbb{C}} \subset X_{\mathbb{C}}$ es subespacio $T_{\mathbb{C}}$ -invariante.

• $T_{\mathbb{C}}$ tiene un autovalor $\lambda = \alpha + i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x + iy no nulo.

- $T_{\mathbb{C}}$ tiene un autovalor $\lambda=\alpha+i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x+iy no nulo.
 - $\beta = 0 \Rightarrow \alpha$ es autovalor de T y x o y son autovectores de T no nulos. ABSURDO!!!

- $T_{\mathbb{C}}$ tiene un autovalor $\lambda = \alpha + i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x + iy no nulo.
 - $\beta = 0 \Rightarrow \alpha$ es autovalor de T y x o y son autovectores de T no nulos. ABSURDO!!!
 - $\beta \neq 0$:

tiene solución no trivial.

- $T_{\mathbb{C}}$ tiene un autovalor $\lambda = \alpha + i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x + iy no nulo.
 - $\beta = 0 \Rightarrow \alpha$ es autovalor de T y x o y son autovectores de T no nulos. ABSURDO!!!
 - $\beta \neq 0$:

tiene solución no trivial.

• Entonces, el núcleo $X_{\lambda} = Ker((\alpha - T)^2 + \beta^2) \neq \{0\}$ es $(\alpha - T)^2 + \beta^2$ -Hiperinvariante.

- $T_{\mathbb{C}}$ tiene un autovalor $\lambda = \alpha + i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x + iy no nulo.
 - $\beta = 0 \Rightarrow \alpha$ es autovalor de T y x o y son autovectores de T no nulos. ABSURDO!!!
 - $\beta \neq 0$:

tiene solución no trivial.

- Entonces, el núcleo $X_{\lambda} = Ker((\alpha T)^2 + \beta^2) \neq \{0\}$ es $(\alpha T)^2 + \beta^2$ -Hiperinvariante.
- Como $\{T\}' \subset \{(\alpha T)^2 + \beta^2\}\}'$, X_{λ} es subespacio $\{T\}'$ -invariante de X.

- $T_{\mathbb{C}}$ tiene un autovalor $\lambda = \alpha + i\beta$, por ser $F_{\mathbb{C}}$ de dimensión finita, y su correspondiente autovector x + iy no nulo.
 - $\beta = 0 \Rightarrow \alpha$ es autovalor de T y x o y son autovectores de T no nulos. ABSURDO!!!
 - $\beta \neq 0$:

tiene solución no trivial.

- Entonces, el núcleo $X_{\lambda} = Ker((\alpha T)^2 + \beta^2) \neq \{0\}$ es $(\alpha T)^2 + \beta^2$ -Hiperinvariante.
- Como $\{T\}' \subset \{(\alpha T)^2 + \beta^2\}\}'$, X_{λ} es subespacio $\{T\}'$ -invariante de X.
- $\{T\}'$ es transitiva, entonces $X_{\lambda} = X \Rightarrow (\alpha T)^2 + \beta^2 = 0$.

 ABSURDO!!

Corolario

Sea X un espacio de Banach real y sea $T \in \mathcal{L}(X)$ operador no escalar que conmuta con un operador compacto no nulo. Si el espectro $\sigma(T)$ es no vacío o, en otras palabras, $\sigma(T_{\mathbb{C}}) \cap \mathbb{R} \neq \emptyset$, entonces T tiene un subespacio Hipervariante cerrado no trivial.

Corolario

Sea X un espacio de Banach real y sea $T \in \mathcal{L}(X)$ operador no escalar que conmuta con un operador compacto no nulo. Si el espectro $\sigma(T)$ es no vacío o, en otras palabras, $\sigma(T_{\mathbb{C}}) \cap \mathbb{R} \neq \emptyset$, entonces T tiene un subespacio Hipervariante cerrado no trivial.

Demostración:

Probaremos, por reducción al absurdo, que para cualesquiera α , β ($\beta \neq 0$) tenemos ($\alpha - T$)² + β ² \neq 0 .

Corolario

Sea X un espacio de Banach real y sea $T \in \mathcal{L}(X)$ operador no escalar que conmuta con un operador compacto no nulo. Si el espectro $\sigma(T)$ es no vacío o, en otras palabras, $\sigma(T_{\mathbb{C}}) \cap \mathbb{R} \neq \emptyset$, entonces T tiene un subespacio Hipervariante cerrado no trivial.

Demostración:

Probaremos, por reducción al absurdo, que para cualesquiera α , β ($\beta \neq 0$) tenemos ($\alpha - T$)² + β ² $\neq 0$.

• Si $(\alpha - T)^2 + \beta^2 = 0$, entonces por el Teorema de la Aplicación Espectral [$p(\sigma(T)) = \sigma(p(T))$]

$$(\alpha - \lambda)^2 + \beta^2 = 0, \ \forall \lambda \in \sigma(T_{\mathbb{C}})$$

Corolario

Sea X un espacio de Banach real y sea $T \in \mathcal{L}(X)$ operador no escalar que conmuta con un operador compacto no nulo. Si el espectro $\sigma(T)$ es no vacío o, en otras palabras, $\sigma(T_{\mathbb{C}}) \cap \mathbb{R} \neq \emptyset$, entonces T tiene un subespacio Hipervariante cerrado no trivial.

Demostración:

Probaremos, por reducción al absurdo, que para cualesquiera α , β ($\beta \neq 0$) tenemos ($\alpha - T$)² + β ² $\neq 0$.

• Si $(\alpha - T)^2 + \beta^2 = 0$, entonces por el Teorema de la Aplicación Espectral [$p(\sigma(T)) = \sigma(p(T))$]

$$(\alpha - \lambda)^2 + \beta^2 = 0, \ \forall \lambda \in \sigma(T_{\mathbb{C}})$$

• En particular, se tiene para $\lambda \in \sigma(T_{\mathbb{C}}) \cap \mathbb{R}$ y se sigue que $\alpha = \lambda$ y $\beta = 0$. ABSURDO!!!

Referencias

Gleb Sirotkin, A Version of the Lomonosov Invariant Subspace Theorem for Real Banach Space, Indiana Univ. Math. J.54 (2005), 257-262.

Y.A. Abramovich, E.D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, Vol. 50, AMS, 2002. Seccion 10.2, *The Iomonosov Invariant Subspace Theorem*, pgs. 393-395.

GRACIAS