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1. INTRODUCTION: THREE PROBLEMS. In this article we introduce readers
to a fascinating concept in mathematics: ultrafilters. We start with three problems con-
cerning finite situations with similar conclusions. The first problem is very simple and
is included solely in order to help us in the infinite case. By contrast, the other two
have surprising conclusions. The analogue of the first problem for infinite sets leads
us to ultrafilters, and we shall see that this is just the right concept needed to formulate
the other problems in an infinite setting. The original problems in the finite case reflect
the fact that every ultrafilter on a finite set is principal. Finally, we show how to apply
ultrafilters to construct generalized limits in an elegant way.

The concept of an ultrafilter was introduced by Frederic Riesz [9] in 1908 in a
talk that should have received more attention. Its systematic use in mathematics was
started in the 1930s by the Polish school (Banach, Tarski, Ulam, etc.). Ultrafilters are
standard tools in mathematical logic and set theory, but they are also widely used in
combinatorics and topology. For example, the powerful ultraproduct construction in
mathematical logic is based on them; in set theory and infinitary combinatorics they
are used in Ramsey theory (partition relations). These applications go well beyond
the level we target in this article. The books [4] and [3] treat many of these advanced
applications.

As we have said, the first problem is very simple, but it will guide us in the infinite
case:

Problem 1. In a land far away, game for the king’s table is delivered by a number
of royal hunters. The chancellor has labeled groups Y of hunters as “negligible” or
“substantial” according to their contributions. It has turned out that if groups Y1 and Y2

are “negligible,” then so is their union Y1 ∪ Y2, and group Y is “negligible” precisely
when the rest of the hunters form a “substantial” group. Show that there is a single
hunter whose contribution is “substantial” and that the total contribution of all the
others is “negligible.”

The second problem is more surprising and is due to Greenwell, Lovász, and Lem-
pert (see [5]):

Problem 2. Finitely many switches, each having three positions, are connected to a
light with three states in such a way that if the positions of all switches are simultane-
ously changed, then the state of the light also changes. Show that there is a switch s
such that the state of the light depends only on the position of s.

Our third problem is the celebrated theorem of Arrow [1, pp. 97–100] (see also [6]
in this MONTHLY).

Problem 3. Suppose that in an election there are n(≥ 3) candidates and finitely many
voters, each of whom makes a ranking of the candidates, and the outcome is also a
ranking of the candidates. There are two requirements for the outcome:
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• if all the voters enter the same ranking, then this is the outcome;
• whether a candidate a precedes candidate b in the outcome depends only on

their order on the different ranking lists of the individual voters (and it does not
depend on where a and b are on those lists; i.e., on how the voters ranked other
candidates).

Show that there is a “dictator” whose ranking gives the outcome.

The conclusion is to be understood in the following sense. As in any election, there
is a rule (a machine) that decides (calculates) the outcome of the vote from the lists
of the individual voters, and the rule obeys the two stated conditions. Then inherent
in any such rule (machine) there is a dictator D such that the result will always be
D’s ranking (the ranking that the machine calculates will be the same as that of D) no
matter how many times and how the voting is done.

2. ULTRAFILTERS. The solution to Problem 1 is very simple. Let X be the set
of all hunters, a set that is clearly substantial. Note that if Y1, . . . , Yk are negligible,
then so is their union Y1 ∪ · · · ∪ Yk . This implies that not every hunter (one element
group) is negligible, for then the union X of these singletons would be negligible.
On the other hand, there cannot be two substantial hunters h1 and h2, for then both
X \ {h1} and X \ {h2} would be negligible, as would be their union X , which is not the
case. Therefore there is one and only one substantial hunter, and every other hunter is
negligible.

Now what if the number of hunters is infinite? Let X be the set of hunters and H
the collection of all substantial subsets of X . Thus, X ∈ H, ∅ �∈ H, and a subset Y of
X is in H precisely if X \ Y does not belong to H. If Y1 and Y2 are elements of H,
then X \ Y1 and X \ Y2 are negligible, hence so is their union

(X \ Y1) ∪ (X \ Y2) = X \ (Y1 ∩ Y2).

It then follows by assumption that Y1 ∩ Y2 = X \ (X \ (Y1 ∩ Y2)) belongs to H. It was
implicit in Problem 1, but now we state explicitly that if Y is substantial, then so is
every larger set Y ′ (i.e., if Y ∈ H and Y ⊂ Y ′, then Y ′ ∈ H).

Thus, H is a family of subsets of X with the following properties:

(i) X ∈ H, ∅ �∈ H;
(ii) if Y1 ∈ H and Y1 ⊂ Y2, then Y2 ∈ H;

(iii) if Y1, Y2 ∈ H, then Y1 ∩ Y2 ∈ H;
(iv) Y ∈ H if and only if X \ Y �∈ H.

Any family H of subsets of X with properties (i)–(iii) is called a filter, and if, in addi-
tion, (iv) is also true, then H is called an ultrafilter. Property (iii) implies by induction
that if Y1, . . . , Yk is any finite collection of sets in H, then Y1 ∩ · · · ∩ Yk also belongs
to H. We continue to refer to this trivial extension of (iii) as (iii).

Let a in X be fixed, and let Ha = {Y ⊂ X : a ∈ Y } be the collection of sub-
sets containing a. Every such Ha is clearly an ultrafilter. These we call principal
ultrafilters—they are the trivial ultrafilters generated by a single element. Are there
nonprincipal ones? The solution of Problem 1 ensures that on a finite set every ul-
trafilter is principal. If {a} belongs to an ultrafilter H for some a in X , then plainly
Ha = H, so on an infinite set X an ultrafilter H is nonprincipal if and only if for each
a in X it is the case that X \ {a} lies in H, hence by (iii) H is nonprincipal if and
only if it contains the complements of all finite subsets (so-called cofinite sets) of X .
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The cofinite sets themselves form a filter (check properties (i)–(iii)), and it is easy to
show (see Exercise 1 at the end of this article) that a filter H is an ultrafilter (i.e., also
has property (iv)) if and only if it is a maximal filter (i.e., there is no filter H′ on X
that properly contains H). Now a statement called Zorn’s lemma (which is equivalent
to the Axiom of Choice) can be applied to show that every filter can be extended to
a maximal filter, whence every filter is contained in an ultrafilter. Applying this fact
to the filter of cofinite sets, we conclude that on an infinite set X there is always a
nonprincipal ultrafilter.

Thus, when there are an infinite number of hunters, all we can say with respect to
Problem 1 is that the substantial groups form an ultrafilter. It may not be principal (i.e.,
there may not be a substantial hunter).

There is an alternative way to introduce ultrafilters. Let X be a set, and let P(X)

signify its collection of subsets. Call a mapping μ : P(X) → {0, 1} a finitely additive
measure on X if μ(X) = 1 and μ(Y1 ∪ Y2) = μ(Y1) + μ(Y2) whenever Y1 and Y2 are
disjoint subsets of X . Thus μ assigns the value 0 or 1 to each subset of X in an additive
way. The term “finitely additive” comes from the fact that clearly

μ(Y1 ∪ · · · ∪ Yk) = μ(Y1) + · · · + μ(Yk)

for any finite k and pairwise disjoint sets Y1, . . . , Yk in X . If a in X is fixed and
μa(Y ) = 1 precisely if Y contains a, then μa is clearly a finitely additive measure.
(We call such μa trivial.) From our perspective Problem 1 translates to the following:

Problem 1′. Show that on a finite set every finitely additive measure is trivial.

In general, ultrafilters and finitely additive measures correspond to each other in the
sense that if we set

μ(Y ) = 1 ⇐⇒ Y ∈ H, (1)

then μ is a finitely additive, {0, 1}-valued measure on X if and only if H is an ultrafilter
on X . Moreover, in this correspondence nontrivial measures correspond to nonprinci-
pal ultrafilters (see Exercise 2). Therefore, on an infinite set there is always a nontrivial
finitely additive, {0, 1}-valued measure.

As pointed out earlier, on a finite set every ultrafilter is principal (Exercise 3). There-
fore, we shall not solve Problems 2 and 3, for the solutions are consequences of their
general versions discussed later.

In the proofs that follow we frequently use the following property of ultrafilters
H: if Y belongs to H and Y = Y1 ∪ · · · ∪ Ym is a decomposition of Y into pairwise
disjoint sets, then one and only one Yk belongs to H. Indeed, if none of the Yk were
in H, then each of the sets X \ Yk would be in H, as would their intersection, which
is the complement of Y1 ∪ · · · ∪ Ym = Y . Thus, H would contain two disjoint sets (Y
and X \ Y ), which is not possible, for then it would also contain their intersection, the
empty set. This contradiction shows that at least one of the Yk must belong to H, and
since the Yk are disjoint, it is not possible for two of them to belong to H.

3. THE INFINITE SWITCH-LAMP PROBLEM. For an arbitrary number of
switches Problem 2 takes the following form:

Consider a set X of switches, each having three positions {0, 1, 2}, and a light
also with three states {L0, L1, L2} (like a traffic light). They are connected in
such a way that if the positions of all switches are simultaneously changed, then
the state of the light also changes. We suppose that if all the switches are in the i th
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position, then the light is in the state Li . Show that there is a (possibly principal)
ultrafilter H on X that determines the state of the light, in the sense that it is Li

(i = 0, 1, 2) precisely when {S ∈ X : S is in the i th position} belongs to H.

The assumption that if all the switches are in the i th position, then the light is also in
the state Li can always be achieved by appropriate labeling of the states of the light. As
we have already mentioned in the previous section, the original switch-lamp problem
follows, since on a finite set any ultrafilter is principal (i.e., it contains a one-element
set, and the switch in this set determines the state of the light).

In the solution of the general switch-lamp problem we consider functions f : X →
{0, 1, 2} ( f (S) is the position of the switch S) and an operator � that assigns to each
such f a value in {0, 1, 2} (the state of the lamp). The assumption in the problem takes
the following form: if f0 and f1 differ everywhere, then �( f0) �= �( f1). We use this
property over and over again in the solution. We have also assumed that if gi is the
identically constant function satisfying gi (S) = i (S ∈ X ), then �(gi) = i .

First, assume that A is a subset of X and that B = X \ A. If f : A → {0, 1, 2}
and g : B → {0, 1, 2} are functions defined on A and B, respectively, then we simply
write f ∗ g for the function on X = A ∪ B that coincides with f on A and with g on
B, and we also use the notation (c)A for the function that is identically c on A. Then
�((0)A ∗ (0)B) = 0 and �((1)A ∗ (1)B) = 1, hence we must have

�((1)A ∗ (0)B) �= �((0)A ∗ (0)B)

or

�((1)A ∗ (0)B) �= �((1)A ∗ (1)B).

We show that if the first of these holds, then the state of the lamp depends only on
the state of the switches contained in A. The other assumption leads in an identical
fashion to the conclusion that the state of the lamp then depends only on the state of
the switches in B.

Suppose that �((1)A ∗ (0)B) �= 0. Since

�((1)A ∗ (0)B) �= �((2)A ∗ (2)B) = 2,

we must have �((1)A ∗ (0)B) = 1. If g : B → {1, 2}, then (2)A ∗ g is pointwise differ-
ent from both (0)A ∗ (0)B and (1)A ∗ (0)B , so necessarily �((2)A ∗ g) = 2. We denote
this fact by �((2)A ∗ (1, 2)B) = 2 (i.e., henceforth (1, 2)B denotes an arbitrary func-
tion B → {1, 2}). If now g : B → {1, 2} and g is defined by g(i) = 3 − g(i) for each
i in B, then the functions (0)A ∗ (0)B , (1)A ∗ g, and (2)A ∗ g assume three different
values everywhere, which implies that �((1)A ∗ g) = 1 (i.e., �((1)A ∗ (1, 2)B) = 1).
Thus, �((2)A ∗ g) = 2 and �((1)A ∗ g) = 1, so �((0)A ∗ g) = 0 (i.e., it also follows
that �((0)A ∗ (1, 2)B) = 0). So far we have verified that �((i)A ∗ (1, 2)B) = i for
i = 1, 2, 3.

Next let g : B → {0, 1, 2} be arbitrary, and let g : B → {1, 2} be a function that is
everywhere different from g. Since �((i)A ∗ g) is different from any of the two values
�(( j)A ∗ g) = j ( j = 1, 2, 3, j �= i), we must have �((i)A ∗ g) = i for i = 1, 2, and
3. Accordingly, we have verified that �((i)A ∗ g) = i for all i , whence

�((i0, i1)A ∗ g) ∈ {i0, i1} (i0, i1 ∈ {0, 1, 2}), (2)

where g : B → {0, 1, 2} is arbitrary.
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Assume, finally, that two functions agree on A but that � assigns different values to
them. Thus, for some function f : A → {0, 1, 2} and functions g0, g1 : B → {0, 1, 2}
we have �( f ∗ g0) �= �( f ∗ g1)—say, �( f ∗ g0) = i0 and �( f ∗ g1) = i1. Then
there is a function f : A → {i0, i1} that is everywhere different from f and a func-
tion g : B → {0, 1, 2} that is everywhere different from both g0 and g1. For these we
have �( f ∗ g) �= i0, i1. On the other hand, the value �( f ∗ g) must be in {i0, i1} by
(2). This contradiction establishes that if two functions coincide on A, then the associ-
ated �-values are the same. In other words, the state of the lamp depends only on the
switches in A.

What we have just shown is that if X = A ∪ B is a disjoint decomposition, then one
and only one of Y = A or Y = B has the property that �( f ) depends on the restriction
of f to Y . Let H be the collection of those subsets Y of X with this property. As we
have just observed, for an arbitrary subset A of X exactly one of A or X \ A is in H.
Clearly, ∅ /∈ H. Moreover, if A ∈ H and A ⊂ B, then B ∈ H. It is also immediate that
H is closed under finite intersection (Exercise 4). Thus, H is an ultrafilter.

To conclude the proof, for an arbitrary f : X → {1, 2, 3} let Ci ( f ) = {S ∈ X :
f (S) = i} (i = 0, 1, 2). These are disjoint sets with union X , hence exactly one of
them, say Ci0 , belongs to H. Since on Ci0 the function f coincides with the constant
function gi0 and �( f ) depends only on the restriction of f to C0, we have �( f ) =
�(gi0) = i0, as claimed.

4. AN ARBITRARY NUMBER OF VOTERS. For arbitrarily many voters Problem
3 takes the following form (see, for example, Kirman and Sondermann [7]):

Suppose that in an election there are finitely many n(≥ 3) candidates {c1, . . . , cn}
and a set X of voters. Each voter makes a ranking of the candidates, and the
outcome of the election is determined by two rules:

• if all the voters enter the same ranking, then this is the outcome;
• whether a candidate a precedes candidate b in the outcome depends only

on their order on the different ranking lists of the individual voters (and
it does not depend on where a and b are on those lists; i.e., on how the
voters ranked other candidates).

Show that there is an ultrafilter H on X such that the outcome is an ordering π of
{c1, . . . , cn} if and only if the set Fπ of those voters whose ranking is π belongs
to H.

We point out that the two conditions imply that if all voters rank a ahead of b, then a
is also ahead of b in the outcome.

The outline of the proof is this: we prove the theorem for up to four voters. This
gives the desired conclusion when the voters vote in blocks and there are at most four
such blocks. Finally, we show that this is already sufficient to obtain the full conclusion
for an arbitrary set of voters.

We work with blocks of voters who rank the candidates the same way. However, in
block-voting each block is like an individual voter (in other words, each block can be
replaced with any one of its members), hence it is convenient to consider first the case
when there are only finitely many voters (X is finite). We call a voter decisive if the
outcome of the vote always agrees with her list.

First we show that if there are only two voters A and B, then one of them is decisive.
We establish the following notation: we signify the fact that candidates a, b, and c
are listed on A’s ballot in some order (say . . . , a, . . . , c, . . . , b, . . .), on B’s ballot in
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some (possibly different) order (say . . . , c, . . . , a, . . . , b, . . .), and in the outcome in a
(potentially third) order (say . . . , b, . . . , c, . . . , a, . . .), by writing

A : acb
B : cab

—
Outcome : bca

Suppose now that A is not decisive. Then there is an election with some candidates
a and b in the order ab on A’s ballot such that in the outcome their order is ba. Then
on B’s ballot their order is necessarily ba (otherwise a and b would be listed on both
lists in the order ab, which would be the outcome, as well). We show that B is deci-
sive. Since the order in the outcome is the result of the order of the pairs of candidates,
it is sufficient to show that B is decisive for each pair of candidates. Let c be a third
candidate. Each column in the following table implies the next one (by this we mean
the following: if we assume, for example, that, as indicated in column one, the out-
come is . . . b . . . a . . . if A’s list has . . . a . . . b . . . and B’s has . . . b . . . a . . . , then the
outcome will be . . . c . . . b . . . a . . . when A’s list reads . . . a . . . c . . . b . . . and B’s list
reads . . . c . . . b . . . a . . . , and this is what is stated in column two):

A : ab acb ac abc bc bac ba
B : ba cba ca cab cb acb ab

— — — — — — —
Outcome : ba cba ca cab cb acb ab

This proves that B is decisive for the pair a and b.
Now we repeat the same argument with column 1 replaced with column 3 (respec-

tively, column 5)—in other words, we exchange a and b with a and c (respectively,
with b and c)—to conclude that B is also decisive for the pairs a and c (respectively, b
and c). Thus, the decisiveness of B for the pair a and b has been established, and here
a and b can be replaced with any c different from a and b. By means of at most two
such replacements we can get to any pair of candidates, so the decisiveness of B has
been confirmed.

Next we show that if there are four voters A, B, C, and D, then one of them is
decisive. In fact, suppose first that A and B form a block (i.e., they always vote the
same way) and C and D also form a block. Then we have two block voters, hence one
of them is decisive, say the AB block. We claim that if A and B vote the same way,
then they are decisive even if C and D do not vote in a block. If this is not the case,
then there are candidates p and q and a vote tally in which A and B rank them in the
order pq, whereas in the outcome the order is qp. In the following table p′q ′ and p′′q ′′
denote permutations of the “phrase” pq, and again each column implies the next one
(a is a candidate different from p and q):

A : pq paq aq
B : pq paq aq
C : p′q ′ p′q ′a qa
D : p′′q ′′ p′′q ′′a qa

— — —
Outcome : qp qpa qa

(3)

This contradicts the decisiveness of the block AB over CD, and this contradiction
proves the decisiveness of the block AB. Now fix the rankings of C and D in some
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order π(c1), . . . , π(cn) (for both of them), where π : {c1, . . . , cn} → {c1, . . . , cn} is
some permutation of the candidates, allowing A and B to vote as they wish. In this
way we get a two-member voting scheme, hence either A or B is decisive in it; for
definiteness let it be A. We claim that A is decisive in the original four-voter scheme.
Suppose that this is not the case. Then there are candidates p and q and an election in
which A ranks them in the order pq, whereas their order in the outcome is qp. Since
the block AB was decisive, this is possible only if B ranks them in the order qp. Then,
if the last element of the fixed order is b = π(cn), each column in the following table
implies the next one:

A : pq pbq bq
B : qp qpb qb
C : p′q ′ p′q ′b qb
D : p′′q ′′ p′′q ′′b qb

— — —
Outcome : qp qpb qb

This contradicts the decisiveness of A when C and D vote in the fixed order π(c1),

. . . , π(cn) (if one of p or q is the last element b = π(cn), then work symmetrically
with the first element in the fixed order; if p and q coincide with the last and first
elements, then first replace one of them in the indicated manner with a third element;
after these steps we are back to previously considered cases). With this, the claim that
in a four-member voting scheme there is always a decisive voter has been verified. The
same argument establishes the same claim if there are three voters.

Having dealt with these cases, we turn to an arbitrary set X of voters. We call a
subset F of X decisive if it is true that when all members of F vote the same way, this
is always the outcome. An argument similar to that in (3) demonstrates the following:
if F is decisive in the two-block voting scheme consisting of the blocks F and X \ F,
then F is decisive. In fact, in that case (3) should be changed to (4), where V1 and V2

are the set of voters in X \ F who rank p and q in the orders pq and qp, respectively,
and a is again a candidate different from p and q. Indeed, if F were not decisive, then
there would be an election (indicated in the first column in (4)) whose outcome would
lead to a contradiction:

F : pq paq aq
V1 : pq pqa qa
V2 : qp qpa qa

— — —
Outcome : qp qpa qa

(4)

Here the last column would contradict the decisiveness of F in the two-block voting
consisting of F and X \ F .

Thus, we have shown that if F is decisive in the two-block voting scheme consist-
ing of the blocks F and X \ F , then F is decisive. This already implies something
apparently stronger: if F is decisive in any finite block-voting scheme in which F is
one of the blocks, then F is decisive (note that F is then automatically decisive in the
two-block voting consisting of F and X \ F).

Let H be the set of decisive subsets of X . We show that H is an ultrafilter on X . It
is clear that ∅ �∈ H (the presence of ∅ in H would mean a fixed outcome irrespective
of the votes). If F ∈ H and F ⊂ F ′, then F ′ ∈ H. Also, at most one of F or X \ F
can belong to H. That one of them is actually in H follows from the decisiveness in
the two-member voting schemes. Therefore, to show that H is an ultrafilter, it suffices
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to verify that if F1 and F2 belong to H, then so is F1 ∩ F2. Consider the four-member
block voting scheme when the blocks are F1 ∩ F2, X \ (F1 ∪ F2), F1 \ F2 and F2 \ F1

(i.e., the voters in each block vote the same way, and if one of these sets is empty,
then the relevant block-voter is missing). We know that one of them is decisive (we
have verified decisiveness if there are at most four voters). Since both F1 and F2 are
decisive, this decisive block cannot be any of the last three, so it must be F1 ∩ F2,
placing F1 ∩ F2 in H.

Now consider an arbitrary election. For a permutation π of the candidates consider
the set Fπ of those voters v in X whose ballots rank candidates in the order given by
π . Since X = ∪π Fπ is a finite disjoint decomposition, exactly one of the Fπ belongs
to H, say Fπ0 has this property. Then Fπ0 is decisive, so the outcome of the vote must
be π0.

5. BANACH-LIMITS. Ever since the rigorous notion of sequential convergence
took hold in mathematics, there has been a desire to extend it to more general se-
quences. Even before that time many great mathematicians routinely associated limits
with sequences and series that are not considered to be convergent these days, but
those limits can be justified by modern summation methods. Several generalizations
of convergence were introduced in the nineteenth and early twentieth centuries, but
it was Stefan Banach [2, chap. 2, sec. 3] who established in 1932 that a generalized
limit, now called a Banach-limit, can be associated with every bounded sequence.
Furthermore, this generalized limit retains many of the desirable features of standard
convergence. In this section we show that ultrafilters provide an elegant way to define
Banach-limits.

Let {xn} be a bounded real sequence. If it happens to be convergent (with respect to
standard topology of the real line), then denote its limit by lim xn . Our aim is to assign
a value (generalized limit) lim∗ xn to every bounded sequence {xn}, and we want to do
so in such a way that certain properties of convergence are preserved. In particular, for
starters we require the following properties:

(A) if {xn} is convergent, then lim∗ xn = lim xn;

(B) lim∗(xn + yn) = lim∗ xn + lim∗ yn;

(C) lim∗(cxn) = c lim∗ xn .

In (B), {xn + yn} is the termwise sum of the sequences {xn} and {yn}, and in (C), c is
any real constant. Property (A) expresses the fact that convergent sequences should
have the same generalized limits as their conventional limits, while (B) and (C) require
that taking generalized limit should be a linear operation. There is one further useful
property of ordinary limits that we would like to preserve: the limit is never larger (in
absolute value) than any bound for the absolute value of the individual terms in the
sequence. Therefore, we stipulate:

(D) | lim∗ xn| ≤ A if |xm | ≤ A for m = 1, 2, . . . .

If, as usual, supm |xm| denotes the least upper bound of the numbers |xm | (m = 1, 2, . . .),
then (D) is clearly the same as

(E) | lim∗ xn| ≤ supn |xn|.
One can also prove (Exercise 8) that, assuming (A)–(C), property (E) is equivalent to
positivity:

(F) if {xn} is a nonnegative sequence, then lim∗ xn ≥ 0.
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For those readers who are familiar with the basic notions of functional analysis,
we point out the following. If we denote by B the set of all bounded sequences, then
this is a linear space and what we are actually looking for is a linear functional from
B into R that preserves convergence for convergent sequences. The usual norm in
B is the so-called supremum norm: ‖xn‖ = supn |xn|. Property (E) demands nothing
other than that this linear functional have norm at most 1. The standard construction of
Banach-limits is via the Hahn-Banach extension theorem, according to which the lin-
ear functional {xn} → lim xn can be extended from the space of convergent sequences
to the whole of B while preserving its norm. Here we furnish an alternative approach
using ultrafilters (we could not trace the origin of this approach; it may be folklore).

Let H be a nonprincipal ultrafilter on N, the set of natural numbers. As we have
discussed in section 2, the fact that H is nonprincipal means that it contains all cofinite
sets in N (i.e., all subsets of N whose complements are finite sets). Recall the definition
of standard limit: {xn} has limit s if for every ε > 0 we have |xn − s| < ε for all
but finitely many n. Note that this is the same as saying that all the sets U(s, ε) =
{n : |xn − s| < ε} are cofinite. With this in mind we make the following definition:

Definition. For a bounded real sequence {xn} let lim∗ xn = s if all the sets U(s, ε) =
{n : |xn − s| < ε} (ε > 0) belong to H.

We have to show that this is a good definition (i.e., lim∗ xn exists for each bounded
sequence {xn} in R and it is unique). Indeed, let L = supn |xn|. Then −L ≤ xn ≤ L
for all n. Given a positive integer m, we divide the interval [−L , L] into 2m pairwise
disjoint intervals

Im, j = [−L + ( j − 1)2L/2m, −L + j2L/2m) ( j = 1, . . . , 2m − 1)

and Im,2m = [L − 2L/2m, L] of equal length, and we consider the sets Jm, j =
{n : xn ∈ Im, j}. These are pairwise disjoint, and their union is N. Consequently,
one and only one of them, say Jm, jm , belongs to H. Note that on the next level every
interval Im+1,k is a subset of one of the Im, j , and then Im+1, jm+1 must be part of Im, jm
(otherwise H would contain two disjoint sets). Hence, the closures of the intervals
Im, jm form a nested sequence of closed intervals with diameter tending to 0, so they
have a common point that we call s. If ε > 0 is arbitrary, then for large m the interval
Im, jm is a subset of (s − ε, s + ε), hence the index set U(s, ε) = {n : |xn − s| < ε}
contains Jm, jm . Since this latter set belongs to H, U(s, ε) is likewise in H. Because
this is true for each ε > 0, by definition lim∗ xn = s. Furthermore, it is not possible
to have lim∗ xn = s and lim∗ xn = s ′ for different s and s ′, for U(s, ε) and U(s ′, ε)
are disjoint for small ε, whence at most one of them can belong to H. Thus, the
generalized limit exists, and it is unique. Incidentally, we have also established that
lim∗ xn lies in [−L , L], therefore property (E) also holds. Verifying properties (A)–(C)
is quite straightforward; we leave it to the reader (Exercise 7).

There is one additional property that it is customary to include in this theory,
namely, translation invariance. By this we mean that if yn = xn+1 for all n, then
lim∗ yn = lim∗ xn . In particular, translation invariance implies that if we alter finitely
many terms in a sequence, then the generalized limit remains the same (i.e., the limit
does not depend on how the sequence begins). Standard convergence has this prop-
erty, but unfortunately lim∗ as defined does not. Indeed, if we consider the sequence
{xn} = {0, 1, 0, 1, 0, 1, . . .}, then the definition implies immediately that lim∗ xn is
either 0 or 1. Now with {yn} = {1, 0, 1, 0, . . .} the sum sequence {xn + yn} is the se-
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quence {1, 1, . . .}, hence lim∗ yn = 1 − lim∗ xn , so lim∗ yn is definitely different from
lim∗ xn . But yn = xn+1 for all n, ruling out translation invariance. However, from lim∗

it is easy to construct a translation-invariant generalized limit with properties (A)–(F).
Indeed, let

zn = x0 + · · · + xn

n + 1
,

and set

lim∗∗ xn = lim∗ zn. (5)

It is easy to see that lim∗∗ also has properties (A)–(F). If yn = xn+1 and

z′
n = y0 + · · · + yn

n + 1
,

then it is clear that lim(zn − z′
n) = 0. Hence, the generalized limits of {zn} and {z′

n} are
the same, which shows that lim∗∗ xn = lim∗∗ yn .

As a final note for readers who are familiar with the notion of topological spaces,
we add the following. The Banach-limit lim∗ xn is a special case of the more general
notion of an ultrafilter limit. Given a set X equipped with an ultrafilter H, a topological
space Y , and a function f : X → Y , we say that a in Y is the limit of f determined by
H if for every neighborhood U of a the set {x ∈ X : f (x) ∈ U} belongs to H. Such
a limit always exists if Y is compact, and it is unique if the topology on Y is Hausdorff
(i.e., any two points have disjoint neighborhoods). This latter fact is clear from the
properties of ultrafilters and this definition of ultrafilter limit. To prove the existence
of the limit when Y is compact, assume to the contrary that no limit existed. Then for
each a in Y we would have a neighborhood Ua such that {x ∈ X : f (x) ∈ Ua} �∈ H.
For some finite cover Y = ∪m

k=1Uak of Y by these Ua (guaranteed by the compactness
of Y ) we would get ∪m

k=1{x ∈ X : f (x) ∈ Uak } �∈ H, which is absurd, since the set
on the left-hand side is

{x ∈ X : f (x) ∈ ∪m
k=1Uak } = {x ∈ X : f (x) ∈ Y } = X,

which must be in H. This contradiction shows that the limit of f relative to H exists.

6. EXERCISES. The best way to grasp concepts and ideas in mathematics is to work
with them. We also share Paul Halmos’s view that the heart of mathematics is problem
solving. Therefore, we urge the reader to verify the following statements as exercises
related to this article. Further problems on ultrafilters can be found in [8, chap. 17].

1. A filter H on the set X is an ultrafilter if and only if it is a maximal filter, in the
sense that on X there is no filter that strictly includes H.

2. Under the correspondence (1) nontrivial measures correspond to nonprincipal
ultrafilters.

3. On a finite set X every ultrafilter H is principal (i.e., there is an a in X such
that H = {Y ⊂ X : a ∈ Y }).

4. With the notations of section 3, let H be the system of those subsets Y of X
with the property that �( f ) depends only on the restriction of f to Y . Then H
is closed under finite intersection.
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5. The statement in the switch-lamp problem is not true for the standard two-way
lamp.

6. What would lim∗ xn be if H were a principal ultrafilter?
7. Properties (A)–(C) hold for the generalized limit defined in section 5.
8. Assuming (A)–(C), properties (E) and (F) are equivalent.
9. Show that for the generalized limit defined in section 5 it is also true that lim∗ xn

is always in the cluster set of {xn} (i.e., coincides with the (ordinary) limit of
some subsequence of {xn}).

10. Conversely, if s is the limit of some subsequence of {xn}, then there is a non-
principal ultrafilter H on N such that for the generalized limit that it generates
we have lim∗ xn = s.

11. For an arbitrary real sequence {xn} set lim∗ xn = ∞ if and only if {n : p <

xn} ∈ H holds whenever p < ∞, and define lim∗
D xn = −∞ analogously. Then

every real sequence has a (possibly infinite) generalized limit (in this case lin-
earity is not required, for we do not define ∞ − ∞).

12. Associate with any subset Y of N its density σ(Y ) as follows: let

sn = #{ j : j ≤ n, j ∈ Y }
n + 1

be the relative density of Y in {0, 1, . . . , n}, and set σ(Y ) = lim∗ sn . Show that
σ(Y ) lies between 0 and 1 and that the correspondence Y �→ σ(Y ) is finitely
additive (i.e., σ(Y1 ∪ Y2) = σ(Y1) + σ(Y2) when Y1 and Y2 are disjoint).

13. Show that there is an ultrafilter H on the set of natural numbers such that if A
belongs to H, then

∑
n∈A 1/n = ∞.

14. Let H be a nonprincipal ultrafilter on N. Two players consecutively pick natural
numbers 0 < n0 < n1 < · · ·, with player I beginning. Player I wins if the set
[0, n0) ∪ [n1, n2) ∪ · · · is in H, otherwise player II wins. Show that neither
player has a winning strategy (a winning strategy is a description of how to
react in all possible situations so that if the player follows it, then she wins no
matter what the opponent does; such a strategy must be shared with all parties).
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Mathematics Is . . .

“Mathematics is, in many ways, the most precious response that the human spirit
has made to the call of the infinite and eternal.”

Cassius J. Keyser, The Human Worth of Rigorous Thinking: Essays
and Addresses, Columbia University Press, New York, 1925, p. 59.

“Mathematics is infinitely wide, while the language that describes it is finite.”
Doron Zeilberger, Closed form (pun intended!),

Contemporary Mathematics 143 (1993) 579.

“Mathematics is the science of the infinite, its goal the symbolic comprehension
of the infinite with human, that is finite, means.”

Hermann Weyl, The Open World: Three Lectures on the Metaphysical
Implications of Science, Yale University Press, New Haven, 1932, p. 7.

—Submitted by Carl C. Gaither, Killeen, TX
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