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Applications of the Universal Surjectivity 
of the Cantor Set 

Yoav Benyamini 

Our first encounter with the Cantor set is usually in a basic real analysis course. Its 
striking combination of unusual and seemingly counter-intuitive properties makes 
it the perfect example for illustrating the new notions introduced in the course. It 
is only much later that the student learns to appreciate that the Cantor set plays an 
important role in many branches of mathematics, and is not just an artificial 
construct, especially designed to exhibit the possible pathologies that can arise in 
the systematic development of real analysis. 

In this article we discuss one of the basic properties of the Cantor set, its 
surjective universality in the class of compact metric spaces: 

Theorem 1. Every compact metric space is a continuous image of the Cantor set, 
i.e., for each compact metric space K there is a continuous map from the Cantor set A 
onto K. 

This classical theorem is due to Alexandroff [1] and Hausdorff [7, p. 226]. It is a 
standard theorem that appears in many books on real analysis and topology, e.g., 
[5, p. 363] and [8, p. 127]. 

We show how this theorem can be applied to a variety of seemingly unrelated 
problems in topology, geometry, and analysis. When each of the results is consid- 
ered separately, the Alexandroff-Hausdorff Theorem seems to appear as an ad 
hoc trick. Put together, however, we soon realize that there is a common thread in 
all these applications, and that they actually represent a method. Phrased heuristi- 
cally, the theorem gives a systematic way to "continuously encode" compact sets 
of data. 

The Cantor set is the unique infinite, perfect, totally disconnected, compact 
metric space. Using this characterization, we can use any of its representations 
whenever it is convenient to do so. For example, the standard proof of the 
Alexandroff-Hausdorff Theorem uses the representation as an infinite product 
Hnn=1 Fn, where each Fn is a finite set. All the Cantor sets that we encounter here 
are, however, closed subsets of the real line. 

Most of the results in this article are known. The only (possibly) novel parts are 
in Sections 4 and 5. It was the result in Section 4, and the reactions of several 
people to the proof, that prompted me to write this article. 

1. SPACE FILLING CURVES. We start by constructing a space filling curve, i.e., 
a continuous function that maps the unit interval [0,11 onto the unit cube [0, 1]d in 
the d-dimensional space Rd. 

By the Alexandroff-Hausdorff Theorem, there is a continuous function 4 from 
the Cantor set A onto the compact metric space [0, 1]d. 

Consider A as the classical Cantor set in the unit interval [0, 1], and extend 4 to 
a continuous function defined on the whole interval by linear interpolation: The 
complement of A is a countable union of open intervals. If (a, b) is one of these 
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intervals, represent its points in the form ta + (1 - t)b for 0 < t < 1, and define 
k(ta + (1 - t)b) = t4P(a) + (1 - t)o(b). 

The extended function takes its values in [0, 1]d because the cube is convex, and 
it is easy to check that it is continuous on [0, 1] as required. 

The extension of the Alexandroff-Hausdorff map from A to [0, 1] is a common 
step in almost all the proofs we present. Note that the only property of the unit 
cube that we used in the extension was its convexity. We thus obtain 

Corollary 2. Let K be a convex, compact, and metrizable subset of a linear topologi- 
cal vector space V. Then there is a continuous sur]ective map from [0, 1] onto K. More 
generally, if K is not assumed to be convex, then there is a continuous map from [0, 1] 
into V whose image contains K. 

Corollary 2 is a special case of the Hahn-Mazurkiewicz Theorem [8, p. 129], 
which characterizes the continuous images of the interval [0, 1] as the connected 
and locally connected compact metric spaces. 
Remark. The extension procedure only used the fact that the Cantor set is closed. 
If f is a continuous real-valued function defined on any closed subset A of the 
real line, the same procedure can be used to extend it to all of R. If A is bounded 
from above, define the extension for x > b = max{t: t E A) by f(x) = f(b); use a 
similar formula when A is bounded from below. Alternatively, we could just use 
the Tietze Extension Theorem. 

2. A UNIVERSAL CONVEX SET. Here is a question in geometry: Does there 
exist a three-dimensional compact convex set B with the property that every 
compact convex two-dimensional subset of the unit square is congruent to one of 
its faces? 

Recall that two sets in Rd are congruent if there is an affine isometry of Rd that 
takes one set onto the other. A hyperplane H in Rd is said to support a compact 
convex set B if B is contained in one of the closed half-spaces determined by H, 
and B touches H. If H is represented in the form H = {x E Rd: f(x) = al, 
where f is a linear functional on Rd and a is a real number, then H supports B if 
either max{f(x): x E B) = a or min{tf(x): x E B} = a. In this case we say that H 
supports B in the set F where this maximum (or minimum) is attained, i.e., 
F = B n H; such sets F are called the faces of B. 

The answer to the question is no. The interior of each two-dimensional face of 
B is relatively open in the two-dimensional boundary of B, hence B can have at 
most countably many two-dimensional faces. But there are uncountably many 
noncongruent two-dimensional compact convex subsets of the unit square. For 
example, the square contains uncountably many noncongruent triangles. 

This topological argument fails if we look for a four-dimensional set that is 
"universal" for two-dimensional sets. In this case the boundary is three-dimen- 
sional, and there is no topological obstruction to the existence of uncountably 
many two-dimensional faces. But is this topological argument the only obstruction? 
R. Grzaslewicz [6] proved the striking geometric fact that this is indeed the case, 
and that such a "universal" four-dimensional set exists! More generally, he proved: 

Theorem 3. For each d ? 1 there is a compact convex set B in Rd?2 with the 
property that each compact convex subset of the d-dimensional unit cube is congruent 
to a face of B. 
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The case d = 1 is elementary, and it is instructive to visualize it since the higher 
dimensional construction follows the same ideas, and is more difficult to visualize. 

The one-dimensional unit cube is just the interval [0, 1], and its convex subsets 
are intervals of length 1 with 0 < 1 < 1; by an interval of length 0 we mean a single 
point. 

Represent R3 as R2 x R, and write the points in R3 as pairs (t, x), where t E 2 
and x E R. Let T be the unit circle in R2, and let f be a continuous function from 
T onto [0, 1]. Put 

G= {(t,x):t ET and 0<x <f(t)}. 

The set G is compact (since f is continuous), and we take B to be its convex hull. 
Since the convex hull of a compact set in a finite-dimensional space is compact, [4, 
p. 22], B is compact. 

Fix any 1 E [0, 1], and choose a point to E T so that f(to) = 1. Then F 
- {(to, y): 0 ? y < f(to)} is a face of B, which is an interval of length 1. 

The proof of Theorem 3 for d > 1 uses the Alexandroff-Hausdorff Theorem. 
There is a standard preparatory step that we always need to take before we can 
apply Theorem 1: we first need to introduce a metric on the set of "data" that 
makes this set a compact metric space. 

To this end we introduce the Hausdorff metric dH on the set of all compact 
subsets of Rd. For a bounded set A and any 8 > 0, we denote the e-neighborhood 
of A by A, = {x E Rd :dist(x, A) < e}. The Hausdorff distance between two 
bounded sets A and B is then 

dH(f A, B) = inf{ e: B c A, and A c B}. 

Intuitively, dH(A, B) measures how much each of the sets A or B needs to be 
"blown up" so that it covers the other. 

We need the classical Blaschke Selection Theorem: The set of all compact convex 
subsets of a fixed compact subset of Rd is compact under the Hausdorff metric [4, 
p. 64]. 

Proof of Grzaslewicz's Theorem ford > 1: Consider Rd?2 to be the product R2 x Rd, 
and write the points in Rd+2 as pairs (t, x), where t E R2 and x c Rd. By the 
Blaschke Selection Theorem, the space K of all compact convex subsets of the unit 
cube in Rd is a compact metric space. It follows that there is a continuous map 4 
from the Cantor set A onto K. 

Let T be the unit circle in R2, and consider A to be a closed subset of T. The 
graph of 4 can be visualized as a subset G of Rd+2: 

G = {(t, x): t E/ A and x c +(t)}. 

It follows from the continuity of 4 that G is compact. The desired set B is the 
convex hull of G, which is compact as the convex hull of the compact set G. 

Fix any compact convex subset A of the d-dimensional cube. Since 4 is 
surjective, there is a point to E A such that 0(to) = A. The set F = {(to, x): x c A} 
is clearly congruent to A. To see that F is a face of B, let L c R2 be the line 
tangent to the circle T at to, and consider the (d + 1)-dimensional hyperplane 
H = L X Rd. This hyperplane supports the cylinder T x Rd in to x Rd. Since G is 
contained in this cylinder, H supports its convex hull B. Moreover, F is exactly the 
set of points in G whose first coordinate is to and it is closed and convex. It follows 
that H n B = F. 
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3. A THEOREM OF BANACH AND MAZUR. In this section we present one of 
the early and basic results on the structure of Banach spaces, due to S. Banach and 
S. Mazur ([3] or [2, p. 185]). 

Let K be a compact metric space, and denote by C(K) the Banach space of all 
continuous real-valued functions on K (with the supremum norm). A Banach 
space X is said to be linearly isometric to a subspace of a Banach space Y if there 
is a linear isometry from X into Y, i.e., a linear operator T: X -* Y such that 
IlTxlly = llxllx for every x E X. 

Theorem 4. Every separable Banach space is linearly isometric to a subspace of 
C[O, 1]. 

The proof of the Banach-Mazur theorem has two steps: 

Step 1. Every separable Banach space is linearly isometric to a subspace of C(K) 
for some convex, compact, and metrizable subset K of a linear topological vector 
space. 

Step 2. C(K) is linearly isometric to a subspace of C[O, 1]. 

The Alexandroff-Hausdorff Theorem is used in the second step, but we also 
sketch the proof of the first step, which is actually a combination of some standard 
facts in functional analysis. 

Proof of step 1: Let X be a separable Banach space, and let X* be its dual. Every 
element x E X can be considered to be a function on X* by the formula 

x(x*) = x*(x) (1) 

for x* e X. 
Of the several topologies that make X* into a linear topological vector space, 

we use the o-(X*, X) (or weak*) topology. It is the weakest topology on X* under 
which all the elements of X are continuous when considered as functions on X* 
by the identification (1) [9, p. 66]. 

The closed unit ball K of X* is convex, and it is compact and metrizable in the 
weak* topology: 

* Compactness is the celebrated theorem of Alaoglu [9, p. 66]. 
* Metrizability is an easy consequence of the separability of X [9, p. 68]. 

Using this K we now define an isometry J of X into C(K) by 

(J(x))(k) = k(x) for every x E X and k E K. 

That A(x) is a continuous function on K for each x, follows from the definition of 
the weak* topology. The operator J is clearly linear, and we now check that it is an 
isometry. For each k E K and x E X 

I ( J(x) ) ( k) I = |k(x) I < || k lix* ll x llx < 11 x llx , 

where the first inequality follows from the definition of the norm on X*, and the 
second from the fact that IIkIIx* < 1 for k in the unit ball K of X*. It follows that 

|| J(X) 11C(K) = sup{I(J(x))(k) |: k E K) < lix Ilx 
for every x E X. The reverse inequality follows from the Hahn-Banach Theorem: 
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For every x E X it ensures that there is a point kx E K such that kx(x) = lIxIlx. It 
follows that 

11 J(X) ICK) 2 (J(x))(kx) = kx(x) = 1 x lx. 

Proof of step 2: Since K is a convex, compact, and metrizable space, the 
Alexandroff-Hausdorff Theorem and Corollary 2 yields a continuous surjective 
map 4: [0, 1] -> K. The operator S of composition with this 4, given by 

Sf(t) = f( +(t)) for every t E [0, 1] 

is a linear operator from C(K) into C[0, 1], and it is an isometry because 

11Sf llC[o1] = sup{ff(o)(t)) |: t E [0, 1]) = sup{lf(k) 1: k E K} = Ilf JIc(K), 
where the second equality follows from the surjectivity of 4. 

4. A CONTINUOUS FUNCTION THAT INTERPOLATES EVERY BOUNDED 
SEQUENCE. The following theorem answers a question that was posed to me by 
Dr. Moshe Leshno and by Professors Allan Pinkus and Vladimir Lin. It was 
motivated by Dr. Leshno's work on neural nets. We denote the set of all integers 
by Z. 

Theorem 5. There is a real-valued, bounded, and continuous function f on the real 
line R with the property that for each doubly infinite sequence y = (Yn)n E z of real 
numbers satisfying IyYn I < 1 for all n, there is a point t E R such that 

Yn = f (t + n) forall n E Z. 

Proof: Consider the infinite product K = [- 1, 1]Z of all doubly infinite sequences 
of real numbers z = (z such that Iznl ? 1 for all n. By Tychonoff's Theorem, 
K is compact when equipped with the product topology, and it is metrizable as a 
product of a countable number of metric spaces. (An explicit metric on K can be 
defined by d(y, z) = E2-JnIyn - zn,, and the compactness can then be proved 
directly by a standard diagonal subsequence argument.) 

Let 4 be a surjective continuous mapping from the Cantor set A onto K. The 
topology on K is defined in such a way that for each fixed n, the nth coordinate 
function (4)(.))n of 4) is a continuous real-valued function on A, and it is clearly 
bounded in absolute value by one. 

We identify A as a closed subset of [0, 1/2]. It follows that A + n and A + m 
are disjoint for n = m, and we first define the function f on the closed subset 
A = U{A +n: n E Z}ofRby 

f(t + n) = (4Ot))n for t EA A and n E Z. 

The function f is well defined and continuous on A, and we extend it to a 
bounded continuous function on all of R by linear interpolation (or by Tietze's 
Extension Theorem). 

The extended function (which we continue to denote by f) is the required 
function. Indeed, given any y = (Yn) E K, there is a point to E/ A such that 
0(to) = y, i.e., ((t0))n = yn for all n. Then the definition of f ensures that 
f(to + n) = Yn for all n. 
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5. VARIATIONS ON SECTION 4. The specific bound 1 on the sequences in the 
previous theorem can be replaced by any other fixed bound. Some common bound 
is, however, necessary, and it is impossible to find one continuous function that 
interpolates all bounded doubly infinite sequences. It is even impossible to find a 
continuous function that interpolates all constant sequences, i.e., a function f with 
the property that for every real number a there is a point t for which f(t + n) = a 
for every n. Indeed, such a function would have to take every real a as a value at 
some point in the compact interval [0, 1], which is impossible for a continuous 
function. 

On the other hand, the same proof shows that if {Mn}n E z are arbitrary positive 
numbers, then there is a continuous function f on R such that if y = (Yn)n E z is a 
sequence of real numbers satisfying IyYn I < Mn for all n, then there is point t E R 
such that Yn = f(t + n) for all n E Z. (Just replace the product [-1, l]z in the 
proof by the product ln=[-Mn, M= ].) 

In particular it follows that it is possible to interpolate all one-sided bounded 
sequences of real numbers. More precisely, 

There is a continuous real-valued function f on the real line R, such that for each 
bounded sequence of real numbers y = (Yn)n2, 0 there is a point t E R such that 
f(t + n) = Yn for all n 20. 

Indeed, let f be the function constructed above with Mn = n. Given any bounded 
sequence (Yn)n2 ?0' choose a positive integer k such that yn I < k for all n > 0, and 
find a point s e R such that f(s + m) = 0 for m < k, and such that f(s + m) = 
Ym-k for all m ? k. Then take t = s + k. 

In the next variation we interpolate continuous functions rather than sequences, 
and we consider only one of many results of this type. Let 9 be a family of 
continuous real-valued functions on the unit interval [0, 1]. Under what conditions 
on 9 can one find a continuous real-valued function g on the unit square 
[0, 1] x [0, 1], such that each f E 7 can be realized as a horizontal section of g? 
More precisely, we look for a function g such that for each f E 7 there is a point 
s E [0, 1] with 

f(t) =g(t,s) forall0 < t < 1. 

Recall that the modulus of continuity (Of(e) of a real-valued uniformly continu- 
ous function f, defined on some metric space, is given by 

(of (8) = sup{| f(x) -f(y) : d(x, y) < ?} 

and (f( e) --* 0 as e -> 0. A family 7 of uniformly continuous functions is called 
equicontinuous if there is a positive function w)(e), with w)( e) - 0 as e -O 0, such 
that Wf(e) < w(e) for all f E 7 Since a continuous function on the unit square is 
bounded and uniformly continuous, it follows that its set of horizontal sections is 
necessarily uniformly bounded (i.e., they are bounded by a common bound), and 
equicontinuous. It turns out that these conditions are sufficient as well: 

Theorem 6. Let 9 be a uniformly bounded and equicontinuous set of continuous 
real-valuedfunctions on the unit interval. Then there is a continuous function g on the 
unit square, such that each function in Sr can be realized as a horizontal section of g. 
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Proof: By the Ascoli-Arzela Theorem [9, p. 369], the closure K (in the supremum 
norm) of the set S9 is compact. By the Alexandroff-Hausdorff Theorem and 
Corollary 2, there is a continuous map P from the interval [0, 1] into C[0, 1], whose 
image contains K. Consider this interval to be the interval [0, 1] on the y-axis, and 
define a function g on [0, 1] x [0, 1] by g(t, s) = +(s)(t) for t, s E [0, 1]. It follows 
from the continuity of + that g is continuous, and the horizontal sections of g 
contain K, hence also 9 

6. A VERY SLOWLY CONVERGENT SEQUENCE OF CONTINUOUS FUNC- 
TIONS. W. Rudin constructed a sequence of continuous real-valued functions on 
the unit interval that converges pointwise to zero, but does so at an arbitrarily slow 
rate at the different points of the interval [10]. More precisely, 

Theorem 7. There is a uniformly bounded sequence of strictly positive continuous 
functions (f,,)= 1 on [0, 1] with the property that 

(i) f,(x) -> 0 for every x E [0, 1]. 
(ii) For each unbounded sequence (An) of positive numbers there is a point 

x E [0, 1] at which lim supn ,00 nfn(X) = Co. 

In Rudin's original proof, the fn's are first defined on the classical Cantor set in 
[0, 1] by explicit formulas that use the ternary representation of the points in the 
set. They are then extended to all of [0, 1] by linear interpolation. We use the 
Cantor set in a different way, namely, by applying the Alexandroff-Hausdorff 
Theorem. 

The functions in our proof satisfy the stronger condition that the series Efn(x) 
converges for every x. Simple variations of the proof could give even stronger 
conditions that would make the convergence of the sequence fn(x) to zero seem 
even faster. 

Proof: Consider the set K of numerical sequences a = (an) given by 
K= {a: 4- ?< a< ? forall n,and a ?<1). 

One checks easily that K is a closed convex subset of the compact metric space 
[0, 1]N, and hence K is compact. By the Alexandroff-Hausdorff Theorem and 
Corollary 2, there is a surjective map 4 from [0, 1] onto K. We then define 

fn(x) = (O(X))n, 

the nth coordinate of +(x). The functions f,, are continuous, and they satisfy 
fn(x) 2 4-n and Efn(x) < 1 for every x E [0, 1]. 

Let (A,2) be any unbounded sequence of positive numbers, and choose a 
subsequence (nj) with the property that Anj4-J 2 j for each j. The sequence 

(4-i if n = n 
4-n otherwise 

satisfies a,1 ? 4-n for all n (because n1 ? j), and also Ea,1 < 1 (because Z4-' 
+4-j = 2T4- < 1). Thus (a,) e K. 

Since 4 is surjective, there is an x E [0, 1] such that fn(x) = (4)(x))n = a,n. 
Hence Anj 'fn(x) = A.n * (O)(X))tj = n4 2 j -* oo. 

Remark. As observed by Rudin, the functions in Theorem 7 can be chosen to be 
polynomials. Indeed, use Weierstrass' Theorem to approximate each fn by a 
polynomial pl up to 2min{fn(x): x E [0, 1]) (which is strictly positive). Then 
fn/2 < Pn < 3fn/2. 
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From the MONTHLY 100 years ago... 

The Annals of Mathematics. Edited by Wm. H. Echols. Published 
under the auspices of the University of Virginia. Bi-Monthly, price $2.00 
per year in advance. 

The October (1897) number of the Annlals of Mathematics contains the following 
articles: The Analytical Representation on a Power of Prime Numbers of Letters 
with a Discussion of the Linera Group, by Dr. L. E. Dickson; Note on Integral and 
Integro-Geometrico Series, by Prof. Edward Drake Roe; Note upon a Representa- 
tion in Space of the Ellipses Drawn by an Ellipsograph, by Prof. E. M. Blake. 

B. F. F. 

The Cosmopolitan. An International Illustrated Monthly Magazine. 
Edited by John Brisben Walker. Price, $1.00 per year in advance. Single 
number, 10 cents. Irvington-on-the-Hudson. 

The principal articles of the February number are: The Selection of One's Life 
Work, by E. Benjamin Andrews; The Great Electric Trust, by Francis Lynde; and 
Personnel of the Supreme Court, by Nannie-Bille Maury. 

The American Monthly Review of Reviews. An International Illustrated 
Monthly Magazine. Edited by Dr. Albert Shaw. Price, $2.50 per year in 
advance. Single number, 25 cents. The Review of Reviews Co., 13 Astor 
Place, New York. 

Cuba, Hawaii, and China furnish the principal topics discussed editorially in the 
Americatn Monthly Review of Reviews for February. There are also a few paragraphs 
of pointed comment on current domestic politics-the factional differences be- 
tween Ohio Republicans and the swelling tide of Crokerism in the Democratic 
party. The editor gives his views on Tammany's attitude toward the New York 
rapid-transit problem and on the reckless expenditure of canal-improvement funds 
by the Republican bosses of the State. 

MONTHLY 5 (1898) 34 
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