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The Prehistory of the Hardy Inequality 
Alois Kufner, Lech Maligranda, and Lars-Erik Persson 

1. INTRODUCTION. The development of the famous Hardy inequality (in both its 

discrete and continuous forms) during the period 1906-1928 has its own history or, as 

we have called it, prehistory. Contributions of mathematicians other than G. H. Hardy, 
such as E. Landau, G. P?lya, I. Schur, and M. Riesz, are important here. In this article 

we describe some of those contributions. We also include and comment upon several 

facts and early proofs that are not available in many references on this subject. 
We consider the following statement of the Hardy inequality-, the discrete inequality 

asserts that if p > 1 and {ak}^? is a sequence of nonnegative real numbers, then 

oo / i n 

(1) 

the continuous inequality informs us that if p > 1 and / is a nonnegative p-integrable 
function on (0, oo), then / is integrable over the interval (0, x) for each positive x and 

F (x~f f(t)dt) dx-(~~[) f 
f^)Pdx' (2) 

Several introductory remarks are in order: 

(i) Inequalities (1) and (2) are the standard forms of the Hardy inequalities that can 

be found in many textbooks on analysis and were highlighted first in the famous book 

Inequalities by Hardy, Littlewood, and P?lya [16]. 

(ii) By restricting (2) to the class of step functions one proves easily that (2) implies 
(1). This important fact seems to have been mentioned first by Landau (see [11, p. 154] 
and section 8 of the present paper). 

(iii) The constant (p/(p 
? 

l))p in both (1) and (2) is sharp: it cannot be replaced 
with a smaller number such that (1) and (2) remain true for all r?v?lant sequences and 

functions, respectively. 

(iv) Inequalities (1) and (2) imply the following weak forms of (1) and (2): if 

?^=i an < ?? and an > 0, then J27=\ (? ELi ak)P < ??> and if f0?? f(x)p dx < oo 

and f(x) > 0, then 
/0?? Q f* f(t)dt)p 

dx < oo, respectively. We adopt Hardy's ter 

minology because it has been significant in the historical development that we are 

going to describe (see, for example, the comments at the end of Hardy's paper [9]). 

(v) Inequalities (1) and (2) together with statement (iii) imply the important in 

formation that the discrete Hardy operator h and the continuous Hardy operator H, 
defined by 

h({an})=\-Yjak\, Hf(x) = 
-f f(t)dt, 

{ 
n k=\ J 

x Jo 

map the spaces lp into lp and Lp into Lp, respectively (p > 1), and each has norm p! 
= 

p/(p 
? 

1). Here, as usual, the spaces lp and Lp are the Lebesgue spaces consisting of 
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all sequences a ? 
[an} of real numbers and all (equivalence classes modulo equality 

almost everywhere of) measurable functions / on (0, oo), respectively, such that 

Ml/, := 
(?>?r) 

< oo, ||/||Lp := 
(j 

\f(x)\?dx < oo. 

We mention that the spaces lp and Lp were introduced and investigated in 1910 by F. 
Riesz [32]. 

(vi) Inequalities (1) and (2) have been generalized and applied in analysis and in 

the theory of differential equations. A lot of these developments, generalizations, and 

applications have been discussed in books (e.g., [16], [22], [29]) and, more recently, 
in the historical survey paper [21]. 

The aim of this paper is to complement the existing literature devoted to this 

subject?for instance, what is described in, say, [16], [21], [22], or [29]?by describ 

ing some important steps in the scientific developments that finally led G. H. Hardy 
to (2) and, subsequently, to the proof of (1) in his famous 1925 paper [11]. The story 
that we are going to relate is much more dramatic and intricate then we ever imagined. 

We hope that the reader will find it equally captivating. The tale begins over a hundred 

years ago and plays itself out in the period 1906-1928. 

2. HARDY'S ORIGINAL MOTIVATION: THE HILBERT INEQUALITY. In 
this section we briefly discuss an inequality that was discovered in the early 1900s 

by David Hilbert (see his paper [18] from 1906) and is closely related to the discrete 

Hardy inequality (1). Moreover, we confirm that this inequality was, in fact, the main 
source of motivation for Hardy when he started the research described in this paper. 

In its most basic form the Hilbert inequality reads: if Ylm=\ am < ?? anc^ Yl =\ b\ 
< 

oo, where am > 0 and bn > 0, then the double series 

EE 

am on 

. . m + n 
n=\ m = \ 

converges (the weak form). More precisely, the inequality 

GO OO i /OO \ 
' 

/ OO \ 
' 

n?\ m ? \ \ra=l / \?=1 / 

holds, with re as the sharp constant. The determination of the sharp constant tz, as well 
as the integral analogue of (3), are due to Schur [35] (in Hilbert's version of (3) the 
constant 2tt appears in place of n). We remark that the following more general form 
of (3) is sometimes referred to in the literature as the Hilbert inequality: 

oo oo , 
/ 

oo 
\ 

{/P 
I 

oo 
\ 

XIP' 

EL?t^i?) fe< M , ,- = 1 ni = \ p \m 
= \ / \n 

? \ / 

where p > 1 and p' 
? 

p/(p 
? 

1). Hilbert himself was not even close to considering 
this case (the //?-spaces appeared only in 1910). It was M. Riesz and G. H. Hardy who 
took the first steps towards a proof of (4). In fact, Hardy acknowledged in [12] that 

Riesz had pointed out to him that his result in the paper [10] (see Theorem 3) actually 
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implied the weak form of (4). In any event, the Hilbert inequality and its evaluation 

into what today are called Hilbert-type inequalities have their own interesting history, 
of which we recall here only a few basic facts from the beginning of the story. 

In his research on solutions to certain integral equations Hilbert was led to study 

special bilinear forms with sequences of real or complex numbers as entries. For details 
we refer the reader to the book [19] or to the section on integral equations edited by 

Hellinger [17, pp. 94-145] in Hilbert's Collected Works [20]. Moreover, several ideas 

from Hilbert's lectures around the period 1906-1908 can be found in Hermann Weyl's 
1908 dissertation [39]. In particular, on page 83 Weyl presented and discussed the 

following remarkable formula that had been discovered by Hilbert: 

N N yv yv / i 

= 1 ra=l 

+ 
1 

n + m n ? 
m 

ambn 

1 r 
271 J-n 

' 
y^(?1)* (ak sinkt ? 

bk coskt) 
k=\ 

dt (5) 

(if n = m, then l/(n 
? 

m) is understood to be zero). This formula implies the finite 

version of the Hilbert inequality 

N N n h 
\~~^ \~^ umun 

LE"? ^* 

1/2 1/2 

= 1 m = \ 
m + n E*? E^2 (6) 

The derivation of (6) from (5) is found in [16, pp. 235-236]. 
Other proofs of the Hilbert inequality were given by Wiener [38] and Schur [35] 

(the latter proved it with the help of the so-called Schur test). We should also mention 

Toeplitz's method, which is based on the identity 

N N yv yv i ' r 

?-? ?-s n + m 
~ 

2n J0 

271 

(t-Ji) 
n ? \ m = \ ?aBe/n'X>me''m' n=\ 

dt 

([37]; see also [36, p. 165]). In addition, Fej?r and Riesz [5] (see also [16, p. 235]) and 

P?lya and Szeg? [31] gave proofs that exploited the theory of analytic functions. We 
are most interested, however, in Hardy's method for proving (3). 

Note that (6) implies both (3) and a weaker cousin that was of special interest to 

Hardy: if^2^=x a2 < oo (an > 0), then the double series 

EE 

am au 

m + n 

converges. In fact, Hardy wrote in the introduction to [10]: 

It was proved by Hilbert, in the course of his theory of integral equations, that the double series 

Y^n/=\ ]L/T=i ^7T?7 (a" ? 0) ^s convergent whenever 
Y^=\ an ^s convergent. Of this theorem, 

which is one of the simplest and most beautiful in the theory of double series of positive 

terms, at least five essentially different proofs have been published. Hilbert's own proof, which 

depends upon the theory of Fourier's series, is outlined by Weyl in his Inaugural-Dissertation 

[39]. Another proof was given by Wiener [38], and two more by Schur [35]; but none of these 

proofs is as simple and elementary as might be desired. 
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To these four proofs I added recently a fifth, which seemed to me to lack nothing of this 

simplicity. I observed first that Hubert's theorem is an immediate corollary of another theorem 

which seems of some interest in itself. 

(See Theorem A in [9] but note that this result was already proved in the 1915 paper 
[8]; compare with Theorem 2 in the next section.) 

Hardy made similar pronouncements in some of the other papers that we are now 

going to discuss. Therefore it seems completely clear that Hardy's original motivation 
when he began the research that culminated in his discovery of inequalities (1) and 

(2) was to prove (the weak form of) the Hilbert inequality. 

3. THE 1915 PAPER. In [8] Hardy stated and applied the following theorem, which 
has obvious connections to the Hilbert theorem: 

Theorem 1. Let an > 0 and An = 
YH=\ ak- The convergence of any of the three series 

oo 4 oo / a \ 2 oooo 

(l) > 
- 

(ll) > 1 ? 1 (ill) > > ? - 
^?f n *? ! \ n J i , n + m 

implies that of the others. 

Hardy actually proved the equivalence of the convergence of the three integrals 

?a * Ja \ * J 
OO /?OO 

-n 
Ja Ja 

/W/W, , 
-dx dy, x + y 

where a > 0, / is nonnegative and integrable on (a, oo), and F(x) = 
fx f(t) dt, by 

establishing the estimates 

and observing that I\ < h < 2IX. In the proof of the sequence case he said only that 
"the proof of this theorem is much like that for integrals" [8, p. 164], but he probably 
realized later that the sequence case is more delicate, because he considered it again 
in the 1919 paper [9]. However, the estimation of (iii) by (i) can be done, in a manner 

similar to what Hardy did in [8] for integrals, as follows: 

N N ? ? N n 

^-\ ^-^v aman ^?\ ^-?\ aman 
^?\ ^?> an 

?-!^m + n~~ ?-??-im + n~ ^?n ?-f m -f n = \ m = \ n?\ m ? \ n ? \ m?1 

N i n N a 

<2)an-)am 
= 

2)an 
? . 

1 n i 

Moreover, Hardy also established the following result, which may be regarded as a 

precursor of (1) for the case p = 2: 

718 ? THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 113 

This content downloaded  on Tue, 18 Dec 2012 02:30:26 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Theorem 2. The convergence of the series YH?=\?yi w^tn an > 0 implies that of 

J27=\ (An/n)2, where An = 
??=1 ak. 

Proof. Let {a*} denote the nonincreasing rearrangement of the sequence {an} and put 

K = 
ELi at- Since K - An and E^li al 

= 
L^i?)2> xt is sufficient to prove 

that J27=\ (A*Jn)2 is convergent. Thus, we may assume without loss of generality that 

the sequence {an} is nonincreasing. Moreover, according to Theorem 1, it is enough 
to prove that Y^L\ anAn/n is convergent. The last series can be written in the form 

^ ? 
Y1T=\ Ylm=\ aman/n, and it will be convergent if Y1T=\ ^ < ??' wnere 

S*=EE~ 
(k=l,2,...). 

k<%<k+\ 
n 

Moreover, by making obvious estimates and using the Cauchy-Schwarz inequality, we 

find that 

1 1 ?? 
i \"^v v~a aman i ^r-^\ am ^?a 

k<^<k+\ 
m = \ k<lL<k+X 

! oo ? ! / oo \ 
1/2 

/ oo \ 
J/2 

ra=l \m =1 / \ra=l / 

n(x>?) (?[x>?) =?2> \m = l / \ m ? \ / ra=l 

Therefore 

OO OO i oo oo 

/:=1 k=\ m = \ m?\ 

so S < co and the proof is complete. 

Remark 1. We see that the foregoing argument is not sufficient to deliver a proof of 

(1) for p = 2 directly. It gives only the (weaker) inequality 

00 n ? 
?? 

n?\ n=\ 

with C = 
?(3/2) ^ 2.61, where ? denotes the Riemann zeta-function. 

Remark 2. Hardy also pointed out the fact that had motivated him to do this work, 

namely, that, by virtue of the equivalence theorem (Theorem 1), Theorem 2 is essen 

tially equivalent to (the weak form of) Hilbert's theorem in the case p = 2. 

Remark 3. In this paper, as we have already mentioned, Hardy also stated and proved 
continuous versions of Theorems 1 and 2. However, he formulated his results for in 

tegrals f 
or 

/* with a > 0 instead of in the final form 
f0?? 

or 
f*. He continued this 

practice in the papers [9] and [10], but we have no clear explanation for why he first 

studied only this case. In any event, in the 1925 paper he formulated his result in the 

natural way and also explained the connection to the earlier formulation. 
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4. THE 1919 PAPER. Probably the most important contribution of [9] was the new 

proof of Theorem 2 that it contained. In fact, the paper also includes a first proof of 

inequality (1) for the case p 
? 2 and even gives the best constant 4 (see Remark 4), 

although Hardy did not make explicit mention of this fact. 

New proof of Theorem 2. It is clear that 

An\2 ( An \2 ( An 
x2 

= ? an -\- 
- 

an\ <2al + 2l ? 
-an 

= Aa +2 
- -4 

Hence, 

N / A \2 N N / A \2 N A 

E(?) ?4E*^?(^ -iv 

for each N. Moreover, -2anAn 
= - 

(A2n 

- 

A2n_{) 

- 
a2 < - 

(A2n 

- 

A2n_{), 
so 

N n A N (A2 - A2 ) 

^ n ~ 
^ n 

A2 A2 A2 A2 

1-2 2-3 (N-l)-N N 

N 
1 

V??? A2 

w=1 n(n + l) 
n 

By substituting this estimate into (7) we obtain 

N ? A \2 N N /A \2 N 1 

N N -j 

-?E^E;^:. 

(7) 

which yields 

/7=1 X ' / \ / /2==1 

Obviously (8) implies the statement in Theorem 2. 

Remark 4. Hardy had plainly not yet realized that inequality (8) can be used to derive 
the discrete Hardy inequality (1) for p = 2 and do so with the sharp constant 4 (more 
on this in section 6). 
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Remark 5. In [9] Hardy also stated some results for the continuous case (e.g., a gen 
eralization of Theorem 1). However, the most important point for the history of the 

Hardy inequality was his claim that 

j (- j f(t)dt\ dx <A i f2(x)dx 

when a > 0 and that 4 is the best constant. In fact, it can be shown that this estimate 

implies (2) for p 
? 2. Hardy did not give a proof of this assertion but only referred to 

the proof in the discrete case that we have just presented. This can seem a little curious 

if we take into account the information in Remark 4. 

5. AN IMPORTANT CONTRIBUTION FROM RIESZ. In his paper [10] from 
1920 Hardy referred to a letter from Marcel Riesz and wrote [10, p. 315]: 

Dr. M. Riesz to whom I recently communicated Theorem 2 at once found another proof, 
which is equal to mine in simplicity and which seems to both of us more natural and therefore 

preferable. His proof naturally suggests an interesting generalization, viz. 

Hardy proceeded to formulate the Riesz result in the following weak form: 

Theorem 3 (M. Riesz). If p > I, an > 0, and Y1T an convergent, then 

Y^ (An/n)p is convergent, where An = 
YH=\ ak 

Proof. Let <$>n = n~p + (n + l)~p + (n + 2)~p + . Then, by partial summation, 
we have for each N (with A0 = 0) 

E (v)P 
= 
E a? - *?+ > = 

E<A? 
- <-.)*? - A^+i 

/<7 = 1 \ / n=\ n=\ 

Moreover, 

/ oo 
n-(p 

4>n < n~p + / x~p dx = n~p H 
Jn P 

- 

n=\ ^ / n=\ n=\ 

N N 

< 

n=\ n=\ 

-(P-D 

T- p 

From these estimates and the Holder inequality,1 

Up i m \ i/<? 

< -t?n-i'-?. 

t^-iP) (P:) ("l-J+H- 
w 

'in [101 Hardy remarked that inequality (9) was probably due to Holder and referred to a paper [23] by 
Landau. In the Hardy-Littlewood-P?lya book it is said that "Holder states the theorem in a less symmetrical 
form given a little earlier by Rogers" [16, p. 25] and uses the name Holder inequality. We believe that these 

words by Hardy could have been important when mathematicians later began to call (9) the Holder inequality. 
The second author pointed out in [28] that an equivalent variant of (9) had been proved by Rogers in 1888, one 

year earlier than Holder produced his version, which is again only an equivalent variant of (9) and is different 

from Rogers's. Inequality (9) in this precise form was proved in 1910 by F. Riesz [32]. Therefore this classical 

inequality could have been called the Holder-Rogers inequality or the H?lder-Rogers-Riesz inequality. 
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it follows that 

EM ?tt?E?.(v 

Hence 

tm*fc)'?< 
(10) 

Remark 6. Riesz's argument actually yields more than what Hardy formulated in 

Theorem 3; namely, (10) implies the correctness of (1) with the constant (p2/(p 
? 

l))p 
in place of (p/(p 

- 
l))p. 

6. THE 1920 PAPER. In [10] Hardy observed that estimates in the proof of (10) were 

fairly rough and that the constant Cp 
= 

(p2/(p 
? 

l))P 
could be improved merely by 

refining the Riesz estimates. In particular, he pointed out that Cp could be replaced 
with the strictly smaller constant (p?(p))p. The argument that confirms this fact he 

received in a letter from Schur [34]. Obviously, Hardy already believed by then that 

(pl(p 
? 

\))p was the sharp constant, even if he did not claim so explicitly (see [11, p. 

154]). One reason for this was surely Schur's remark in the same letter that this was at 

least true for p 
? 

2. 

Hardy himself did not directly observe that inequality (8) from his 1919 paper could 

actually be used to derive inequality (1) for p 
? 

2 with the best constant C == 4. We 

don't know for certain what Schur's argument was, but the information in the next 

section convinces us that it went approximatively as follows: Let cn ? 1 ? 
2/(n + 1) 

and for m 
? 

2, 3, ... let 

ai 
= 

?2 
? * ? 

am 
? 

b\, am+i 
= 

am+2 
= = 

a2m 
? 

b2, 
.. , 

<2(/V-l)m + l = 
?(/V-l)m+2 

= = 
a^m 

= 
bN. 

Then from inequality (8) with Nm in place of N we obtain 

N /B \2 /B \2 
4m 

J2bl 
> 

(Cl+---+Cm)iyj 
+(cm + 

l+---+C2w)iyJ 
+'" 

+ {C(N-\)m+\ + ' ' * + CNm) ( "TT ) , 

where Bn = 
YH=\ bk- Dividing by m and letting m -+ oo, we find that 

(ci +c2-\-\-cm)/m 
-+ 1, 

(cm+1 + cm+2 H-h c2m)/m -> 1, 

etc. 
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Accordingly, 

which, in particular, implies (1) for p = 2 with the best constant. 

A significant element in the paper is the formulation of the following preliminary 
version of (2) (see also [11, p. 150]): 

Theorem 4. If p > 1, a > 0, f(x) 
> 0, and f f(x)pdx is convergent, then 

and the constant (p/(p 
? 

l))pis sharp. 

Hardy did not prove inequality (11) in the 1920 paper. However, he pointed out the 

fact that from consideration of the function f(x) 
= x~(1//?)~6, where 6 is a sufficiently 

small positive constant, it follows that the constant (p/(p 
? 

l))p is sharp. He also 

claimed that he could prove that the corresponding best constant in the discrete case 

could not be strictly less than (p/(p 
? 

l))p, but he hesitated for the moment to assert 

that (1) held with the constant (p/(p 
- 

l))p. 

7. A LETTER FROM LANDAU TO HARDY. The letter [24] from Landau to 

Hardy dates from June 21, 1921. It is surprising that this letter was officially pub 
lished in [26] five years later than the letter of Landau to Schur (see also Remark 8). 

The reason for this long delay is not obvious, but it is clear that the contents of the let 

ter [24] are of interest, for it gives a proof of (1) with the sharp constant (p/(p 
? 

l))p 

and this had not been published prior to that time. The main result proved in this letter 

reads: 

Theorem 5. Let p > 1, an > 0, andAn = 
YH=\ ak- Then the inequality 

holds for all N inN or N = oo. Moreover, the constant is sharp for N = oo. 

Inequality (12) is sometimes called the Hardy-Landau inequality (see [27, p. 188]). 

Proof For y > 0 we have 

yp 
- 

py + p 
- i > o. 

This is seen to be the so-called Bernoulli inequality when we write it in the form 

yp > 1 + p(y 
? 

1). By using this elementary inequality with y = 
yx/y2 we find that 

yf 
- 

pyy2~x + i.p- ^2 > o. 
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We set yi ? 
bn and y2 = 

(p 
? 

\)Bn/(pn), where Bn = 
JZ/Ui ^' anc^ ^earn tnat 

so 

??-?^rE^?fr?.f^yE^r.o. H=l \ ^ / ?=1 P 

Moreover, pbnBp~l 
= 

pBp~x(Bn 
- 

??_!) 
> 

?? 
- 

#?_,, 
whence by partial summa 

tion 

N / f? \ p~1 N 1 

E*(t) ^k-c,)? 

E'K^-srrW)^'-"^'^ 

/v 
> 

Combining the two inequalities we discover that 

where cn = 
p(\ + ^)~p 

? 
p + 1 -> 1 when n -> oo. Next we use the argument from 

the previous section, putting 

b\ 
= 

b2 
? = 

bm 
= 

au bm+i 
= 

bm+2 
? = 

Z?2m 
= 

a2, ... , 

b(N-\)m+[ 
? 

^(W-l)m+2 
= = 

?>^m 
= 

<2/v 

and replacing TV with TV m to conclude that 

P N / A \ P 
m 

(^iySo,i(c,+C2...+0(^y 
-l2 

+ (cm+i + cw+2 H-h c2m) ( 
? 

+ 
' 

+ (C(7V-l)m+l + C(#-l)m+2 + 
" ' " 

+ <WVm) ( 

?? 

Dividing by m and then letting m ?> oo we note that (cj + c2 + + cm)/m ?> 1, 

(cm+i + cm+2 + + c2m)/m -> 1, and so forth, which means that (12) holds for all 
finite N (hence remains valid when N -> oo). 

In order to prove that (p/(p 
? 

l))p is the sharp constant for N = oo we consider 

an = n~]/p~? (0 < s < 1 ? 1 /p). For this choice of an 

n nn 

An = 
?Jk-^-s> / 

. 
fr?1 ^1 

x-1,p-edx 

k=\ 

1 

.(?l-l/^_1)>_P_(nl-l/P-i_1)) l-l/p-eV 
' 

p-\ 
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implying that 

Ar. 
p / ? \ p 

> I 
- 

I n~{-ep ( 1 
n J \p 

- I ) \ n{-]/P-? 

P > 

p 

V nl-l/p-e) 
) 

(n-l-ep 

- 

pn~2+i/"+s-sp). 

Furthermore, 

.,4?)'(t-:-^). 
where CNi? -> C as N -> oo for any s > 0 because 2? l/p 

? e + ep > I. Thus 

?(^/?<>(^)'(-^/?<)-(^)' 
since 

5Zn=i a? 
= 

5Z?=i 
^~1_e/? ~> ooasN-^ oo and e 

? 
0+. The sharpness asser 

tion is thereby established. Note that the foregoing calculation still works when 

e = 0. 

Remark 7. In his letter [24] Landau also mentioned that equality in (12)?and, con 

sequently, in the discrete Hardy inequality (1)?occurs if and only if an = 0 for all 
n. 

Remark 8. It is not evident how the letter [24] from Landau to Hardy (dated June 21, 

1921) and the letter [26] from Landau to Schur (dated June 22, 1921) are related, but 

to judge by the information that Hardy provides in [11] and the published form that 

appears in [26], they must be very similar, perhaps even the same. 

8. THE 1925 PAPER. In the introduction to [11] Hardy first formulated Theorem 4 

and wrote the following: 

I did not give a proof, being occupied primarily with the corresponding theorem for infinite 

series, and did not state in what sense the integrations are effected. Prof. E. Landau has recently 

recalled my attention to this note and I give here a proof of the theorem in a more precise form. 

(see Theorem 6). Later on in the paper he also volunteered the following information 

[11, p. 154]: 

In a letter [24] dated 21 June 1921, Prof. E. Landau communicated to me a direct proof of 

(1), which gives the correct value (p/(p 
? 

\))p of the constant. He also pointed out that if the 

integral theorem were extended to the case a = 
0, then the theorem for series, with the correct 

value of the constant, may be deduced at once by taking /(jc) 
= ai,0<je < \, f(x) 

? a2, 

1 <x <2, .... 
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Indeed, assuming, without loss of generality, that we are dealing with a decreasing 
function / or, equivalently, a decreasing sequence ax > a2 > and observing that 

the function 

x Jo 

is decreasing on [n 
? 

1, n], we obtain 

f(t)dt = r^ak+a?X-n + 1) 

E(%*) sE/ 

-n-\ , , , 1x\ P 

XLi^V^v^r /Tl=\ak + ??(^-w +1), 

=r(?i/<')'i')<"?(^T)'r/wp<" 00 
E< P- 1/ 

Hardy adds a comment concerning a different letter [11, p. 154]: 

In a more recent letter (13 Dec. 1924) [25], he shows how to deduce the integral theorem for 

a=0 from that for a > 0 (by a method resembling that of Prof. P?lya) and so reduce the 

series theorem to dependence of the latter. 

With this information in mind, Hardy formulated and proved his famous inequality (2) 
in the following form: 

Theorem 6. Let p > 1 and let f(x) > 0 be p-integrable on (0, 00). Then F(x) = 

f* f(t)dt < 00 for every x > 0 and 

The constant (p/(p 
? 

l))pis sharp. 

Hardy himself remarked in [11, p. 150] that if f(x) 
= 0 when x < a, then his 

previous version in [10] (Theorem 4) follows from Theorem 6. Hardy's original proof 
contained fairly many technical details and explanations, but in a postscript to the 

proof he pointed out an essential simplification suggested by P?lya. We present here a 

proof that closely follows Hardy's original ideas but avoids many technical details by 

appealing to P?lya's simplification. 

Proof By partial integration and the identity d/dx (F(x)p) = 
pF(x)p~x f(x), which 

holds for almost all x in (0, 00), we obtain for arbitrary a and A with 0 < a < A < 00: 

Ja V X ) P 
- 1 Ja dx 

AF(a)p-^-F(A)p + -^? 
f xl-p^-(F(x)p)dx P 

- 1 P 
- 1 P 

- 1 Ja dx 

ax-p n p fA/F(x)Y~x --F(a)p + -t--\ (-^) f(x)dx. 
P-l P-l Ja \ * J 
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Moreover, invoking the continuous version of the Holder inequality (9), we see that 

Choosing ? such that a < ? < A and applying the preceding two inequalities to 

F(x) 
? F (a) instead of F(x), we find that 

A 
'F(x)-F(a)Y ^ 

a 

.FM-W 
mdK 

P- 1 Ja 

Hence 

"'W-??)V,\"'S _?_///" 
f( 

and a fortiori 

In this inequality we first let a -> 0+ and observe that F(x) 
? F (a) increases to F(x). 

To finish the proof we let A -> oo and ? -? 0+. 

Remark 9. Hardy had already drawn attention to the sharpness of the constant 

(p/(p 
? 

\))p in his 1920 paper. In that paper he decided not to mention it as part 
of the theorem that he stated, but he did include the details of the proof of the sharp 
ness (by using a modified form of the example he had considered in the 1920 paper). 

9. FURTHER CONTRIBUTIONS FROM THE 1925 PAPER. In addition to the 
main result (Theorem 6), the 1925 paper included a number of interesting results that 

have exerted significant influence on research related to Hardy-type inequalities. In 

particular, Hardy proved that the following variant of (1) holds even if the standard 

arithmetic mean (l/n) Yll=\ ak is replaced with a more general arithmetic means (with 

general weights): 

Theorem 7. Suppose that an > 0 and kn > 0, that An = Xxa\ + A.2a2 + + Xnan 
and An 

= 
X\ + X2 + + kn for n = 

1,2, ..., and that 
Y^=\ ^n^n 

*5 convergent. 

Then 
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Hardy proved this theorem by applying Theorem 6 to suitable step functions (see 
Landau's observation that was mentioned just prior to Theorem 6). Hardy also no 

ticed that if one replaces an with axJp in the inequality (14) and lets p -* oo, then 

(p/(p 
- 

l))p -> e and 

lim ?Xiax?P + X2a2?P + ' ' ' + Ka?,P\P - (^ ^ -*-VMfl 
p^oo \ xx + x2 -\-h K 

^y=(?N22-..^)' 
The scale of power means decreases to the geometric mean. Therefore Hardy arrived 

at the following limit result of his Theorem 7: 

Theorem 8. IfY^Lx ^nan is convergent, then 

oo oo 

J^Ki^'^2 ...axn"y/A" <e^2xnan, (15) 
n=\ n?\ 

and the constant e is sharp. 

In the standard case where each \n 
? 

1 (15) becomes 

E (axa2...an)x,n 
< 

ejT^an, (16) 

which is the natural limit inequality of (1). Inequality (16) was first proved by Car 

leman in 1922 (see [1]), whence its name: the Carleman inequality. This inequality 
has been generalized and applied in several ways and has its own interesting history. 
Carleman's original proof, which was quite long, involved Lagrange multipliers. It 

must have come as a big surprise for him to see the simple proof derived from the 

Hardy inequalities. He no doubt learned of it quickly, because Hardy was engaged in 
a collaboration with Carleman at the time (see, for example, their joint paper [2]). 

By carrying out a similar limiting process in (2) we obtain the following inequality: 

i 
exp(- 

i Inf(t)dt\dx <e 
J f(x)dx, (17) 

where f(x) is strictly positive and measurable on each finite interval (0, x). We should 

mention that in the original paper [11] inequality (17) appears without the constant e 

and with exp f(x) in place of f(x). 

Hardy acknowledged that it was P?lya who made him aware of the elegant lim 

iting argument that directly implied the inequalities (15), (16), and (17). Sometimes 

(17) is called the Knopp inequality, although Knopp's paper on the subject dates from 

1928. The name P?lya-Knopp inequality seems now to have gained acceptance in the 

literature (see [22] and the references given there). 

10. ELLIOT'S AND INGHAM'S PROOFS; THE COPSON INEQUALITY. In 
1926 Elliott [4] gave a simple and very elegant proof of (1) (see also [16, p. 240] and 

[6, p. 50]): if we set an = 
An/n and a0 = 0, then from the Young inequality 

uv <-1 

p' p 
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we obtain 

ol? 
p-\ 

7*Pn-l?n=*Pn 
p-\ 

[nan 
- 

(n 
- 

l)a?_i]o^ 
P-i 

.tfn-jL)^"-1^-. 
p-i/ p-i 

<x? a?-i 

^'('-^) 
+ 

7^r K'-"?-'+?'-'l 

T[(n-lX, -??;]. 

Summing from 1 to Af yields 

E^y-^Ei^r?^.o, 
so from Holder's inequality (9) we infer that 

E(t) i^E(v) '-'-7 ^?*nm 
Division by the last factor leads to (1). 

Two years later Grandjot [7] derived the identity 

Ell 

r* v^ ^??? _ AN V^/ A\ ( 
n An-\ \ 

,\n) 

~ 
?-flT ~~~?~ ?-t \n~ n-l) n?\ x 7 n = \ n?L v / 

by observing that 

2anAn i An 
2 

Al A1 
n n 

? 
\ 

-' 
+(?-!) ,A" A-y 

n n ? 
1 

when n > 2. This gives rise to another proof of (1) in the case p 
? 2. 

Ingham also found a simple proof of (2) (see [16, p. 243]). Since 

Hf(x) = - 
f f(t)dt= [ f(tx)dt, x Jo Jo 

it follows from the Minkowski integral inequality that 

f Jo 

i/p 

(Hf(x))p dx\ =||#/||,= 
/' JO 

f(tx)dt 
jo 

/?l 
?\ 

/ roo \ 1//? 

<J 
\\f(tx)\\pdt = 

J 
U f(tx)"dx\ dt 

Up 

-jior^v-- 
' 

11 p-\ 
or 

mpds 
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In 1927 Copson [3] proved Hardy's Theorem 7 by adapting Elliott's proof and by 
bringing into play the dual to Hardy's inequality, a result now known as the Copson 
inequality, if p > 1, an > 0, kn > 0, and J27=\ ^nan *s convergent, then 

OO /OO "\ s* \ 
P ?? 

EME^rV ^PE?> (20) 
n = \ \k=n 2^m = \ ̂ m / n = \ 

and the constant pp is best possible. The Copson inequality in the case where Xn = 1 
for each n asserts that 

OO / OO \ P OO 

E Ef ^'E< pu 
n=l \&=? / ??1 

when p > 1 and that the constant pp is sharp. Hardy [9] had earlier stated a weak 
version of (21) in the case p = 2, and therefore (21) is sometimes called the Copson 
Hardy inequality. Hardy [13] was the first to remark upon the duality between (20) and 

(14). 

11. FINAL DISCUSSION. Usually mathematicians present results in a clear and 

polished form that is well suited for applications and further research. Nonetheless, it 
is also well known that a lot of creative work, questening, collaboration, and sometimes 
even failure arise during the process of coming to the final formulations of results. The 

history that we have described of the evolution of Hardy's famous inequalities can 
serve as an unusually good illustration of this fact. We ourselves were quite surprised 
and fascinated by several of the details we have presented here. In particular, we feel 
that as a by-product of writing this article we have acquired improved insight into 

Hardy's way of thinking and acting, and we hope that we have been able to communi 
cate to the reader at least some flavor of this experience. 

Through this understanding it has become clear to us that G. H. Hardy (a) had 

good contacts with other mathematicians who were interested in the subject and who 

passed along to him significant information in various ways (e.g., via private or formal 

letters), (b) was a real master at developing important parts of the theory himself, 

(c) was very good at cleverly synthesizing knowledge gained from numerous sources, 
and (d) played a central role in the developments described in this paper. In particular, 
it is totally appropriate that his name adorns inequalities (1) and (2). However, it has 
to be said that other mathematicians also made very important contributions to this 

development (e.g., E. Landau, G. P?lya, M. Riesz, and I. Schur). For example, if the 
results of these individuals had been published in a different way, we might today refer 
to the discrete inequality (1) as the Riesz or the Landau-Riesz or the Hardy-Landau 

Riesz inequality. 
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