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Some Remarks on Banach Limits (**).

Summary. - We define generalized limils as continuous linear functionals on
the Banach space L, which ave not shift-invariant like the classical Banach
limits, but have stronger geometric properties. Moreover, these generalized
limits are precisely the multiplicative functionals on 1. which vanish
on Cy.

In his classical treatise[2], S. Banach mentioned a remarkable fact:
there exist continuous linear functionals I on the space I, of all bounded
real sequences & = (&, ), (now called «Banach limits») with the proper-
ties

) liminf %, < Ke) < limsup @,
and
(2) I(Sx) = Kx),

where S denotes the left shift operator
(3) . S(ml,mz,wg,-..)=((B2,CC3,.’L'4,...).

From (1) it follows that for convergent sequences the Banach limit
I(z) coincides with the usual limit; in particular, lx) = 0 for x € ¢, and

(*) Institut fiir Mathematik Am Hubland, D-8700 Wiirzburg, Germany; Di-
partimento di Matematica, Universita della Calabria, I-87036 Arcavacata (CS),
Italy; BGU, Mat. Fakultet, PL Nezavisimosti 1, 220080 Minsk, Belorussia.

(**) Nota giunta in Redazione il 26-1-93.
This article was presented at the «Convegno di Analisi Reale e Teoria della
Misura» held in Capri during September 7-11, 1992, and was supported by



274 I, APPELL - E. DE PASCALE - P. P. ZABREJKO [2]

hence the Banach limit I(x) is not affected by changing finitely many
terms in the sequence x € I, . The property (2) in turns means that one
may add or omit finitely many terms at the beginning of a sequence
without changing I(x).

The existence of Banach limits is a consequence of the Hahn-Banach

theorem on the extension of continuous linear functionals. Moréover, ™

they provide an example (not explicit, of course} of a continuous linear
functional on I, which is not representable in «integral form»

U= 3o @=@nels)

with some ¥ = (y,), € 1. One the other hand, the existence of such
functionals is a consequence on the Alaoglu theorem[1] on the weak®
compactness of the unit ball in I3 (and of the obvious fact that the unit
ball of [, as a subset of %, is not closed in the weak*-topology).

The purpose of this note is to show that, building directly on the
Alaoglu theorem, one may construet other «generalized limits» on [,
which are different from the classical Banach limits and have «nice»
properties. In particular, it came out as a surprise for us that in this
way we obtained a new proof for characterizing the multiplicative fune-
tionals on I, vanishing on ¢ -

Consider the «remainders» {e,, e,,,,ﬂ, .} of the sequence ¢ = (e, ),

of the usual basis elements e, = (8, ), in I;. Gbviously, the sets

(4) ) Fn=dl;co{en!en+1’l--'}

(strong closure in [;) form a decreasing sequence of closed convex sets
with empty intersection. However, if we consider I, as a subspace of [},
equipped with the weak* topology, the sets

(5) F,=clypcof{e,, yi1s0--}

(weak* closure in [%) have a nonempty intersection. The sets (5) will be
of importance in the construction of generalized limits below. .
Another way of pointing out the difference between the sets F, and
F, is as follows: the sequence e = (g, ), of unit vectors has cluster points
(i.e. points which are arbitrarily close to e, for infinitely many =), con-
sidered as a sequence in the unit ball of %, but has no cluster points,
considered as a sequence in the unit ball of l.
. Given a bounded real sequence x = (i, ), we denote by Lim (x} the
set of all limit points of «, i.e. limits of all possible convergent subse-
quences. Of course, the set Lim(z) is always nonempty; in particular, it
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contains the lower limit lim inf 2, and the upper limit lim sup %, as min-
imal and maximal element, respectively. The notion of limit point may
be defined as well in the general setting of topological spaces. Recall,
however, that the limit points and the cluster points of a sequence coin-
cide in metric spaces, but may not coincide in non-metrizable spaces.
For instance, the above sequence ¢ = (g, ),, considered as a sequence in
the unit ball of {*, has no limit points at all in the weak* topology.

Lemma 1. Let e 1. Then | has the property (1) if and only if | be-
longs to the intersection of all sets F, (n =1, 2,...)

PROOF. Recall that the sets {f:fel¥, |[Ra)| <c} (zel.,e>0)
form a basis of neighbourhoods of zero in the weak* topology on I2.

leld and 2el,. Then I belongs to the intersection of all sets
F.(n=1,2,..)if and only if, for all ¢ > 0 and n e N, one can find an
fe co{eﬂ,eﬂl, .} such that |Uz) - fz)| <e Any such f may be
written in the form

Jlx) = E Aper(z),

where the summation actually runs only over a finite number of scalars
A > 0 whose sum is equal to 1. But e, (2} =, and thus I(z) is in the
e-neighbourhood of [lim inf x,,lim sup ,]. Since ¢ > 0 is arbitrary, the
assertion follows. "

LEWA 2. Let lel® Then I is a cluster point of e = (e,), ¥ and
only if
{6) fx)eLim(x) (rel.).

Proor. Using again the same neighbourhoods of zero as in Lem-
ma 1, we see that [ is a cluster point of e = (¢, ), if and only if, for any
xel, and ¢ > 0, one has |I(x) — x, | < ¢ for infinitely many » € N. But
this simply means that ¥(x) belongs to the closure of Lim (x), and the as-
gertion follows from the fact that Lim(z) is closed. ]

From the Alaoglu theorem and the preceding lemma we obtain the
following

Theorem. 1. There exist ﬁmctwnals le 1% such that (6) holds for
all 2 el,.

Observe that (6) implies (1) but not vice versa. Indeed, (6) states
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that I(z) is always a limit point of & = (®, )y, and not just an element of
the interval [lim inf &,,}im sup @, On the other hand, the condition
(2) is now. incompatible with the requirement (6): in fact, for the se-
quence &, = (—1)" one has Sx = —x and hence {(x) = 0, but Lim{x) =

" The above Theorem 1 is essentially-a- consequence of _the Alaoglu
theorem applied to the wnit ball of 12. We do not know whether or not
the existence of classical Banach limits may also be deduced only from
the Alaoglu theorem. We point out, however, that it may be obtained

by combining the Alaogiu theorem with the Tykhonov fixed point prin~

ciple. To see this, observe that the shift operator S leaves the remain-
ders {€,, €n+1s+- .} invariant, and its adjoint S* leaves the intersection

of all sets F, given in (5) invariant. Since the operator §* is weakl'y:*

point ! of the operator S, i.e. the existence of a Banach limit.
When extending the notion of «limit» from the space ¢ of convergent

continuous, the Tykhonov. principle guarantees the existence of a fixed .-

sequences to the space l. of bounded sequences, it is natural to try to -

preserve also the algebraic properties of the usual limit, Unfortunate-
1y, the classical Banach limit [ having the properties (1) and (2) is not
multiplicative (see, €.g. [4]). Interestingly, the generalized limits de-
seribed in Theorem 1 are not only multiplicative: they are essentially
the only limits on I., with such a property: ' I

THEOREM 2. Let lel%, 1= 0. Then the following two statements
are equivalent:

(@) | is multiplicative on L., i.e.
@ o) = Uy) (el
and vanishes on ;- . o |
(b) 1 satisfies (6). -
PROOF. .Supposé first that (a) holds. Then [ is positive and

satisfies l(w)=1 on u=(1, 1,...). Denote by xp the characteristic
funetion (sequence) of an arbitrary subset D of N. Since Uypf=

= lx}) = Uxp), the functional { may assume on xp only the value -

0 or 1. If Lim(xp) = {0, 1} then (6) follows. If Lim(yp)= {0} or
Lim(yp) = {1}, then D or N/D, respectively, is finite. In this case
(6) follows from the vanishing of [ on ¢, and the identity I(x pJyt

+1(y¢njp)-= 1. Before proving (6) in general, we like to point out .

[5) SOME REMARKS ON BANACH LIMITS . 277

that the family F of all sets Dc N with Kxp) = 1 is an ultrafilter
on 2. Moreover, F contains the Fréchet filter (see, e.g.,[3D.

Let 2 = (x,), be an arbitrary sequence in I,. Given ¢>0, let
{#1.-s%m } DE 2 Ginite enet in Lim(x). Choose sequences
(D ) nr s (0™ ) Of natural numbers such that

®  led-gl<e  GeNi=lo,m.

Withoiit Toss of generality-we may assume here that the sets D;=
= {n{?, n?, ..., i, Hi=1,..., m)are mutually disjoint. Now, the
element & may be represented in the fom

ki
9 a:=j21zjxpj+v+w,
where v is a finite sequence and ]| < . Sinee Fis an ultrafilter and the
union ‘of the sets D; is equal to N, except for a finite set, only one of the
sets Dy,..., Dy (s3Y D,) belong to & But this implies that, by (9,
| lzx) — 2| < &. We conclude that I(x) € Lim (), since Lim (z) is closed,
and thus (b) holds. Conversely, suppose that lel* satisfies (6). The

* fact that I is zero on ¢o, positive on I.., and normalized on % = (1,1,...)

_is a consequence of (8); it remains to show that I i8 multiplicative.
The equality Kyavp)t xa xs)= Wxa) + Uxp) imphe§ that

(10) Ko xs) = Wxadlxe)

for all A, BcN.

Now define Fas in the first part of the proof; it is again straightfor-
ward to prove that Fis an ultrafilter. To prove (7) in the general case,
consider first sequences of the form

P . q
(11) = _EIEiZAé ’ ¥ =j21 NiAB; s
‘Lﬁ - .

where the sets {A;,-.., Ap} and {By,..., By} are partions of N. Again
by the ultrafilter property of & only one of these sets (say A, and B,
respectively) belongs to # Consequently, we have Kx) =&, UY) = Ns
and

p g
Wxy) = 1(21 ,21 EinjxmﬂB,) = &1, = LY.
i=lj= . _

The assertion (ﬂ'folloﬁfs now from the fact that the sequences of the
form (11) form a dense subset of l., and thus we have proved {(a).
Let us make some remarks on Theorem 2. As is well-known[6],

i
i
:
:
i
i
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there is a 1-1 correspondence between the multiplicative functionals
I el* and the set Spec(l.,) of all maximal ideals of the. Banach algebra
l.. One may therefore consider Theorem 2 as a purely analytic charac-
terization of all maximal ideals in I, containing c,. .

“We also want to point the reader’s-attention-to the paper [7],- where-

it is shown that [ el¥ is multiplicative if and only if i(x) e o(x) for all
x e l,. Since the latter-condition means precisely that |l(z) -2, | is
bounded away from zero, and Lim (#) is always conteined in o(x), we
could have used[7] for proving the implication (b)=>(a) in Theorem 2.
Nevertheless, our proof is completely elementary and different from
the proof in[7] which is purely algebraie..

Observe that the proof of Theorem 2 bears a strong resemblance to
one of the usual approaches to nonstandard analysis. In fact, if u: 2N,
~> {0, 1} is any measure such that #(N) = land u(D) = 0for finite DC N,
one may define an equivalence relation ~ on [, by requiring
(@ )n ~ (YD if and only if u({n: x, =y, }) = 1. The set I, /~ is then a
model of the nonstandard hull *N which contains R via the constant
sequences. e e e e e C

A beautiful survey on the corinections between nonstandard hulls
and generalized limits may be found in the recent book [5].
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I-Density Continuous Transformations on RZ ().

Abstract. — We shall tnvestigate various classes of I-density[ cmfatinuous. trans-
formations from R into R2 We are interested primarily in studymgzthe
connections between I-density (or strong I -density) continwity of 1, gzz bt -g
> R and I-density (or strong I-density) continuity of F = (f, 9), F: R K2
Similarly as in the case of metric density {compare[3]) one cannot expect too
much because F(x, y) = {z, © + y) is not strongly I-density contmuous czmd
Pz, y) = (%, 4°) i not I-density continuous. On the other hand, if F: fi*—
—WE 4s I-density (or strongly I-densily) continuous and Flz,y) =
= (f(x, ), oz, ), then f, g: R — R are I-density (or strongly I-density)
continuous. Also, if F(x, y) = (f(@), 9(y)) and f, ¢: R— ?R are I-density
continuous homeomorphisms such that 71, g7 are I-density continuous,
then F is strongly I-density continuous.

1. — Introduction.

In the paper R will denote the real line and M? the plane, 2! and 72
the natural topology on the real line and on the plane, respectively, d;
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