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Chapter 8

Banach algebras

Some important Banach spaces are equipped in a natural way with a con-
tinuous product that determines a Banach algebra structure.1 Two basic
examples are C(K) with the pointwise multiplication and L(E) with the
product of operators if E is a Banach space. It can be useful for the reader
to retain C(K) as a simple reference model.

The first work devoted to concrete Banach algebras is contained in some
papers by J. von Neumann and beginning in 1930. The advantage of con-
sidering algebras of operators was clear in his contributions, but it was the
abstract setting of Banach algebras which proved to be convenient and which
allowed the application of similar ideas in many directions.

The main operator on these algebras is the Gelfand transform2 G : a 7→ â,
which maps a unitary commutative Banach algebra A on C to the space
C(∆) of all complex continuous functions on the spectrum ∆ of A, which
is the set of all nonzero elements χ ∈ A′ that are multiplicative. Here ∆ is
endowed with the restriction of the w∗-topology and it is compact. As seen
in Example 8.14, ∆ is the set of all the evaluations δt (t ∈ K) if A = C(K),

and f̂(δt) = δt(f) = f(t), so that in this case one can consider f̂ = f .

But we will be concerned with the spectral theory of operators in a
complex Hilbert space H. If T is a bounded normal operator in H, so that

1Banach algebras were first introduced in 1936 with the name of “linear metric rings” by the

Japanese mathematician Mitio Nagumo. He extended Cauchy’s function theory to the functions
with values in such an algebra to study the resolvent of an operator. They were renamed “Banach

algebras” by Charles E. Rickart in 1946.
2Named after the Ukrainian mathematician Israel Moiseevich Gelfand, who is considered the

creator, in 1941, of the theory of commutative Banach algebras. Gelfand and his colleagues created
this theory which included the spectral theory of operators and proved to be an appropriate setting

for harmonic analysis.
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2 8. Banach algebras

T and the adjoint T ∗ commute, then the closed Banach subalgebra A = 〈T 〉
of L(H) generated by I, T , and T ∗ is commutative.

It turns out that the Gelfand theory of commutative Banach algebras
is especially well suited in this setting. Through the change of variables

z = T̂ (χ) one can consider σ(T ) ≡ ∆, and the Gelfand transform is a
bijective mapping that allows us to define a functional calculus g(T ) by

ĝ(T ) = g(T̂ ) if g is a continuous function on the spectrum of T .

For this continuous functional calculus there is a unique operator-valued
measure E on σ(T ) such that

g(T ) =

∫
σ(T )

g(λ) dE(λ),

and the functional calculus is extended by

f(T ) =

∫
σ(T )

f(λ) dE(λ)

to bounded measurable functions f .

The Gelfand transform, as a kind of abstract Fourier operator, is also
a useful tool in harmonic analysis and in function theory. The proof of
Wiener’s 1932 lemma contained in Exercise 8.15 is a nice unexpected appli-
cation discovered by Gelfand in 1941, and generalizations of many theorems
of Tauberian type and applications to the theory of locally compact groups
have also been obtained with Gelfand’s methods. We refer the reader to
the book by I. M. Gelfand, D. A. Raikov and G. E. Chilov [?] for more
information.

8.1. Definition and examples

We say that A is a complex Banach algebra or, simply, a Banach algebra
if it is a complex Banach space with a bilinear multiplication and the norm
satisfies

‖xy‖ ≤ ‖x‖‖y‖,
so that the multiplication is continuous since, if (xn, yn)→ (x, y), then

‖xy − xnyn‖ ≤ ‖x‖‖y − yn‖+ ‖x− xn‖‖yn‖ → 0.

Real Banach algebras are defined similarly.

The Banach algebra A is said to be unitary if it has a unit, which is
an element e such that xe = ex = x for all x ∈ A and ‖e‖ = 1. This unit is
unique since, if also e′x = xe′ = x, then e = ee′ = e′.

We will only consider unitary Banach algebras. As a matter of fact,
every Banach algebra can be embedded in a unitary Banach algebra, as
shown in Exercise 8.1.
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Example 8.1. (a) If X is a nonempty set, B(X) will denote the unitary
Banach algebra of all complex bounded functions on X, with the pointwise
multiplication and the uniform norm ‖f‖X := supx∈X |f(x)|. The unit is
the constant function 1.

(b) If K is a compact topological space, then C(K) is the closed subal-
gebra of B(K) that contains all the continuous complex functions on K. It
is a unitary Banach subalgebra of B(K), since 1 ∈ C(K).

(c) The disc algebra is the unitary Banach subalgebra A(D) of C(D̄).
Since the uniform limits of analytic functions are also analytic, A(D) is
closed in C(D̄).

Example 8.2. If Ω is a σ-finite measure space, L∞(Ω) denotes the unitary
Banach algebra of all measurable complex functions on Ω with the usual
norm ‖·‖∞ of the essential supremum. As usual, two functions are considered
equivalent when they are equal a.e.

Example 8.3. Let E be any nonzero complex Banach space. The Banach
space L(E) = L(E;E) of all bounded linear operators on E, endowed with
the usual product of operators, is a unitary Banach algebra. The unit is the
identity map I.

8.2. Spectrum

Throughout this section, A denotes a unitary Banach algebra, pos-
sibly not commutative. An example is L(E), if E is a complex Banach
space.

A homomorphism between A and a second unitary Banach algebra B
is a homomorphism of algebras Ψ : A → B such that Ψ(e) = e if e denotes
the unit both in A and in B.

The notion of the spectrum of an operator is extended to any element
of A:

The spectrum of a ∈ A is the subset of C

σA(a) = σ(a) := {λ ∈ C; λe− a 6∈ G(A)},
where G(A) denotes the multiplicative group of all invertible elements of A.

Note that, if B is a unitary Banach subalgebra of A and b ∈ B, an
inverse of λe− b in B is also an inverse in A, so that σA(b) ⊂ σB(b).

Example 8.4. If E is a complex Banach space and T ∈ L(E), we denote
σ(T ) = σL(E)(T ). Thus, λ ∈ σ(T ) if and only if T − λI is not bijective, by
the Banach-Schauder theorem. Recall that the eigenvalues of T , and also
the approximate eigenvalues, are in σ(T ). Cf. Subsection ??.
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Example 8.5. If E is an infinite-dimensional Banach space and T ∈ L(E) is
compact, the Riesz-Fredholm theory shows that σ(T ) \ {0} can be arranged
in a sequence of nonzero eigenvalues (possibly finite), all of them with finite
multiplicity, and 0 ∈ σ(T ), by the Banach-Schauder theorem.

Example 8.6. The spectrum of an element f of the Banach algebra C(K)
is its image f(K).

Indeed, the continuous function f − λ has an inverse if it has no zeros,
that is, if f(t) 6= λ for all t ∈ K. Hence, λ ∈ σ(f) if and only if λ ∈ f(K).

Let us consider again a general unitary Banach algebra A.

Theorem 8.7. If p(λ) =
∑N

n=0 cnλ
n is a polynomial and a ∈ A, then

σ(p(a)) = p(σ(a)).

Proof. We assume that p(a) = c0e+ c1a+ · · ·+ cNa
N , and we exclude the

trivial case of a constant polynomial p(λ) ≡ c0.

For a given µ ∈ C, by division we obtain p(µ)− p(λ) = (µ− λ)q(λ) and
p(µ)e−p(a) = (µe−a)q(a). If µe−a 6∈ G(A), then also p(µ)e−p(a) 6∈ G(A).
Hence, p(σ(a)) ⊂ σ(p(a)).

Conversely, if µ ∈ σ(p(a)), by factorization we can write

µ− p(λ) = α(λ1 − λ) · . . . · (λN − λ)

with α 6= 0. Then µe− p(a) = α(λ1e− a) · . . . · (λNe− a), where µe− p(a) 6∈
G(A), so that λie− a 6∈ G(A) for some 1 ≤ i ≤ N . Thus, λi ∈ σ(a) and we
have p(λi) = µ, which means that µ ∈ p(σ(a)). �

The resolvent of an element a ∈ A is the function Ra : σ(a)c → A such
that Ra(λ) = (λe− a)−1. It plays an important role in spectral theory.

Note that, if λ 6= 0,

Ra(λ) = −(a− λe)−1 = λ−1(e− λ−1a)−1.

To study the basic properties of Ra, we will use some facts from function
theory.

As in the numerical case and with the same proofs, a vector-valued
function F : Ω → A on an open subset Ω of C is said to be analytic or
holomorphic if every point z0 ∈ Ω has a neighborhood where F is the sum
of a convergent power series:

F (z) =

∞∑
n=0

(z − z0)nan (an ∈ A).
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The series is absolutely convergent at every point of the convergence disc,
which is the open disc in C with center z0 and radius

R =
1

lim supn ‖an‖1/n
> 0.

The Cauchy theory remains true without any change in this setting, and
F is analytic if and only if, for every z ∈ Ω, the complex derivative

F ′(z) = lim
h→0

F (z + h)− F (z)

h

exists.

We will show that σ(a) is closed and bounded and, to prove that Ra is
analytic on σ(a)c, we will see that R′a(λ) exists whenever λ 6∈ σ(a).

Let us first show that Ra is analytic on |λ| > ‖a‖.

Theorem 8.8. (a) If ‖a‖ < 1, e− a ∈ G(A) and

(e− a)−1 =
∞∑
n=0

an (a0 := e).

(b) If |λ| > ‖a‖, then λ 6∈ σ(a) and

Ra(λ) =
∞∑
n=0

λ−n−1an.

(c) Moreover,

‖Ra(λ)‖ ≤ 1

|λ| − ‖a‖
,

and lim|λ|→∞Ra(λ) = 0.

Proof. (a) As in (??), the Neumann series
∑∞

n=0 a
n is absolutely convergent

(‖am‖ ≤ ‖a‖m and ‖a‖ < 1), so that z =
∑∞

n=0 a
n ∈ A exists, and it is easy

to check that z is the right and left inverse of e− a. For instance,

lim
N→∞

(e− a)

N∑
n=0

an = (e− a)z,

since the multiplication by e− a is linear and continuous, so that

(e− a)
N∑
n=0

an =
N∑
n=0

an −
N+1∑
n=1

an = e− aN+1 → e if N →∞.

(b) Note that

Ra(λ) = λ−1(e− λ−1a)−1

and, if ‖λ−1a‖ < 1, we obtain the announced expansion from (a).
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(c) Finally,

‖Ra(λ)‖ = |λ|−1‖
∞∑
n=0

λ−nan‖ ≤ 1

|λ| − ‖a‖
.

�

The spectral radius of a ∈ A is the number

r(a) := sup{|λ|; λ ∈ σ(a)}.

From Theorem 8.8 we have that r(a) ≤ ‖a‖, an inequality that can be strict.

The following estimates are useful.

Lemma 8.9. (a) If ‖a‖ < 1,

‖(e− a)−1 − e− a‖ ≤ ‖a‖2

1− ‖a‖
.

(b) If x ∈ G(A) and ‖h‖ < 1/(2‖x−1‖), then x+ h ∈ G(A) and

‖(x+ h)−1 − x−1 + x−1hx−1‖ ≤ 2‖x−1‖3‖h‖2.

Proof. To check (a), we only need to sum the right-hand side series in

‖(e− a)−1 − e− a‖ = ‖
∞∑
n=2

an‖ ≤
∞∑
n=2

‖a‖n.

To prove (b) note that x+ h = x(e+ x−1h), and we have

‖x−1h‖ ≤ ‖x−1‖‖h‖ < 1/2.

If we apply (a) to a = −x−1h, since ‖a‖ < 1/2, we obtain that x+h ∈ G(A),
and

‖(x+ h)−1 − x−1 + x−1hx−1‖ ≤ ‖(e− a)−1 − e− a‖‖x−1‖
with ‖(e− a)−1 − e− a‖ ≤ ‖x−1h‖2/(1− ‖a‖) ≤ 2‖x−1h‖2. �

Theorem 8.10. (a) G(A) is an open subset of A and x ∈ G(A) 7→ x−1 ∈
G(A) is continuous.

(b) Ra is analytic on σ(a)c and zero at infinity.

(c) σ(a) is a nonempty compact subset of C and 3

r(a) = lim
n→∞

‖an‖1/n = inf
n
‖an‖1/n.

3This spectral radius formula and the analysis of the resolvent have a precedent in the study
by Angus E. Taylor (1938) of operators which depend analytically on a parameter. This formula

was included in the 1941 paper by I. Gelfand on general Banach algebras.
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Proof. (a) According to Lemma 8.9(b), for every x ∈ G(A),

B
(
x,

1

2‖x−1‖
)
⊂ G(A)

and G(A) is an open subset of A.

Moreover

‖(x+ h)−1 − x−1‖ ≤ ‖(x+ h)−1 − x−1 + x−1hx−1‖+ ‖x−1hx−1‖ → 0

if ‖h‖ → 0, and x ∈ G(A) 7→ x−1 ∈ G(A) is continuous.

(b) On σ(a)c,

R′a(λ) = lim
µ→0

µ−1[((λ+ µ)e− a)−1 − (λe− a)−1] = −Ra(λ)2

follows from an application of Lemma 8.9(b) to x = λe− a and h = µe. In
this case x−1hx−1 = µx−1x−1 and, writing x−2 = x−1x−1, we obtain

µ−1[(x+ µe)−1 − x−1] = µ−1[(x+ µe)−1 − x−1 + x−1hx−1]− x−2 → x−2

as µ→ 0, since

‖µ−1[(x+ µe)−1 − x−1 + x−1hx−1]‖ ≤ |µ|−12‖x−1‖3|µ|2 → 0.

By Theorem 8.8(b), ‖Ra(λ)‖ ≤ 1/(|λ| − ‖a‖)→ 0 if |λ| → ∞.

(c) Recall that σ(a) ⊂ {λ; |λ| ≤ r(a)} and r(a) ≤ ‖a‖. This set is closed
in C, since σ(a)c = F−1(G(A)) with F (λ) := λe− x, which is a continuous
function from C to A, and G(A) is an open subset of A. Hence σ(a) is a
compact subset of C.

If we suppose that σ(a) = ∅, we will arrive at a contradiction. The
function Ra would be entire and bounded, with lim|λ|→∞Ra(λ) = 0, and the
Liouville theorem is also true in the vector-valued case: for every u ∈ A′,
u ◦ Ra would be an entire complex function and lim|λ|→∞ u(Ra(λ)) = 0,
so that u(Ra(λ)) = 0 and by the Hahn-Banach theorem Ra(λ) = 0, a
contradiction to Ra(λ) ∈ G(A).

Let us calculate the spectral radius. Since

Ra(λ) = λ−1
∞∑
n=0

λ−nan

if |λ| > r(a), the power series
∑∞

n=0 z
nan is absolutely convergent when

|z| = |λ|−1 < 1/r(a), and the convergence radius of
∑∞

n=0 ‖an‖|z|n is

R = (lim sup
n→∞

‖an‖1/n)−1 ≥ 1/r(a).

Then, r(a) ≥ lim supn→∞ ‖an‖1/n.
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Conversely, if λ ∈ σ(a), then λn ∈ σ(an) by Theorem 8.7, so that |λn| ≤
‖an‖ and

|λ| ≤ inf
n
‖an‖1/n ≤ lim inf ‖an‖1/n.

Then it follows that r(a) = limn→∞ ‖an‖1/n = infn ‖an‖1/n. �

As an important application of these results, let us show that C is the
unique Banach algebra which is a field, in the sense that if A is a field, then
λ 7→ λe is an isometric isomorphism from C onto A. The inverse isometry
is the canonical isomorphism:

Theorem 8.11 (Gelfand-Mazur4). If every nonzero element of the unitary
Banach algebra A is invertible (i.e., G(A) = A \ {0}), then A = Ce, and
λ 7→ λe is the unique homomorphism of unitary algebras between C and A.

Proof. Let a ∈ A and λ ∈ σ(a) (σ(a) 6= ∅). Then λe − a 6∈ G(A) and it
follows from the hypothesis that a = λe. A homomorphism C → A = Ce
maps 1→ e and necessarily λ→ λe. �

8.3. Commutative Banach algebras

In this section A represents a commutative unitary Banach alge-
bra. Some examples are C, B(X), C(K), and L∞(Ω). Recall that L(E) (if
dimE > 1) is not commutative, and the convolution algebra L1(R) is not
unitary.

8.3.1. Maximal ideals, characters, and the Gelfand transform. A
character of A is a homomorphism χ : A→ C of unitary Banach algebras
(hence χ(e) = 1). We use ∆(A), or simply ∆, to denote the set of all
characters of A. It is called the spectrum of A.

An ideal, J , of A is a linear subspace such that AJ ⊂ J and J 6= A.
It cannot contain invertible elements, since x ∈ J invertible would imply
e = xx−1 ∈ J and then A = Ae ⊂ J , a contradiction to J 6= A.

Note that, if J is an ideal, then J̄ is also an ideal, since it follows from
J ∩ G(A) = ∅ that e 6∈ J̄ and J̄ 6= A. The continuity of the operations
implies that J̄ + J̄ ⊂ J̄ and AJ̄ ⊂ J̄ .

This shows that every maximal ideal is closed.

4According to a result announced in 1938 by Stanislaw Mazur, a close collaborator of Banach
who made important contributions to geometrical methods in linear and nonlinear functional

analysis, and proved by Gelfand in 1941.
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Theorem 8.12. (a) The kernel of every character is a maximal ideal and
the map χ 7→ Kerχ between characters and maximal ideals of A is bijective.

(b) Every character χ ∈ ∆(A) is continuous and

‖χ‖ = sup
‖a‖A≤1

|χ(a)| = 1.

(c) An element a ∈ A is invertible if and only if χ(a) 6= 0 for every
χ ∈ ∆.

(d) σ(a) = {χ(a); χ ∈ ∆(A)}, and r(a) = supχ∈∆ |χ(a)|.

Proof. (a) The kernel M of any χ ∈ ∆(A) is an ideal and, as the kernel of
a nonzero linear functional, it is a hyperplane; that is, the complementary
subspaces of M in A are one-dimensional, since χ is bijective on them, and
M is maximal.

If M is a maximal ideal, the quotient space A/M has a natural structure
of unitary Banach algebra, and it is a field. Indeed, if π : A → A/M
is the canonical mapping and π(x) = x̃ is not invertible in A/M , then
J = π(xA) 6= A/M is an ideal of A/M , and π−1(J) 6= A is an ideal of A
which is contained in a maximal ideal that contains M . Thus, π−1(J) = M ,
so that π(xA) ⊂ π(M) = {0} and x̃ = 0.

Let χ̃ : A/M = Cẽ → C be the canonical isometry, so that M is
the kernel of the character χM := χ̃ ◦ πM . Any other character χ1 with the
same kernel M factorizes as a product of πM with a bijective homomorphism
between A/M and C which has to be the canonical mapping Cẽ→ C, and
then χ1 = χM .

(b) If χ = χM ∈ ∆(A), then ‖χ‖ ≤ ‖πM‖‖χ̃‖ = ‖πM‖ ≤ 1 and ‖χ‖ ≥
χ(e) = 1.

(c) If x ∈ G(A), we have seen that it does not belong to any ideal. If
x 6∈ G(A), then xA does not contain e and is an ideal, and by Zorn’s lemma
every ideal is contained in a maximal ideal. So x ∈ G(A)c if and only if x
belongs to a maximal ideal or, equivalently, χ(x) 6= 0 for every character χ.

(d) Finally, λe−a 6∈ G(A) if and only if χ(λe−a) = 0, that is , λ = χ(a)
for some χ ∈ ∆(A). �

We associate to every element a of the unitary commutative algebra A
the function â which is the restriction of 〈a, ·〉 to the characters,5 so that

â : ∆(A)→ C

is such that â(χ) = χ(a). On ∆(A) ⊂ B̄A′ we consider the Gelfand topol-
ogy, which is the restriction of the weak-star topology w∗ = σ(A′, A) of A′.

5Recall that 〈a, u〉 = u(a) was defined for every u in the dual A′ of A as a Banach space.
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In this way, â ∈ C(∆(A)), and

G : a ∈ A 7→ â ∈ C(∆(A))

is called the Gelfand transform.

Theorem 8.13. Endowed with the Gelfand topology, ∆(A) is compact and
the Gelfand transform G : A 7→ C(∆(A)) is a continuous homomorphism of
commutative unitary Banach algebras.

Moreover ‖â‖ = r(a) ≤ ‖a‖ and Ge = 1, so that ‖G‖ = 1.

Proof. For the first part we only need to show that ∆ ⊂ B̄A′ is weakly
closed, since B̄A′ is weakly compact, by the Alaoglu theorem. But

∆ =
{
ξ ∈ B̄A′ ; ξ(e) = 1, ξ(xy) = ξ(x)ξ(y)∀x, y ∈ A

}
is the intersection of the weakly closed sets of B̄A′ defined by the conditions
〈xy, ·〉 − 〈x, ·〉〈y, ·〉 = 0 (x, y ∈ A) and 〈e, ·〉 = 1.

It is clear that it is a homomorphism of commutative unitary Banach
algebras. For instance, ê(χ) = χ(e) = 1 and x̂y(χ) = χ(x)χ(y) = x̂(χ)ŷ(χ).

Also, ‖â‖ = supχ∈∆ |χ(a)| ≤ ‖a‖, according to Theorem 8.12(d). �

Example 8.14. If K is a compact topological space, then C(K) is a unitary
commutative Banach algebra whose characters are the evaluation maps δt
at the different points t ∈ K, and t ∈ K 7→ δt ∈ ∆ is a homeomorphism.

Obviously δt ∈ ∆. Conversely, if χ = χM ∈ ∆, we will show that there
is a common zero for all f ∈ M . If not, for every t ∈ K there would exist
some ft ∈M such that ft(t) 6= 0, and |ft| ≥ εt > 0 on a neighborhood U(t)
of this point t. Then, K = U(t1) ∪ · · · ∪ U(tN ), and the function

f = |ft1 |2 + · · ·+ |ftN |
2 = ft1ft1 + · · ·+ ftN ftN ,

which belongs to M , would be invertible, since it has no zeros.

Hence, there exists some t ∈ K such that f(t) = 0 for every f ∈M . But
M is maximal and contains all the functions f ∈ C(K) such that f(t) = 0.

Both K and ∆ are compact spaces and t ∈ K 7→ δt ∈ ∆, being continu-
ous, is a homeomorphism.

8.3.2. Algebras of bounded analytic functions. Suppose that Ω is a
bounded domain of C and denote by H∞(Ω) the algebra of bounded analytic
functions in Ω, which is a commutative Banach algebra under the uniform
norm

‖f‖∞ = sup
z∈Ω
|f(z)|.

It is a unitary Banach subalgebra of B(Ω).
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The Gelfand transform G : H∞(Ω)→ C(∆) is an isometric isomorphism,
since ‖f2‖ = ‖f‖2 and r(f) = ‖f‖ for every f ∈ A, and we can see H∞(Ω)
is a unitary Banach subalgebra of C(∆) (cf. Exercise 8.18).

For every ζ ∈ Ω, the evaluation map δζ is the character of H∞(Ω)
uniquely determined by δζ(z) = ζ, where z denotes the coordinate function.

Indeed, if χ ∈ ∆ satisfies the condition χ(z) = ζ and if f ∈ H∞(Ω), then

f(z) = f(ζ) +
f(z)− f(ζ)

z − ζ
(z − ζ)

and

χ(f) = f(ζ) + χ
(f − f(ζ)

z − ζ

)
χ(z − ζ) = f(ζ).

It can be shown that the embedding Ω ↪→ ∆ such that ζ 7→ δζ is a
homeomorphism from Ω onto an open subset of ∆ (see Exercise 8.14 where
we consider the case Ω = U , the unit disc) and, for every f ∈ H∞(Ω), it is

convenient to write f̂(δζ) = f(ζ) if ζ ∈ Ω.

Suppose now that ξ ∈ ∂Ω, a boundary point. Note that z − ξ is not
invertible in H∞(Ω), so that

∆ξ :=
{
χ ∈ ∆; χ(z − ξ) = 0

}
=
{
χ ∈ ∆; χ(z) = ξ

}
= (ẑ)−1(ξ)

is not empty.

For every χ ∈ ∆, χ(z − χ(z)) = 0 and z − χ(z) is not invertible, so that
χ(z) ∈ Ω̄ and χ ∈ Ω or χ ∈ Ωξ for some ξ ∈ ∂Ω. That is,

(8.1) ∆ = Ω ∪
( ⋃
ξ∈∂Ω

∆ξ

)
and we can imagine ∆ as the domain Ω with a compact fiber ∆ξ = (ẑ)−1(ξ)
lying above every ξ ∈ ∂Ω.

The corona problem asks whether Ω is dense in ∆ for the Gelfand topol-
ogy, and it admits a more elementary equivalent formulation in terms of
function theory:

Theorem 8.15. For the Banach algebra H∞(Ω), the domain Ω is dense in
∆ if and only if the following condition holds:

If f1, . . . , fn ∈ H∞(Ω) and if

(8.2) |f1(ζ)|+ · · ·+ |fn(ζ)| ≥ δ > 0

for every ζ ∈ Ω, then there exist g1, . . . , gn ∈ H∞(Ω) such that

(8.3) f1g1 + · · ·+ fngn = 1.
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Proof. Suppose that Ω is dense in ∆. By continuity, if |f1|+ · · ·+ |fn| ≥ δ
on Ω, then also |f̂1|+ · · ·+ |f̂n| ≥ δ on ∆, so that {f1, . . . , fn} is contained
in no maximal ideal and

1 ∈ H∞(Ω) = f1H
∞(Ω) + · · ·+ fnH

∞(Ω).

Conversely, suppose Ω is not dense in ∆ and choose χ0 ∈ ∆ with a
neighborhood V disjoint from Ω. The Gelfand topology is the w∗-topology
and this neighborhood has the form

V =
{
χ; max

j=1,...,n
|χ(hj)− χ0(hj)| < δ, h1, . . . , hn ∈ H∞(Ω)

}
.

The functions fj = hj−χ0(hj) are in V and they satisfy (8.2) because δζ 6∈ V
and then |fj(ζ)| ≥ δ. But (8.3) is not possible because f1, . . . , fn ∈ Kerχ0

and χ0(1) = 1. �

Starting from the above equivalence, in 1962 Carleson6 solved the corona
problem for the unit disc, that is, D is dense in ∆(H∞(D)).

The version of the corona theorem for the disc algebra is much easier.
See Exercise 8.3.

8.4. C∗-algebras

We are going to consider a class of algebras whose Gelfand transform is a
bijective and isometric isomorphism. Gelfand introduced his theory to study
these algebras.

8.4.1. Involutions. A C∗-algebra is a unitary Banach algebra with an
involution, which is a mapping x ∈ A 7→ x∗ ∈ A that satisfies the following
properties:

(a) (x+ y)∗ = x∗ + y∗,

(b) (λx)∗ = λ̄x∗,

(c ) (xy)∗ = y∗x∗,

(d) x∗∗ = x, and

(e) e∗ = e

for any x, y ∈ A and λ ∈ C, and such that ‖x∗x‖ = ‖x‖2 for every x ∈ A.

6The Swedish mathematician Lennart Carleson, awarded the Abel Prize in 2006, has solved
some outstanding problems such as the corona problem (1962) and the almost everywhere con-
vergence of Fourier series of any function in L2(T) (1966) and in complex dynamics. To quote

Carleson “The corona construction is widely regarded as one of the most difficult arguments in
modern function theory. Those who take the time to learn it are rewarded with one of the most

malleable tools available. Many of the deepest arguments concerning hyperbolic manifolds are
easily accessible to those who understand well the corona construction.”



8.4. C∗-algebras 13

An involution is always bijective and it is its own inverse. It is isometric,
since ‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖‖x‖, so that ‖x‖ ≤ ‖x∗‖ and ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖.

Throughout this section, A will be a C∗-algebra.

If H is a complex Hilbert, L(H) is a C∗-algebra with the involution T 7→
T ∗, where T ∗ denotes the adjoint of T . It has been proved in Theorem ??
that ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2.

Let A and B be two C∗-algebras. A homomorphism of C∗-algebras is
a homomorphism Ψ : A→ B of unitary Banach algebras such that Ψ(x∗) =
Ψ(x)∗ (and, of course, Ψ(e) = e).

We say that a ∈ A is hermitian or self-adjoint if a = a∗. The orthog-
onal projections of H are hermitian elements of L(H). We say that a ∈ A
is normal if aa∗ = a∗a.

Example 8.16. If a ∈ A is normal and 〈a〉 denotes the closed subalgebra
of A generated by a, a∗, and e, then 〈a〉 contains all elements of A that can
be obtained as the limits of sequences of polynomials in a, a∗ and e. With
the restriction of the involution of A, 〈a〉 is a commutative C∗-algebra.

Lemma 8.17. Assume that A is commutative.

(a) If a = a∗ ∈ A, then σA(a) ⊂ R.

(b) For every a ∈ A and χ ∈ ∆(A), χ(a∗) = χ(a).

Proof. If t ∈ R, since ‖χ‖ = 1,

|χ(a+ ite)|2 ≤ ‖a+ ite‖2 = ‖(a+ ite)∗(a+ ite)‖
= ‖(a− ite)(a+ ite)‖ = ‖a2 + t2e‖ ≤ ‖a‖2 + t2.

Let χ(a) = α+ iβ (α, β ∈ R). Then

‖a‖2 + t2 ≥ |α+ iβ + it|2 = α2 + β2 + 2βt+ t2,

i.e., ‖a‖2 ≥ α2 + β2 + 2βt, and it follows that β = 0 and χA(a) = α ∈ R.

For any a ∈ A, if x = (a + a∗)/2 and y = (a − a∗)/2i, we obtain
a = x + iy with x, y hermitian, χ(x), χ(y) ∈ R, and a∗ = x − iy. Hence,

χ(a) = χ(x) + iχ(y) and χ(a∗) = χ(x)− iχ(y) = χ(a). �

Theorem 8.18. If B is a closed unitary subalgebra of A such that b∗ ∈ B
for every b ∈ B, then σB(b) = σA(b) for every b ∈ B.

Proof. First let b∗ = b. From Lemma 8.17 we know that σ〈b〉 ⊂ R and,
obviously,

σA(b) ⊂ σB(b) ⊂ σ〈b〉(b) = ∂σ〈b〉(b).

To prove the inverse inclusions, it is sufficient to show that ∂σ〈b〉(b) ⊂
σA(b). Let λ ∈ ∂σ〈b〉(b) and suppose that λ 6∈ σA(b). There exists x ∈ A so
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that x(b − λe) = (b − λe)x = e and the existence of λn 6∈ σ〈b〉(b) such that
λn → λ follows from λ ∈ ∂σ〈b〉(b). Thus we have

(b−λne)−1 ∈ 〈b〉 ⊂ A, b−λne→ b−λe, and (b−λne)−1 → (b−λe)−1 = x.

Hence x ∈ 〈b〉, in contradiction to λ ∈ σ〈b〉(b).
In the general case we only need to prove that if x ∈ B has an inverse y

in A, then y ∈ B also. But it follows from xy = e = yx that (x∗x)(yy∗) =
e = (yy∗)(x∗x), and x∗x is hermitian. In this case we have seen above
that x∗x has its unique inverse in B, so that yy∗ = (x∗x)−1 ∈ B and
y = y(y∗x∗) = (yy∗)x∗ ∈ B. �

8.4.2. The Gelfand-Naimark theorem and functional calculus. We
have proved in Theorem 8.13 that the Gelfand transform satisfies ‖â‖∆ =
r(a) ≤ ‖a‖, but in the general case it may not be injective. This is not the
case for C∗-algebras.

Theorem 8.19 (Gelfand-Naimark). If A is a commutative C∗-algebra, then
the Gelfand transform G : A→ C(∆(A)) is a bijective isometric isomorphism
of C∗-algebras.

Proof. We have â∗(χ) = χ(a) = â(χ) and G(a∗) = G(a).

If x∗ = x, then r(x) = limn ‖x2n‖1/2n = ‖x‖, since ‖x2‖ = ‖xx∗‖ = ‖x‖2

and, by induction, ‖x2(n+1)‖ = ‖(x2n)2‖ = (‖x‖2n)2 = ‖x‖2(n+1)
.

If we take x = a∗a, then ‖â∗a‖∆ = ‖a∗a‖, so

‖a‖2 = ‖a∗a‖ = ‖â∗a‖∆ = ‖ââ‖∆ = ‖â‖2∆
and ‖a‖ = ‖â‖∆.

Since G is an isometric isomorphism, G(A) is a closed subalgebra of
C(∆(A)). This subalgebra contains the constant functions (ê = 1) and it
is self-conjugate and separates points (if χ1 6= χ2, there exists a ∈ A such
that χ1(a) 6= χ2(a), i.e., â(χ1) 6= â(χ2)). By the complex form of the Stone-
Weierstrass theorem, the image is also dense, so G(A) = C(∆(A)) and G is
bijective. �

Theorem 8.20. Let a be a normal element of the C∗-algebra A, let ∆ =
∆〈a〉 be the spectrum of the subalgebra 〈a〉, and let G : 〈a〉 → C(∆) be the
Gelfand transform. The function â : ∆ → σA(a) = σ〈a〉(a) is a homeomor-
phism.

Proof. We know σ(a) = â(∆). If χ1, χ2 ∈ ∆, from â(χ1) = â(χ2) we obtain

χ1(a) = χ2(a), χ1(a∗) = χ1(a) = χ2(a) = χ2(a∗), and χ1(e) = 1 = χ2(e),
so that χ1(x) = χ2(x) for all x ∈ 〈a〉; hence, χ1 = χ2 and â : ∆ → σ(a) is
bijective and continuous between two compact spaces, and then the inverse
is also continuous. �
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The homeomorphism â : ∆ → σ(a) (λ = â(χ)) allows us to define the
isometric isomorphism of C∗-algebras τ = ◦â : C(σ(a)) → C(∆) such that
[g(λ)] 7→ [G(χ)] = [g(â(χ))].

By Theorem 8.19, the composition

Φa = G−1 ◦ τ : C(σ(a))→ C(∆)→ 〈a〉 ⊂ A,
such that g ∈ C(σ(a)) 7→ G−1(g(â)) ∈ 〈a〉, is also an isometric isomorphism

of C∗-algebras. If g ∈ C(σ(a)), then the identity Φ̂a(g) = g ◦ â = g(â)
suggests that we may write g(a) := Φa(g).

So, we have the isometric isomorphism of C∗-algebras

Φa : g ∈ C(σ(a)) 7→ g(a) ∈ 〈a〉 ⊂ A

such that, if g0(λ) = λ is the identity on σ(a), then Φ̂a(g0) = â and g0(a) = a,
since τ(g0) = â = G(a). Also ḡ0(a) = a∗ and

(8.4) p(a) =
∑

0≤j,k≤N
cj,ka

j(a∗)k if p(z) =
∑

0≤j,k≤N
cj,kz

j z̄k.

We call Φa the functional calculus with continuous functions. It
is the unique homomorphism Φ : C(σ(a))→ A of C∗-algebras such that

Φ(p) =
∑

0≤j,k≤N
cj,ka

j(a∗)k(a)

if p(z) =
∑

0≤j,k≤N cj,kz
j z̄k.

Indeed, it follows from the Stone-Weierstrass theorem that the subalge-
bra P of all polynomials p(z) considered in (8.4) is dense in C(σ(a)) and, if
g = limn pn in C(σ(a)) with pn ∈ P, then

Φ(g) = lim
n
pn(a) = Φa(g).

These facts are easily checked and justify the notation g(a) for Φa(g).

8.5. Spectral theory of bounded normal operators

In this section we are going to consider normal operators T ∈ L(H). By
Theorem 8.18,

σ(T ) = σL(H)(T ) = σ〈T 〉(T )

and it is a nonempty compact subset of C.

From now on, by B(σ(T )) we will denote the C∗-algebra of all bounded
Borel measurable functions f : σ(T ) → C, endowed with the involution
f 7→ f̄ and with the uniform norm. Obviously C(σ(T )) is a closed unitary
subalgebra of B(σ(T )).

An application of the Gelfand-Naimark theorem to the commutative
C∗-algebra 〈T 〉 gives an isometric homomorphism from 〈T 〉 onto C(∆〈T 〉).
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The composition of this homomorphism with the change of variables

λ = T̂ (χ) (λ ∈ σ(T ) and χ ∈ ∆〈T 〉) defines the functional calculus with
continuous functions on σ(T ), g ∈ C(σ(T )) 7→ g(T ) ∈ 〈T 〉 ⊂ L(H), which is
an isometric homomorphism of C∗-algebras.

If x, y ∈ H are given, then

ux,y(g) := (g(T )x, y)H

defines a continuous linear form on C(σ(T )) and, by the Riesz-Markov rep-
resentation theorem,

(g(T )x, y)H = ux,y(g) =

∫
σ(T )

g dµx,y

for a unique complex Borel measure µx,y on σ(T ).

We will say that {µx,y} is the family of complex spectral measures
of T . For any bounded Borel measurable function f on σ(T ), we can define

ux,y(f) :=

∫
σ(T )

f dµx,y

and in this way we extend ux,y to a linear form on these functions. Note
that |ux,y(g)| = |(g(T )x, y)H | ≤ ‖x‖H‖y‖H‖g‖σ(T ).

8.5.1. Functional calculus of normal operators. Now our goal is to
show that it is possible to define f(T ) ∈ L(H) for every f in the C∗-algebra
B(σ(T )) of all bounded Borel measurable functions on σ(T ) ⊂ C, equipped
with the uniform norm and with the involution f 7→ f̄ , so that

(f(T )x, y)H = ux,y(f) =

∫
σ(T )

f dµx,y

in the hope of obtaining a functional calculus f 7→ f(T ) for bounded but
not necessarily continuous functions.

Theorem 8.21. Let T ∈ L(H) be a normal operator (TT ∗ = T ∗T ) and let
{µx,y} be its family of complex spectral measures. Then there exists a unique
homomorphism of C∗-algebras

ΦT : B(σ(T ))→ L(H)

such that

(ΦT (f)x, y)H =

∫
σ(T )

f dµx,y (x, y ∈ H).

It is an extension of the continuous functional calculus g 7→ g(T ), and
‖ΦT (f)‖ ≤ ‖f‖σ(T ).
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Proof. Note that, if µ1 and µ2 are two complex Borel measures on σ(T )
and if

∫
g dµ1 =

∫
g dµ2 for all real g ∈ C(σ(T )), then µ1 = µ2, by the

uniqueness in the Riesz-Markov representation theorem.

If g ∈ C(σ(T )) is a real function, then g(T ) is self-adjoint, since g(T )∗ =

ḡ(T ). Hence, (g(T )x, y)H = (g(T )y, x)H and then∫
σ(T )

g dµx,y =

∫
σ(T )

g dµy,x =

∫
σ(T )

g dµ̄y,x,

so that

µx,y = µ̄y,x.

Obviously, (x, y) 7→
∫
σ(T ) g dµx,y = (g(T )x, y)H is a continuous sesquilinear

form and, from the uniqueness in the Riesz-Markov representation theorem,
the map (x, y) 7→ µx,y(B) is also sesquilinear, for any Borel set B ⊂ σ(T ).
For instance, µx,λy = λ̄µx,y, since for continuous functions we have∫

σ(T )
g dµx,λy = λ̄(g(T )x, y)H =

∫
σ(T )

g dλµx,y.

With the extension ux,y(f) :=
∫
σ(T ) f dµx,y of ux,y to functions f in

B(σ(T )), it is still true that

|ux,y(f)| ≤ ‖x‖H‖y‖H‖f‖σ(T ).

For every f ∈ B(σ(T )),

(x, y) 7→ Bf (x, y) :=

∫
σ(T )

f dµx,y

is a continuous sesquilinear form on H ×H and Bf (y, x) = Bf (x, y), since∫
σ(T )

f dµx,y =

∫
σ(T )

f dµy,x

(µx,y(B) = µy,x(B) extends to simple functions). Let us check that an
application of the Riesz representation theorem produces a unique operator
ΦT (f) ∈ L(H) such that Bf (x, y) = (ΦT (f)x, y)H .

Note that Bf (·, x) ∈ H ′ and there is a unique ΦT (f)x ∈ H so that
Bf (y, x) = (y,ΦT (f)x)H for all y ∈ H. Then

(ΦT (f)x, y)H = Bf (y, x) = Bf (x, y) =

∫
σ(T )

f dµx,y (x, y ∈ H).

It is clear that Bf (x, y) is linear in f and that we have defined a bounded
linear mapping ΦT : B(σ(T ))→ L(H) such that

|(ΦT (f)x, y)H | ≤ ‖f‖σ(T )‖x‖H‖y‖H
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and ‖ΦT (f)‖ ≤ ‖f‖σ(T ). Moreover, with this definition, ΦT extends the
functional calculus with continuous functions, g 7→ g(T ).

To prove that ΦT is a continuous homomorphism of C∗-algebras, all that
remains is to check its behavior with the involution and with the product.

If f is real, then from µx,y = µ̄y,x we obtain (ΦT (f)x, y)H =(ΦT (f)y, x)H
and ΦT (f)∗ = ΦT (f). In the case of a complex function, f , ΦT (f)∗ = ΦT (f̄)
follows by linearity.

Finally, to prove that ΦT (f1f2) = ΦT (f1)ΦT (f)(f2), we note that, on
continuous functions,∫

σ(T )
hg dµx,y = (h(T )g(T )x, y)H =

∫
σ(T )

h dµg(T )x,y

and g dµx,y = dµg(T )x,y (x, y ∈ H). Hence, also∫
σ(T )

f1g dµx,y =

∫
σ(T )

f1 dµg(T )x,y

if f1 is bounded, and then∫
σ(T )

f1g dµx,y = (ΦT (f1)g(T )x, y)H = (g(T )x,ΦT (f1)∗y)H

=

∫
σ(T )

g dµx,Φ(f1)∗y.

Again f1dµx,y = dµx,ΦT (f1)∗y, and also
∫
σ(T ) f1f2 dµx,y =

∫
σ(T ) f2 dµx,f1(T )∗y

if f1 and f2 are bounded. Thus,

(ΦT (f1f2)x, y)H =

∫
σ(T )

f1f2 dµx,y

=

∫
σ(T )

f2 dµx,ΦT (f1)∗y = (ΦT (f1)ΦT (f2)x, y)H

and ΦT (f) is multiplicative. �

As in the case of the functional calculus for continuous functions, if
f ∈ B(σ(T )), we will denote the operator ΦT (f) by f(T ); that is,

(f(T )x, y)H =

∫
σ(T )

f dµx,y (x, y ∈ H).

8.5.2. Spectral measures. For a given Hilbert space, H, a spectral
measure, or a resolution of the identity, on a locally compact sub-
set K of C (or of Rn), is an operator-valued mapping defined on the Borel
σ-algebra BK of K,

E : BK −→ L(H),

that satisfies the following conditions:
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(1) Each E(B) is an orthogonal projection.

(2) E(∅) = 0 and E(K) = I, the identity operator.

(3) If Bn ∈ BK (n ∈ N) are disjoint, then

E(
∞⊎
n=1

Bn)x =
∞∑
n=1

E(Bn)x

for every x ∈ H, and it is said that

E(
∞⊎
n=1

Bn) =
∞∑
n=1

E(Bn)

for the strong convergence, or that E is strongly σ-additive.

Note that E also has the following properties:

(4) If B1 ∩B2 = ∅, then E(B1)E(B2) = 0 (orthogonality).

(5) E(B1 ∩B2) = E(B1)E(B2) = E(B2)E(B1) (multiplicativity).

(6) If B1 ⊂ B2, then ImE(B1) ⊂ ImE(B2) (usually represented by
E(B1) ≤ E(B2)).

(7) If Bn ↑ B or Bn ↓ B, then limnE(Bn)x = E(B)x for every x ∈ H
(it is said that E(Bn)→ E(B) strongly).

Indeed, to prove (4), if y = E(B2)x, the equality

(E(B1) + E(B2))2 = E(B1 ]B2)2 = E(B1) + E(B2)

and the condition B1 ∩B2 = ∅ yield

E(B1)E(B2)x+ E(B2)E(B1)x = 0,

that is, E(B1)y + y = 0 and, applying E(B1) to both sides, E(B1)y = 0.

Now (5) follows from multiplying the equations

E(B1) = E(B1∩B2)+E(B1\B1∩B2), E(B2) = E(B1∩B2)+E(B2\B1∩B2)

and taking into account (4).

If Bn ↑ B, then limnE(Bn)x = E(B)x follows from (3), since

B = B1 ] (B2 \B1) ] (B3 \B2) ] · · · .

The decreasing case Bn ↓ B reduces to K \Bn ↑ K \B.

It is also worth noticing that the spectral measure E generates the family
of complex measures Ex,y (x, y ∈ H) defined as

Ex,y(B) := (E(B)x, y)H .

If x ∈ H, then Ex(B) := E(B)x defines a vector measure Ex : BK → H,
i.e., Ex(∅) = 0 and Ex(

⊎∞
n=1Bn) =

∑∞
n=1Ex(Bn) in H.
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Note that for every x ∈ H, Ex,x is a (positive) measure such that

Ex,x(B) = (E(B)x, y)H = ‖E(B)x‖2H , Ex,x(K) = ‖x‖2H ,

a probability measure if ‖x‖H = 1, and that operations with the complex
measures Ex,y, by polarization, reduce to operations with positive measures:

Ex,y(B)=
1

4

(
Ex+y,x+y(B)−Ex−y,x−y(B)+iEx+iy,x+iy(B)−iEx−iy,x−iy(B)

)
.

The notions E-almost everywhere (E-a.e.) and E-essential supre-
mum have the usual meaning. In particular, if f is a real measurable
function,

E- sup f = inf{M ∈ R; f ≤M E-a.e.}.

Note that E(B) = 0 if and only if Ex,x(B) = 0 for every x ∈ H. Thus, if
B1 ⊂ B2 and E(B2) = 0, then E(B1) = 0, and the class of E-null sets is
closed under countable unions.

The support of a spectral measure E on K is defined as the least
closed set suppE such that E(K \ suppE) = 0. The support consists
precisely of those points in K for which every neighborhood has nonzero
E-measure and E(B) = E(B ∩ suppE) for every Borel set B ⊂ K.

The existence of the support is proved by considering the union V of
the open sets Vα of K such that E(Vα) = 0. Since there is a sequence Vn of
open sets in K such that Vα =

⋃
{n;Vn⊂Vα} Vn, then also V =

⋃
{n;Vn⊂V } Vn

and E(V ) = 0. Then suppE = K \ V .

We write

R =

∫
K
f dE

to mean that

(Rx, y)H =

∫
K
f dEx,y (x, y ∈ H).

It is natural to ask whether the family {µx,y} of complex measures associ-
ated to a normal operator T is generated by a single spectral measure E asso-
ciated to T . The next theorem shows that the answer is affirmative, allowing
us to rewrite the functional calculus of Theorem 8.21 as f(T ) =

∫
σ(T ) f dE.
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Theorem 8.22 (Spectral resolution7). If T ∈ L(H) is a normal operator,
then there exists a unique spectral measure E : Bσ(T ) → L(H) which satisfies

(8.5) T =

∫
σ(T )

λ dE(λ).

Furthermore,

(8.6) f(T ) =

∫
σ(T )

f(λ) dE(λ) (f ∈ B(σ(T ))),

and

(8.7) E(B) = χB(T ) (B ∈ Bσ(T )).

Proof. If ΦT : B(σ(T )) → L(H) is the homomorphism that defines the
functional calculus, then to obtain (8.6) we must define E by condition (8.7),

E(B) := ΦT (χB) (B ∈ Bσ(T )),

and then check that E is a spectral measure with the convenient properties.

Obviously, E(B) = E(B)2 and E(B)∗ = E(B) (χB is real), so that
E(B) is an orthogonal projection (Theorem ??).

Moreover, it follows from the properties of the functional calculus for
continuous functions that E(σ(T )) = Φ(1) = 1(T ) = I and E(∅) = Φ(0) = 0
and, since Φ is linear, E is additive. Also, from

(E(B)x, y)H = (Φ(χB)x, y)H = µx,y(B),

we obtain that∫
σ(T )

g dE = g(T ),

∫
σ(T )

f dE = Φ(f)
(
g ∈ C(σ(T )), f ∈ B(σ(T ))

)
.

Finally, E is strongly σ-additive since, if Bn (n ∈ N) are disjoint Borel
sets, E(Bn)E(Bm) = 0 if n 6= m, so that the images of the projections
E(Bn) are mutually orthogonal (if y = E(Bm)x, we have y ∈ KerE(Bn)
and y ∈ E(Bn)(H)⊥) and then, for every x ∈ H,

∑
nE(Bn)x is convergent

to some Px ∈ H since ∑
n

‖E(Bn)x‖2H ≤ ‖x‖2H ,

this being true for partial sums, ‖E(
⊎N
n=1Bn)x‖2H ≤ ‖x‖2H .

7In their work on integral equations, D. Hilbert for a self-adjoint operator on `2 and F. Riesz

on L2 used the Stieltjes integral∫
σ(T )

t dE(t) = lim
∑
k

tk(E(tk)− E(tk−1)) (here E(tk)− E(tk−1) = E(tk−1, tk])

to obtain this spectral theorem.
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But then

(Px, y)H =
∞∑
n=1

(E(Bn)x, y)H = µx,y
( ∞⊎
n=1

Bn
)

= (E
( ∞⊎
n=1

Bn
)
x, y)H

and
∑

nE(Bn)x = Px = E
(⊎

nBn
)
x.8

The uniqueness of E follows from the uniqueness for the functional cal-
culus for continuous functions ΦT and from the uniqueness of the measures
Ex,y in the Riesz-Markov representation theorem. �

Remark 8.23. A more general spectral theorem due to John von Neumann
in 1930 can also be obtained from the Gelfand-Naimark theorem: any com-
mutative family of normal operators admits a single spectral measure which
simultaneously represents all operators of the family as integrals

∫
K g dE for

various functions g.

8.5.3. Applications. There are two special instances of normal operators
that we are interested in: self-adjoint operators and unitary operators.

Recall that an operator U ∈ L(H) is said to be unitary if it is a bijective
isometry of H. This means that

UU∗ = U∗U = I

since U∗U = I if and only if (Ux,Uy)H = (x, y) and U is an isometry. If it is
bijective, then (U−1x, U−1y)H = (x, y)H and ((U−1)∗U−1x, y)H = (x, y)H ,
where (U−1)∗U−1x = (U∗)−1U−1x = (UU∗)−1x and then ((UU∗)−1x, y)H =
(x, y)H , so that UU∗ = I. Conversely, if UU∗ = I, then U is exhaustive.

The Fourier transform is an important example of a unitary operator of
L2(Rn).

Knowing the spectrum allows us to determine when a normal operator
is self-adjoint or unitary:

Theorem 8.24. Let T ∈ L(H) be a normal operator.

(a) T is self-adjoint if and only if σ(T ) ⊂ R.

(b) T is unitary if and only if σ(T ) ⊂ S = {λ; |λ| = 1}.

Proof. We will apply the continuous functional calculus ΦT for T to the
identity function g(λ) = λ on σ(T ), so that g(T ) = T and ḡ(T ) = T ∗.

From the injectivity of ΦT , T = T ∗ if and only if g = ḡ, meaning that
λ = λ̄ ∈ R for every λ ∈ σ(T ).

Similarly, T is unitary if and only if TT ∗ = T ∗T = I, i.e., when gḡ = 1,
which means that |λ| = 1 for all λ ∈ σ(T ). �

8See also Exercise 8.21.
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Positivity can also be described through the spectrum:

Theorem 8.25. Suppose T ∈ L(H). Then

(8.8) (Tx, x)H ≥ 0 (x ∈ H)

if and only if

(8.9) T = T ∗ and σ(T ) ⊂ [0,∞).

Such an operator is said to be positive.

Proof. It follows from (8.8) that (Tx, x)H ∈ R and then

(Tx, x)H = (x, Tx)H = (T ∗x, x)H .

Let us show that then S := T − T ∗ = 0.

Indeed, (Sx, y)H + (Sy, x) = 0 and, replacing y by iy, −i(Sx, y)H +
i(Sy, x) = 0. Now we multiply by i and add to obtain (Sx, y)H = 0 for all
x, y ∈ H, so that S = 0.

Thus σ(T ) ⊂ R. To prove that λ < 0 cannot belong to σ(T ), we note
that the condition (8.8) allows us to set

‖(T − λI)x‖2H = ‖Tx‖2H − 2λ(Tx, x)H + λ2‖x‖2H .

This shows that Tλ := T − λI : H → F = =(T − λI) has a continuous
inverse with domain F , which is closed. This operator is easily extended to
a left inverse R of Tλ by defining R = 0 on F⊥. But Tλ is self-adjoint and
RTλ = I also gives TλR

∗ = I, Tλ is also right invertible, and λ 6∈ σ(T ).

Suppose now that T = T ∗ and σ(T ) ⊂ [0,∞). In the spectral resolution

(Tx, x)H =

∫
σ(T )

λ dEx,x(λ) ≥ 0,

since Ex,x is a positive measure and λ ≥ 0 on σ(T ) ⊂ [0,∞). �

Let us now give an application of the functional calculus with bounded
functions:

Theorem 8.26. If T =
∫
σ(T ) λ dE(λ) is the spectral resolution of a normal

operator T ∈ L(H) and if λ0 ∈ σ(T ), then

Ker (T − λ0I) = ImE{λ0},

so that λ0 is an eigenvalue of T if and only if E({λ0}) 6= 0.

Proof. The functions g(λ) = λ − λ0 and f = χ{λ0} satisfy fg = 0 and
g(T )f(T ) = 0. Since f(T ) = E({λ0}),

ImE({λ0}) ⊂ Ker (g(T )) = Ker (T − λ0I).
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Conversely, let us take

G = σ(T ) \ {λ0} =
⊎
n

Bn

with d(λ0, Bn) > 0 and define the bounded functions

fn(λ) =
χBn(λ)

λ− λ0
.

Then fn(T )(T − λ0I) = E(Bn), and (T − λ0I)x = 0 implies E(Bn)x = 0
and E(G)x =

∑
nE(Bn)x = 0. Hence, x = E(G)x+E({λ0})x = E({λ0})x,

i.e., x ∈ ImE({λ0}). �

As shown in Section ??, if T is compact, then every nonzero eigenvalue
has finite multiplicity and σ(T )\{0} is a finite or countable set of eigenvalues
with finite multiplicity with 0 as the only possible accumulation point. If T
is normal, the converse is also true:

Theorem 8.27. If T ∈ L(T ) is a normal operator such that σ(T ) has no
accumulation point except possibly 0 and dim Ker (T − λI) < ∞ for every
λ 6= 0, then T is compact.

Proof. Let σ(T ) \ {0} = {λ1, λ2, . . .} and |λ1| ≥ |λ2| ≥ · · · . We apply the
functional calculus to the functions gn defined as

gn(λ) = λ if λ = λk and k ≤ n

and gn(λ) = 0 at the other points of σ(T ) to obtain the compact operator
with finite-dimensional range

gn(T ) =

n∑
k=1

λkE({λk}).

Then

‖T − gn(T )‖ ≤ sup
λ∈σ(T )

|λ− gn(λ)| ≤ |λn|

and |λn| → 0 as n → ∞ if σ(T ) \ {0} is an infinite set. This shows that T
is compact as a limit of compact operators. �

8.6. Exercises

Exercise 8.1. Show that every Banach algebra A without a unit element
can be considered as a Banach subalgebra of a unitary Banach algebra A1

constructed in the following fashion. On A1 = A × C, which is a vector
space, define the multiplication (a, λ)(b, µ) := (ab + λb + µa, λµ) and the
norm ‖(a, λ)‖ := ‖a‖+ |λ|. The unit is δ = (0, 1).
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The map a 7→ (a, 0) is an isometric homomorphism (i.e., linear and
multiplicative), so that we can consider A as a closed subalgebra of A1. By
denoting a = (a, 0) if a ∈ A, we can write (a, λ) = a+λδ and the projection
χ0(a+ λδ) := λ is a character χ0 ∈ ∆(A1).

If A is unitary, then the unit e cannot be the unit δ of A1.

Exercise 8.2. Suppose that A = C1 is the commutative unitary Banach
algebra obtained by adjoining a unit to C as in Exercise 8.1. Describe ∆(A)
and the corresponding Gelfand transform.

Exercise 8.3. (a) Prove that the polynomials P (z) =
∑N

n=0 cnz
n are dense

in the disc algebra A(D) by showing that, if f ∈ A(D) and

fn(z) := f
( nz

n+ 1

)
,

then fn → f uniformly on D̄ and, if ‖f − fn‖ ≤ ε/2, there is a Taylor
polynomial P of fn such that ‖fn − P‖ ≤ ε/2.

Hence, polynomials P are not dense in C(D̄). Why is this not in contra-
diction to the Stone-Weierstrass theorem?

(b) Prove that the characters of A(D) are the evaluations δz (|z| ≤ 1)
and that z ∈ D̄ 7→ δz ∈ ∆(A(D)) is a homeomorphism.

(c) If f1, . . . , fn ∈ A(D) have no common zeros, prove that there exist
g1, . . . , gn ∈ A(D) such that f1g1 + · · ·+ fngn = 1.

Exercise 8.4. Show that, with the convolution product,

f ∗ g(x) :=

∫
R
f(x− y)g(y) dy,

the Banach space L1(R) becomes a nonunitary Banach algebra.

Exercise 8.5. Show also that L1(T), the Banach space of all complex 1-
periodic functions that are integrable on (0, 1), with the convolution product

f ∗ g(x) :=

∫ 1

0
f(x− y)g(y) dy,

and the usual L1 norm, is a nonunitary Banach algebra.

Exercise 8.6. Show that `1(Z), with the discrete convolution,

(u ∗ v)[k] :=

+∞∑
m=−∞

u[k −m]v[m],

is a unitary Banach algebra.

Exercise 8.7. Every unitary Banach algebra, A, can be considered a closed
subalgebra of L(A) by means of the isometric homomorphism a 7→ La, where
La(x) := ax.
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Exercise 8.8. In this exercise we want to present the Fourier transform
on L1(R) as a special case of the Gelfand transform. To this end, consider
the unitary commutative Banach algebra L1(R)1 obtained as in Exercise 8.1
by adjoining the unit to L1(R), which is a nonunitary convolution Banach
algebra L1(R) (see Exercise 8.4).

(a) Prove that, if χ ∈ ∆(L1(R)1) \ {χ0} and χ(u) = 1 with u ∈ L1(R),
then γχ(α) := χ(τ−αu) = χ([u(t + α)]) defines a function γχ : R → T ⊂ C
which is continuous and such that γχ(α+ β) = γχ(α)γχ(β).

(b) Prove that there exists a uniquely determined number ξχ ∈ R such

that γχ(α) = e2πiξχα.

(c) Check that, if Gf denotes the Gelfand transform of f ∈ L1(R), then
Gf(χ) =

∫
R f(α)e−2πiαξχ dα = Ff(ξχ).

Exercise 8.9. Let us consider the unitary Banach algebra L∞(Ω) of Ex-
ample 8.2. The essential range, f [Ω], of f ∈ L∞(Ω) is the complement of
the open set

⋃
{G; G open, µ(f−1(G)) = 0}. Show that f [Ω] is the smallest

closed subset F of C such that µ(f−1(F c)) = 0, ‖f‖∞ = max{|λ|; λ ∈ f [Ω]},
and f [Ω] = σ(f).

Exercise 8.10. The algebra of quaternions, H, is the real Banach space
R4 endowed with the distributive product such that

1x = x, ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1

if x ∈ H, 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1),
so that one can write (a, b, c, d) = a+ bi+ cj + dk.

Show that H is an algebra such that ‖xy‖ = ‖x‖‖y‖ and that every
nonzero element of A has an inverse.

Remark. It can be shown that every real Banach algebra which is a field
is isomorphic to the reals, the complex numbers or the quaternions (cf.
Rickart General Theory of Banach Algebras, [?, 1.7]). Hence, C is the only
(complex) Banach algebra which is a field and H is the only real Banach
algebra which is a noncommutative field.

Exercise 8.11. If χ : A → C is linear such that χ(ab) = χ(a)χ(b) and
χ 6= 0, then prove that χ(e) = 1, so that χ is a character.

Exercise 8.12. Prove that, if T is a compact topology on ∆(A) and every
function â (a ∈ A) is T -continuous, then T is the Gelfand topology.

Exercise 8.13. Prove that the Gelfand transform is an isometric isomor-
phism from C(K) onto C(∆).

Exercise 8.14. Let U be the open unit disc of C and suppose ∆ is the
spectrum of H∞(U). Prove that, through the embedding U ↪→ ∆, U is an
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open subset of Ω. Write

∆ = D ∪
( ⋃
ξ∈∂D

∆ξ

)
,

as in (8.1), and prove that the fibers ∆ξ (|ξ| = 1) are homeomorphic to one
another.

Exercise 8.15 (Wiener algebra). Show that the set of all 2π-periodic com-
plex functions on R

f(t) =
+∞∑

k=−∞
cke

ikt (
+∞∑

k=−∞
|ck| <∞),

with the usual operations and the norm ‖f‖W :=
∑+∞

k=−∞ |ck|, is a commu-
tative unitary Banach algebra, W . Moreover prove that the characters of
W are the evaluations δt on the different points t ∈ R and that, if f ∈ W
has no zeros, then 1/f ∈W .

Exercise 8.16. Every f ∈ W is 2π-periodic and it can be identified as
the function F on T such that f(t) = F (eit). If f(t) =

∑
k cke

ikt, F (z) =∑
k ckz

k. In Exercice 8.15 we have seen that the δt (t ∈ R) are the characters

of W , but show that G : W → C(T), one-to-one and with ‖f̂‖ ≤ ‖f‖W , is
not an isometry and it is not exhaustive.

Exercise 8.17. Suppose A is a unitary Banach algebra and a ∈ A, and
denote M(U) = supλ∈Uc ‖Ra(λ)‖. Prove that, if U ⊂ C is an open set and
σA(a) ⊂ U , then σA(b) ⊂ U whenever ‖b − a‖ < δ if δ ≤ 1/M(U) (upper
semi-continuity of σA).

Exercise 8.18. Let A be a commutative unitary Banach algebra. Prove
that the Gelfand transform G : A → C(∆) is an isometry if and only if
‖a2‖ = ‖a‖2 for every a ∈ A.

Show that in order for ‖a‖ to coincide with the spectral radius r(a), the
condition ‖a2‖ = ‖a‖2 is necessary and sufficient.

Remark. This condition characterizes when a Banach algebra A is a uni-
form algebra, meaning that A is a closed unitary subalgebra of C(K) for
some compact topological space K.

Exercise 8.19. In the definition of an involution, show that property (e),
e∗ = e, is a consequence of (a)–(d). If x ∈ A is invertible, prove that
(x∗)−1 = (x−1)∗.

Exercise 8.20. With the involution f 7→ f̄ , where f̄ is the complex con-
jugate of f , show that C(K) is a commutative C∗-algebra. Similarly, show
that L∞(Ω), with the involution f 7→ f̄ , is also a commutative C∗-algebra.
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Exercise 8.21. If {Pn}∞n=1 is a sequence of orthogonal projections and
their images are mutually orthogonal, then the series

∑∞
n=1 Pn is strongly

convergent to the orthogonal projection on the closed linear hull
⊕
Pn(H)

of the images of the projections Pn.

Exercise 8.22. Let Ax =
∑∞

k=1 λk(x, ek)Hek be the spectral representation
of a self-adjoint compact operator of H, and let {Pn}∞n=1 be the sequence of
the orthogonal projections on the different eigensubspaces

H1 = [e1, . . . , ek(1)], . . . , Hn = [ek(n−1)+1, . . . , ek(n)], . . .

for the eigenvalues αn = λk(n−1)+1 = . . . = λk(n) of A.

Show that we can write

A =

∞∑
n=1

αnPn

and prove that

E(B) =
∑
αn∈B

Pn

is the resolution of the identity of the spectral resolution of A.

Exercise 8.23. Let µ be a Borel measure on a compact set K ⊂ C and let
H = L2(µ). Show that multiplication by characteristic functions of Borel
sets in K, E(B) := χB·, is a spectral measure E : BK → L2(µ).

Exercise 8.24. If E : BK → L(H) is a spectral measure, show that the null
sets for the spectral measure have the following desirable properties:

(a) If E(Bn) = 0 (n ∈ N), then E(
⋃∞
n=1Bn) = 0.

(b) If E(B1) = 0 and B2 ⊂ B1, then E(B2) = 0.

Exercise 8.25. Show that the equivalences of Theorem 8.25 are untrue on
the real Hilbert space R2.

Exercise 8.26. Show that every positive T ∈ L(H) in the sense of Theo-
rem 8.25 has a unique positive square root.

Exercise 8.27. With the functional calculus, prove also that, if T ∈ L(H)
is normal, then it can be written as

T = UP

with U unitary and P positive. This is the polar decomposition of a
bounded normal operator in a complex Hilbert space.

References for further reading:

I. M. Gelfand, D. A. Raikov and G. E. Chilov, Commutative Normed Rings.

E. Hille and R. S. Phillips, Functional Analysis and Semigroups.
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T. Kato, Perturbation Theory for Linear Operators.

P. D. Lax, Functional Analysis.

M. A. Naimark, Normed Rings.

M. Reed and B. Simon, Methods of Modern Mathematical Physics.

C. E. Rickart, General Theory of Banach Algebras.

F. Riesz and B. Sz. Nagy, Leçons d’analyse fonctionelle.

W. Rudin, Functional Analysis.

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis.

K. Yosida, Functional Analysis.





Chapter 9

Unbounded operators
in a Hilbert space

Up to this moment all of our linear operators have been bounded, but densely
defined unbounded operators also occur naturally in connection with the
foundations of quantum mechanics.

When in 1927 J. von Neumann1 introduced axiomatically Hilbert spaces,
he recognized the need to extend the spectral theory of self-adjoint operators
from the bounded to the unbounded case and immediately started to obtain
this extension, which was necessary for his presentation of the transforma-
tion theory of quantum mechanics created in 1925–1926 by Heisenberg and
Schrödinger.2

The definition of unbounded self-adjoint operators on a Hilbert space re-
quires a precise selection of the domain, the symmetry condition (x,Ax)H =
(Ax, x)H for a densely defined operator not being sufficient for A to be self-
adjoint, since its spectrum has to be a subset of R. The creators of quantum

1 The Hungarian mathematician János (John) von Neumann is considered one of the foremost

mathematicians of the 20th century: he was a pioneer of the application of operator theory to

quantum mechanics, a member of the Manhattan Project, and a key figure in the development
of game theory and of the concepts of cellular automata. Between 1926 and 1930 he taught in

the University of Berlin. In 1930 he emigrated to the USA where he was invited to Princeton
University and was one of the first four people selected for the faculty of the Institute for Advanced
Study (1933–1957).

2 The German physicist Werner Karl Heisenberg, in Göttingen, was one of the founders of

quantum mechanics and the head of the German nuclear energy project; with Max Born and
Pascual Jordan, Heisenberg formalized quantum mechanics in 1925 using matrix transformations.

The Austrian physicist Erwin Rudolf Josef Alexander Schrödinger, while in Zurich, in 1926 derived

what is now known as the Schrödinger wave equation, which is the basis of his development of
quantum mechanics. Based on the Born statistical interpretation of quantum theory, P. Dirac and

Jordan unified “matrix mechanics” and “wave mechanics” with their “transformation theory”.

31
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mechanics did not care about this and it was von Neumann himself who clar-
ified the difference between a self-adjoint operator and a symmetric one.

In this chapter, with the Laplacian as a reference example, we include the
Rellich theorem, showing that certain perturbations of self-adjoint operators
are still self-adjoint, and the Friedrichs method of constructing a self-adjoint
extension of many symmetric operators.

Then the spectral theory of bounded self-adjoint operators on a Hilbert
space is extended to the unbounded case by means of the Cayley transform,
which changes a self-adjoint operator T into a unitary operator U . The
functional calculus of this operator allows us to define the spectral resolution
of T .

We include a very short introduction on the principles of quantum me-
chanics, where an observable, such as position, momentum, and energy, is an
unbounded self-adjoint operator, their eigenvalues are the observable values,
and the spectral representing measure allows us to evaluate the observable
in a given state in terms of the probability of belonging to a given set.3

Von Neumann’s text “Mathematical Foundations of Quantum Mechan-
ics” [?] is strongly recommended here for further reading: special attention is
placed on motivation, detailed calculations and examples are given, and the
thought processes of a great mathematician appear in a very transparent
manner. More modern texts are available, but von Neumann’s presenta-
tion contains in a lucid and very readable way the germ of his ideas on the
subject.

In that book, for the first time most of the modern theory of Hilbert
spaces is defined and elaborated, as well as “quantum mechanics in a unified
representation which . . . is mathematically correct”. The author explains
that, just as Newton mechanics was associated with infinitesimal calculus,
quantum mechanics relies on the Hilbert theory of operators.

With von Neumann’s work, quantum mechanics is Hilbert space analysis
and, conversely, much of Hilbert space analysis is quantum mechanics.

9.1. Definitions and basic properties

Let H denote a complex linear space. We say that T is an operator on H if
it is a linear mapping T : D(T )→ H, defined on a linear subspace D(T ) of
H, which is called the domain of the operator.

3Surprisingly, in this way the atomic spectrum appears as Hilbert’s spectrum of an operator.
Hilbert himself was extremely surprised to learn that his spectrum could be interpreted as an

atomic spectrum in quantum mechanics.
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Example 9.1. The derivative operator D : f 7→ f ′ (distributional de-
rivative) on L2(R) has

D(D) =
{
f ∈ L2(R); f ′ ∈ L2(R)

}
,

as its domain, which is the Sobolev space H1(R). This domain is dense in
L2(R), since it contains D(R).

Example 9.2. As an operator on L2(R), the domain of the position
operator, Q : f(x) 7→ xf(x), is

D(Q) =
{
f ∈ L2(R); [xf(x)] ∈ L2(R)

}
.

It is unbounded, since ‖χ(n,n+1)‖2 = 1 and ‖Qχ(n,n+1)‖2 ≥ n.

Recall that f ∈ L2(R) if and only if f̂ ∈ L2(R) and both f and xf̂(x)
are in L2(R) if and only if f, f ′ ∈ L2(R). Thus, the Fourier transform is a
unitary operator which maps D(Q) onto H1(R) = D(D) and changes 2πiQ
into D. Conversely, 2πiQ = F−1DF on D(Q).

Under these conditions it is said that 2πiD and Q are unitarily equiv-
alent. Unitarily equivalent operators have the same spectral properties.

Of course, it follows that D is also unbounded (see Exercise 9.3).

We are interested in the spectrum of T . If for a complex number λ the
operator T − λI : D(T )→ H is bijective and (T − λI)−1 : H → D(T ) ⊂ H
is continuous, then we say that λ is a regular point for T .

The spectrum σ(T ) is the subset of C which consists of all nonregular
points, that is, all complex numbers λ for which T−λI : D(T )→ H does not
have a continuous inverse. Thus λ ∈ σ(T ) when it is in one of the following
disjoint sets:

(a) The point spectrum σp(T ), which is the set of the eigenvalues of
T . That is, λ ∈ σp(T ) when T − λI : D(T ) → H is not injective. In this
case (T − λI)−1 does not exist.

(b) The continuous spectrum σc(T ), the set of all λ ∈ C \ σp(T )

such that T − λI : D(T ) → H is not exhaustive but Im (T − λI) = H and
(T − λI)−1 is unbounded.

(c) The residual spectrum σr(T ), which consists of all λ ∈ C \ σp(T )

such that Im (T − λI) 6= H. Then (T − λI)−1 exists but is not densely
defined.

The set σ(T )c of all regular points is called the resolvent set. Thus,
λ ∈ σ(T )c when we have (T − λI)−1 ∈ L(H).
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The resolvent of T is again the function

RT : σ(T )c → L(H), RT (λ) := (T − λI)−1.

The spectrum of T is not necessarily a bounded subset of C, but it is
still closed and the resolvent function is analytic:

Theorem 9.3. The set σ(T )c is an open subset of C, and every point λ0 ∈
σ(T )c has a neighborhood where

RT (λ) = −
∞∑
k=0

(λ− λ0)kRT (λ0)k+1,

the sum of a convergent Neumann series.

Proof. Let us consider λ = λ0 + µ such that |µ| < ‖RT (λ0)‖. The sum of
the Neumann series

S(µ) :=

∞∑
k=0

µkRT (λ0)k+1 (|µ| < 1/‖RT (λ0)‖)

will be the bounded inverse of T − λI.

The condition ‖µRT (λ0)‖ < 1 ensures that the series is convergent, and
it is easily checked that (T − λI)S(µ) = I:

(T − λ0I − µI)
N∑
k=0

µk((T − λ0I)−1)k+1 = I − (µRT (λ0))N+1 → I,

and S(µ) commutes with T . �

A graph is a linear subspace F ⊂ H ×H such that, for every x ∈ H,
the section Fx := {y; (x, y) ∈ F} has at most one point, y, so that the first
projection π1(x, y) = x is one-to-one on F . This means that x 7→ y (y ∈ Fx)
is an operator TF on H with D(TF ) = {x ∈ H; Fx 6= ∅} and G(TF ) = F .

We write S ⊂ T if the operator T is an extension of another operator S,
that is, if D(S) ⊂ D(T ) and T|D(S) = S or, equivalently, if G(S) ⊂ G(T ).

If G(T ) is closed in H ×H, then we say that T is a closed operator.

Also, T is said to be closable if it has a closed extension T̃ . This means that

G(T ) is a graph, since, if T̄ is a closed extension of T , G(T ) ⊂ G(T̃ ) and ψ1

is one-to-one on G(T̄ ), so that it is also one-to-one on G(T ). Conversely, if

G(T ) is a graph, it is the graph of a closed extension of T , since G(T ) ⊂ G(T ).

If T is closable, then T̄ will denote the closure of T ; that is, T̄ = TG(T )
.

When defining operations with unbounded operators, the domains of the
new operators are the intersections of the domains of the terms. Hence

D(S ± T ) = D(S) ∩ D(T ) and D(ST ) =
{
x ∈ D(T ); Tx ∈ D(S)

}
.
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Example 9.4. The domain of the commutator [D,Q] = DQ − QD of the
derivation operator with the position operator on L2(R) is D(DQ)∩D(QD),
which contains D(R), a dense subspace of L2(R).

Since D(xf(x))−xDf(x) = f(x), the commutator [D,Q] coincides with
the identity operator on its domain, so that we simply write [D,Q] = I and
consider it as an operator on L2(R).

9.1.1. The adjoint. We will only be interested in densely defined oper-
ators, which are the operators T such that D(T ) = H.

If T is densely defined, then every bounded linear form on D(T ) has a
unique extension to H, and from the Riesz representation Theorem ?? we
know that it is of the type (·, z)H . This fact allows us to define the adjoint
T ∗ of T . Its domain is defined as

D(T ∗) = {y ∈ H; x 7→ (Tx, y)H is bounded on D(T )}
and, if y ∈ D(T ∗), T ∗y ∈ H is the unique element such that

(Tx, y)H = (x, T ∗y)H (x ∈ D(T )).

Hence, y ∈ D(T ∗) if and only if (Tx, y)H = (x, y∗)H for some y∗ ∈ H, for
all x ∈ D(T ), and then y∗ = T ∗y.

Theorem 9.5. Let T be densely defined. Then the following properties hold:

(a) (λT )∗ = λ̄T ∗.

(b) (I + T )∗ = I + T ∗.

(c) T ∗ is closed.

(d) If T : D(T ) → H is one-to-one with dense image, then T ∗ is also
one-to-one and densely defined, and (T−1)∗ = (T ∗)−1.

Proof. Both (a) and (b) are easy exercises.

To show that the graph of T ∗ is closed, suppose that (yn, T
∗yn)→ (y, z)

(yn ∈ D(T ∗)). Then (x, T ∗yn)H → (x, z)H and (Tx, yn)H → (Tx, y)H for
every x ∈ D(T ), with (x, T ∗yn)H = (Tx, yn)H . Hence (x, z)H = (Tx, y)H
and z = T ∗y, so that (y, z) ∈ G(T ∗).

In (d) the inverse T−1 : ImT → D(T ) is a well-defined operator with
dense domain and image. We need to prove that (T ∗)−1 exists and coincides
with (T−1)∗.

First note that T ∗y ∈ D((T−1)∗) for every y ∈ D(T ∗), since the linear
form x 7→ (T−1x, T ∗y)H = (x, y)H on D(T−1) is bounded and T ∗y is well-
defined. Moreover (T−1)∗T ∗y = y, so that (T−1)∗T ∗ = I on D(T ∗), (T ∗)−1 :
ImT ∗ → D(T ∗), and

(T ∗)−1 ⊂ (T−1)∗

since, for y = (T ∗)−1z in (T−1)∗T ∗y = y, we have (T−1)∗z = (T ∗)−1z.
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To also prove that (T−1)∗ ⊂ (T ∗)−1, let x ∈ D(T ) and y ∈ D((T ∗)−1).
Then Tx ∈ Im (T ) = D(T−1) and

(Tx, (T−1)∗y)H = (x, y)H , (Tx, (T−1)∗y)H = (x, T ∗(T−1)∗y)H .

Thus, (T−1)∗y ∈ D(T ∗) and T ∗(T−1)∗y = y, so that T ∗(T−1)∗ = I on
D((T ∗)−1) = ImT ∗, and (T ∗)−1 : Im (T ∗)→ D(T ∗) is bijective. �

It is useful to consider the “rotation operator” G : H × H → H × H,
such that G(x, y) = (−y, x). It is an isometric isomorphism with respect to

the norm ‖(x, y)‖ := (‖x‖2H + ‖y‖2H)1/2 associated to the scalar product

((x, y), (x′, y′))H×H := (x, x′)H + (y, y′)H ,

which makes H ×H a Hilbert space. Observe that G2 = −I.

Theorem 9.6. If T is closed and densely defined, then

H ×H = G(G(T ))⊕ G(T ∗) = G(T )⊕G(G(T ∗)),

orthogonal direct sums, T ∗ is also closed and densely defined, and T ∗∗ = T .

Proof. Let us first prove that G(T ∗) = G(G(T ))⊥, showing the first equality,
and that T ∗ is closed. Since (y, z) ∈ G(T ∗) if and only if (Tx, y)H = (x, z)H
for every x ∈ D(T ), we have

(G(x, Tx), (y, z))H×H = ((−Tx, x), (y, z))H×H = 0,

and this means that (y, z) ∈ G(G(T ))⊥, so that G(T ∗) = G(G(T ))⊥.

Also, since G2 = −I,

H ×H = G(G(G(T ))⊕ G(T ∗)) = G(T )⊕G(G(T ∗)).

If (z, y)H = 0 for all y ∈ D(T ∗), then ((0, z), (−T ∗y, y))H×H = 0. Hence,
(0, z) ∈ G(G(T ∗))⊥ = G(T ) and it follows that z = T0 = 0. Thus, D(T ∗) is
dense in H.

Finally, since alsoH×H = G(G(T ∗))⊕G(T ∗∗) and G(T ) is the orthogonal
complement of G(G(T ∗)), we obtain the identity T = T ∗∗. �

9.2. Unbounded self-adjoint operators

T : D(T ) ⊂ H → H is still a possibly unbounded linear operator on the
complex Hilbert space H.
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9.2.1. Self-adjoint operators. We say that the operator T is symmetric
if it is densely defined and

(Tx, y)H = (x, Ty)H (x, y ∈ D(T )).

Note that this condition means that T ⊂ T ∗.

Theorem 9.7. Every symmetric operator T is closable and its closure is
T ∗∗.

Proof. Since T is symmetric, T ⊂ T ∗ and, G(T ∗) being closed,

G(T ) ⊂ G(T ) ⊂ G(T ∗).

Hence G(T ) is a graph, T is closable, and G(T ) is the graph of T̄ . As a
consequence, let us show that the domain of T ∗ is dense.

According to Theorem 9.6, (x, y) ∈ G(T ∗) if and only if (−y, x) ∈ G(T )⊥,
in H ×H. Hence,

G(T ) = G(T )⊥⊥ = {(T ∗x,−x); x ∈ D(T ∗)}⊥.

This subspace is not a graph if and only if (y, z1), (y, z2) ∈ G(T ) for two
different points z1, z2 ∈ H; that is, (0, z) ∈ {(T ∗x,−x); x ∈ D(T ∗)}⊥ for
some z 6= 0. Then (z, x)H = 0 for all x ∈ D(T ∗) which means that 0 6= z ∈
D(T ∗)⊥, and it follows that D(T ∗) 6= H.

Since D(T ∗) = H, T ∗∗ is well-defined. We need to prove that

G(T ) = G(T̄ ) = {(T ∗x,−x); x ∈ D(T ∗)}⊥

is G(T ∗∗). But (v, u) ∈ G(T ) if and only if (T ∗x, v)H − (x, u)H = 0 for all
x ∈ D(T ∗); that is, v ∈ D(T ∗∗) and u = T ∗∗v, which means that (v, u) ∈
G(T ∗∗). �

The operator T is called self-adjoint if it is densely defined and T = T ∗,
i.e., if it is symmetric and

D(T ∗) ⊂ D(T ),

this inclusion meaning that the existence of y∗ ∈ H such that (Tx, y)H =
(x, y∗)H for all x ∈ D(T ) implies y∗ = Tx.

Theorem 9.8. If T is self-adjoint and S is a symmetric extension of T ,
then S = T . Hence T does not have any strict symmetric extension; it is
“maximally symmetric”.

Proof. It is clear that T = T ∗ ⊂ S and S ⊂ S∗, since S is symmetric.
It follows from the definition of a self-adjoint operator that T ⊂ S implies
S∗ ⊂ T ∗. From S ⊂ S∗ ⊂ T ⊂ S we obtain the identity S = T . �
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We are going to show that, in the unbounded case, the spectrum of
a self-adjoint operator is also real. This property characterizes the closed
symmetric operators that are self-adjoint.

First note that, if T = T ∗, the point spectrum is real, since if Tx = λx
and 0 6= x ∈ D(T ), then

λ̄(x, x)H = (x, Tx)H = (Tx, x)H = λ(x, x)H

and λ̄ = λ.

Theorem 9.9. Suppose that T is self-adjoint. The following properties hold:

(a) λ ∈ σ(T )c if and only if ‖Tx − λx‖H ≥ c‖x‖H for all x ∈ D(T ),
for some constant c > 0.

(b) The spectrum σ(T ) is real and closed.

(c) λ ∈ σ(T ) if and only if Txn − λxn → 0 for some sequence {xn} in
D(T ) such that ‖xn‖H = 1 (λ is an approximate eigenvalue).

(d) The inequality ‖RT (λ)‖ ≤ 1/|=λ| holds.

Proof. (a) If λ ∈ σ(T )c, then RT (λ) ∈ L(H) and

‖x‖H ≤ ‖RT (λ)‖‖(T − λI)x‖H = c−1‖(T − λI)x‖H .

Suppose now that ‖Tx − λx‖H ≥ c‖x‖H and let M = Im (T − λI), so
that we have T − λI : D(T ) → M with continuous inverse. To prove that
M = H, let us first show that M is dense in H.

If z ∈M⊥, then for every Tx− λx ∈M we have

0 = (Tx− λx, z)H = (Tx, z)H − λ(x, z)H .

Hence (Tx, z)H = (x, λ̄z)H if x ∈ D(T ), and then z ∈ D(T ∗) = D(T ) and
Tz = λ̄z. Suppose z 6= 0, so that λ̄ = λ and we arrive at Tz − λz = 0 and
0 6= z ∈M , a contradiction. Thus, M⊥ = 0 and M is dense.

To prove that M is closed in H, let M 3 yn = Txn − λxn → y. Then
‖xp− xq‖ ≤ c−1‖yp− yq‖H , and there exist x = limxn ∈ H and limn Txn =
y + λx. But T is closed, so that Tx = y + λx and y ∈M .

(b) To show that every λ = α + iβ ∈ σ(T ) is real, observe that, if
x ∈ D(T ),

(Tx−λx, x)H = (Tx, x)H−λ(x, x)H , (Tx− λx, x)H = (Tx, x)H−λ̄(x, x)H ,

since (Tx, x)H ∈ R. Subtracting,

(Tx− λx, x)H − (Tx− λx, x)H = 2iβ‖x‖2H ,

where (Tx− λx, x)H − (Tx− λx, x)H = −2i Im (Tx− λx, x)H . Hence,

|β|‖x‖2H = | Im (Tx− λx)H | ≤ |(Tx− λx, x)H | ≤ ‖Tx− λx‖H‖x‖H
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and then |β|‖x‖H ≤ ‖Tx − λx‖H if x ∈ D(T ). As seen in the proof of (a),
the assumption β 6= 0 would imply λ ∈ σ(T )c.

(c) If λ ∈ σ(T ), the estimate in (a) does not hold and then, for every
c = 1/n, we can choose xn ∈ D(T ) with norm one such that ‖Txn−λxn‖H ≤
1/n and λ is an approximate eigenvalue. Every approximate eigenvalue λ is
in σ(T ), since, if (T − λI)−1 were bounded on H, then it would follow from
Txn − λxn → 0 that xn = (T − λI)−1(Txn − λxn) → 0, a contradiction to
‖xn‖H = 1.

(d) If y ∈ D(T ) and λ = <λ+ i=λ 6∈ R, then it follows that

‖(T − λI)y‖2H = (Ty − λy, Ty − λy)H ≥ ((=λ)y, (=λ)y)H = |=λ|2‖y‖2H .

If x = (T −λI)y ∈ H, then y = RT (λ)x and ‖x‖2H ≥ |=λ|2‖RT (λ)x‖2H ; thus
|=λ|‖RT (λ)‖ ≤ 1. �

The condition σ(T ) ⊂ R is sufficient for a symmetric operator to be
self-adjoint. In fact we have more:

Theorem 9.10. Suppose that T is symmetric. If there exists z ∈ C \ R
such that z, z̄ ∈ σ(T )c, then T is self-adjoint.

Proof. Let us first show that ((T − zI)−1)∗ = (T − z̄I)−1, that is,

((T − zI)−1x1, x2)H = (x1, (T − z̄I)−1x2)H .

We denote (T − zI)−1x1 = y1 and (T − z̄I)−1x2 = y2. The desired identity
means that (y1, (T − z̄I)y2)H = ((T − zI)y1, y2)H and it is true if y1, y2 ∈
D(T ), since T is symmetric. But the images of T − zI and T − z̄I are both
the whole space H, so that ((T −zI)−1x1, x2)H = (x1, (T − z̄I)−1x2)H holds
for any x1, x2 ∈ H.

Now we can prove that D(T ∗) ⊂ D(T ). Let v ∈ D(T ∗) and w = T ∗v,
i.e.,

(Ty1, v)H = (y1, w)H (∀y1 ∈ D(T )).

We subtract z(y1, v)H to obtain

((T − zI)y1, v)H = (y1, w − z̄v)H .

Still with the notation (T − zI)−1x1 = y1 and (T − z̄I)−1x2 = y2, but now
with x2 = w − z̄v, since (x1, v)H = ((T − zI)y1, v)H = (y1, w − z̄v)H ,

(x1, v)H =
(
(T−zI)−1x1, w−z̄v

)
H

=
(
x1, (T−z̄I)−1(w−z̄v)

)
H

(∀x1 ∈ H).

Thus, v = (T − z̄I)−1(w − z̄v) and v ∈ Im (T − z̄)−1 = D(A). �

In the preceding proof, we have only needed the existence of z 6∈ R such
that (T − zI)−1 and (T − z̄I)−1 are defined on H, but not their continuity.
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Example 9.11. The position operator Q of Example 9.2 is self-adjoint and
σ(Q) = R, but it does not have an eigenvalue.

Obviously Q is symmetric, since, if f, g, [xf(x)], [xg(x)] ∈ L2(R), then

(Qf, g)2 =

∫
R
xf(x)g(x) dx =

∫
R
f(x)xg(x) dx = (f,Qg)2.

Let us show that D(Q∗) ⊂ D(Q). If g ∈ D(Q∗), then there exists g∗ ∈ L2(R)

such that (Qf, g)2 = (f, g∗)2 for all f ∈ D(Q). So
∫
R ϕ(x)xg(x) dx =∫

R ϕ(x)g∗(x) dx if ϕ ∈ D(R), and then g∗(x) = xg(x) a.e. on R. I.e., xg(x)

is in L2(R) and g ∈ D(Q). Hence Q is self-adjoint, since it is symmetric and
D(Q∗) ⊂ D(Q).

If λ 6∈ σ(Q), then T = (Q−λI)−1 ∈ L(H) and, for every g ∈ L2(R), the
equality (Q− λI)Tg = g implies that (Tg)(x) = g(x)/(x− λ) ∈ L2(R) and
λ 6∈ R, since, when λ ∈ R and g := χ(λ,b), g(x)/(x− λ) 6∈ L2(R).

Example 9.12. The adjoint of the derivative operator D of Example 9.1
is −D, and iD is self-adjoint. The spectrum of iD is also R and it has no
eigenvalues.

By means of the Fourier transform we can transfer the properties of Q.

If f, g ∈ H1(R), then (Df, g)2 = (D̂f, ĝ)2. From (Qf̂, ĝ)2 = (f̂ , Qĝ)2 and

D̂f(x) = 2πitf̂(x) = 2πi(Qf̂)(x) we obtain

(Df, g)2 = (2πiQf̂ , ĝ)2 = (f̂ ,−2πiQĝ)2 = (f,−Dg)2

and −D ⊂ D∗. As in the case of Q, also D(D∗) ⊂ D(D).

Furthermore, (iD)∗ = −iD∗ = iD and σ(iD) ⊂ R. If T = (iD − λI)−1

and g ∈ L2, then an application of the Fourier transform to (iD−λI)Tg = g

gives −2πxT̂ g(x)− λT̂ g(x) = ĝ(x), and

T̂ g(x) = − ĝ(x)

2πx+ λ

has to lie in L2(R). So we arrive to λ 6∈ R by taking convenient functions
ĝ = χ(a,b).

Example 9.13. The Laplace operator ∆ of L2(Rn) with domain H2(Rn)
is self-adjoint. Its spectrum is σ(∆) = [0,∞).

Recall that

H2(Rn) =
{
u ∈ L2(Rn); Dαu ∈ L2(Rn), |α| ≤ 2

}
=

{
u ∈ L2(Rn);

∫
Rn

|(1 + |ξ|2)û(ξ)|2 dξ <∞
}
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and ∆, with this domain, is symmetric: (∆u, v)2 = (u,∆v)2 follows from
the Fourier transforms, since∫

Rn

û(ξ)|ξ|2v̂(ξ) dξ =

∫
Rn

û(ξ)|ξ|2v̂(ξ) dξ.

To prove that it is self-adjoint, let u ∈ D(∆∗) ⊂ L2(Rn). If w ∈ L2(Rn) is
such that

(∆v, u)2 = (v, w)2 (v ∈ H2(Rn)),

then, up to a nonzero multiplicative constant,∫
Rn

v̂(ξ)|ξ|2û(ξ) dξ =

∫
Rn

v̂(ξ)ŵ(ξ) dξ

for every v̂ ∈ H2(Rn), a dense subspace of L2(Rn), and |ξ|2û(ξ) = cŵ(ξ),
in L2(Rn). Hence,

∫
Rn |(1 + |ξ|2)û(ξ)|2 dξ < ∞ and u ∈ H1(Rn) = D(∆).

Thus, D(∆∗) ⊂ D(∆).

The Fourier transform, F , is a unitary operator of L2(Rn), so that the
spectrum of ∆ is the same as the spectrum of the multiplication operator
F∆F−1 = 4π2|ξ|2·, which is self-adjoint with domain{

f ∈ L2(Rn);

∫
Rn

|(1 + |ξ|2)f(ξ)|2 dξ <∞
}
,

and λ ∈ σ(F∆F−1)c if and only if the multiplication by 4π2|ξ|2 − λ has a
continuous inverse on L2(Rn), the multiplication by 1/(4π2|ξ|2 − λ). This
means that λ 6= 4π2|ξ|2 for every ξ ∈ Rn, i.e., λ 6∈ [0,∞).

An application of Theorem 9.10 shows that a perturbation of a self-
adjoint operator with a “small” symmetric operator, is still self-adjoint.
For a more precise statement of this fact, let us say that an operator S is
relatively bounded, with constant α, with respect to another operator A
if D(A) ⊂ D(S) and there are two constants α, c ≥ 0 such that

(9.1) ‖Sx‖2H ≤ α2‖Ax‖2H + c2‖x‖2H (x ∈ D).

Let us check that this kind of estimate is equivalent to

(9.2) ‖Sx‖H ≤ α′‖Ax‖H + c′‖x‖H (x ∈ D)

and that we can take α′ < 1 if α < 1 and α < 1 if α′ < 1.

By completing the square, it is clear that (9.2) follows from (9.1) with

α = α′ and c = c′. Also, from (9.2) we obtain (9.1) with α2 = (1 + ε−1)α′2

and c2 = (1 + ε)c′2, for any ε > 0, since 2α′‖Ax‖Hc′‖x‖H ≤ ε−1α′2‖Ax‖2H +

εc′2‖x‖2H and an easy substitution shows that

(α′‖Ax‖H + c′‖x‖H)2 ≤ α2‖Ax‖2H + c2‖x‖2H .
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Theorem 9.14 (Rellich4). Let A be a self-adjoint operator and let S be
symmetric, with the same domain D ⊂ H. If S is relatively bounded with
constant α with respect to A, then T = A+S is also self-adjoint with domain
D.

Proof. Let us first check that the symmetric operator T is closed. If (x, y) ∈
G(T ), then we choose xn ∈ D so that xn → x and Txn → y. From the
hypothesis we have

‖Axn −Axm‖H ≤ ‖Txn − Txm‖H + α‖Axn −Axm‖H + c‖xn − xm‖H ,

which implies

‖Axn −Axm‖H ≤
1

1− α
‖Txn − Txm‖H +

c

1− α
‖xn − xm‖H ,

and there exists z = limnAxn. But A is closed and z = Ax with x ∈ D.

Moreover ‖Sxn−Sx‖H ≤ α‖A(xn−x)‖H + c‖xn−x‖H and Sxn → Sx.
Hence y = limn Txn = Tx and (x, y) ∈ G(T ).

The operators T − zI (z ∈ C), with domain D, are also closed. With
Theorem 9.10 in hand, we only need to check that ±λi ∈ σ(T )c when λ ∈ R
is large enough (|λ| > c).

To show that T − λiI is one-to-one if λ 6= 0, let

(T − λiI)x = y (x ∈ D)

and note that the absolute values of the imaginary parts of both sides of

(Tx, x)H − λi(x, x)H = (y, x)H

are equal, so that |λ|‖x‖2H = |=(y, x)H | ≤ ‖y‖H‖x‖H and

‖x‖H ≤ |λ|−1‖y‖H (x ∈ D).

Thus, y = 0 implies x = 0.

Let us prove now that T − λiI has a closed image. Let yn → y with
yn = (T − λiI)xn. Then ‖xn − xm‖H ≤ |λ|−1‖yn − ym‖H and the limit
x = limxn ∈ H exists. Since (T − λiI)xn → y and the graph of T − λiI is
closed, x ∈ D and y = (T − λiI)x ∈ Im (T − λiI).

Let us also show that Im (T − λiI) = H by proving that the orthogonal
is zero. Let v ∈ H be such that

(Ax+ Sx− λix, v)H = 0 (x ∈ D).

4F. Rellich worked on the foundations of quantum mechanics and on partial differential
equations, and his most important contributions, around 1940, refer to the perturbation of the

spectrum of self-adjoint operators A(ε) which depend on a parameter ε. See also footnote ?? in
Chapter 7.
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Then (A− λi)(D) = H, since λi ∈ σ(A)c. If (A− λiI)u = v, let x = u, and
then we obtain that

((A− λi)u, (A− λi)u)H + (Su, (A− λi)u)H = 0.

From the Cauchy-Schwarz inequality, ‖Au − λiu‖2H ≤ ‖Su‖H‖Au − λiu‖H
and

‖Au− λiu‖H ≤ ‖Su‖H .
Since A is symmetric, (Ay − λiy,Ay − λiy)H = ‖Ay‖2H + λ2‖y‖2H and

‖Au‖2 + λ2‖u‖2H = ‖Au− λiu‖2H ≤ ‖Su‖2H ≤ α2‖Au‖2H + c2‖u‖2H .

But, if |λ| > c, the condition α2 < 1 implies u = 0, and then v = 0.

We have proved that (T − λiI)−1 : H → H is well-defined and closed,
i.e., it is bounded. Hence, ±iλ ∈ σ(T )c and the symmetric operator T is
self-adjoint. �

Example 9.15. The operator H = −∆ − |x|−1 on L2(R3), with domain
H2(R3), is self-adjoint.

Let −|x|−1 = V0(x) + V1(x) with V0(x) := χB(x)V (x) (B = {|x| ≤ 1}).
Multiplication by the real function |x|−1 is a symmetric operator whose
domain contains H2(R3), the domain of −∆, since V0u ∈ L2(R3) if u ∈
H2(R3), with

‖V0u‖2 ≤ ‖V0‖∞‖u‖2 = ‖u‖2
and ‖V1u‖2 ≤ ‖V1‖2‖u‖∞, where ‖u‖∞ ≤ ‖û‖1. To apply Theorem 9.14, we
will show that multiplication by −|x|−1 is relatively bounded with respect
to −∆.

From the Cauchy-Schwarz inequality and from the relationship between
the Fourier transform and the derivatives, we obtain(∫

R3

|û(ξ)| dξ
)2
≤
∫
R3

dξ

(|2πξ |2 + β2)2
‖(−∆+β2I)u‖22 =

2π3

ξ
‖(−∆+β2I)u‖22.

From the inversion theorem we obtain that u is bounded and continuous,
since it is the Fourier co-transform of the integrable function û. Then

‖V1u‖2 ≤ c(β−1/2‖ −∆u‖2 + β3/2‖u‖2) (u ∈ H2(R3))

so that

‖V u‖2 ≤ cβ−1/2‖ −∆u‖2 + (cβ3/2 + 1)‖u‖2
and cβ−1/2 < 1 if β is large.

It follows from the Rellich theorem that H is self-adjoint with domain
H2(R3).



44 9. Unbounded operators in a Hilbert space

9.2.2. Essentially self-adjoint operators. Very often, operators appear
to be symmetric but they are not self-adjoint, and in order to apply the
spectral theory, it will be useful to know whether they have a self-adjoint
extension. Recall that a symmetric operator is closable and that a self-
adjoint operator is always closed and maximally symmetic.

A symmetric operator is said to be essentially self-adjoint if its closure
is self-adjoint. In this case, the closure is the unique self-adjoint extension
of the operator.

Example 9.16. It follows from Example 9.13 that the Laplacian ∆, as
an operator on L2(Rn) with domain S(Rn), is essentially self-adjoint. Its
closure is again ∆, but with domain H2(Rn).

Theorem 9.17. If T is symmetric and a sequence {un}n∈N ⊂ D(T ) is
an orthonormal basis of H such that Tun = λnun (n ∈ N), then T is
essentially self-adjoint and the spectrum of its self-adjoint extension T̄ is
σ(T̄ ) = {λn; n ∈ N}.

Proof. The eigenvalues λn are all real. Define

D(T̄ ) :=
{ ∞∑
n=1

αnun;

∞∑
n=1

|αn|2 +

∞∑
n=1

λ2
n|αn|2 <∞

}
,

a linear subspace of H that contains D(T ), since, if x =
∑∞

n=1 αnun ∈ D(T )
and Tx =

∑∞
n=1 βnun ∈ H, the Fourier coefficients αn and βn satisfy

βn = (Tx, un)H = (x, Tun)H = λn(x, un)H = λnαn

and {αn}, {λnαn} ∈ `2.

We can define the operator T̄ on D(T̄ ) by

T̄
( ∞∑
n=1

αnun

)
:=

∞∑
n=1

λnαnun.

Let us show that T̄ is a self-adjoint extension of T .

It is clear that T̄ is symmetric, T ⊂ T̄ , and every λn is an eigenvalue of
T̄ , so that {λn; n ∈ N} ⊂ σ(T̄ ).

If λ 6∈ {λn; n ∈ N}, so that |λ − λn| ≥ δ > 0, then it follows that
λ 6∈ σ(T̄ ) since we can construct the inverse of

(T − λI)
( ∞∑
n=1

αnun

)
=

∞∑
n=1

αn(λn − λ)un

by defining

R
( ∞∑
n=1

αnun

)
:=

∞∑
n=1

αn
λn − λ

un.
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Indeed, we obtain an operator R ∈ L(H) (‖R‖ ≤ 1/δ) which obviously is
one-to-one and its image is D(T̄ ), since

∞∑
n=1

∣∣∣ αn
λ− λn

∣∣∣2λ2
n ≤ |αn|2

(
1 +

λ

δ

)2
<∞

and, moreover, we can associate to every x =
∑∞

n=1 αnun ∈ D(T̄ ) the ele-
ment

y =
∞∑
n=1

βnun =
∞∑
n=1

αn(λn − λ)un ∈ H

such that Ry = x.

Also,

(T̄ − λI)R
( ∞∑
n=1

αnun

)
=

∞∑
n=1

− αn
λ− λn

(T̄ − λI)un =

∞∑
n=1

αnun

and R = (T̄ − λI)−1.

To prove that T̄ is self-adjoint, we need to see that D((T̄ )∗) ⊂ D(T̄ ).

If x =
∑∞

n=1 αnun ∈ D((T̄ )∗) and y = (T̄ )∗x, then, for every n ∈ N,

(y, un)H = (x, T̄un)H = λn(x, un)H = λnαn

and
∑∞

n=1 |λnαn|2 <∞, i.e., x ∈ D(T ).

Finally, to prove that T̄ is the closure of T , consider

(x, T̄ y) = (
∞∑
n=1

αnun,
∞∑
n=1

λnαnun) ∈ G(T̄ ).

Then xN :=
∑N

n=1 αnun ∈ D(T ) and

(xN , TxN ) = (

N∑
n=1

αnun,

N∑
n=1

λnαnun)→ (x, T̄x)

in H ×H, since {αn}, {λnαn} ∈ `2. �

Remark 9.18. A symmetric operator T may have no self-adjoint extensions
at all, or many self-adjoint extensions. According to Theorems 9.7 and 9.8,
if T is essentially self-adjoint, T ∗∗ is the unique self-adjoint extension of T .

9.2.3. The Friedrichs extensions. A sufficient condition for a symmet-
ric operator T to have self-adjoint extensions, known as the Friedrichs
extensions, concerns the existence of a lower bound for the quadratic form
(Tx, x)H .
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We say that T , symmetric, is semi-bounded5 with constant c, if

c := inf
x∈D(T ), ‖x‖H=1

(Tx, x)H > −∞,

so that (Tx, x)H ≥ c‖x‖2H for all x ∈ D(T ).

In this case, for any c′ ∈ R, T−c′I is also symmetric on the same domain

and semi-bounded, with constant c + c′. If T̃ is a self-adjoint extension of

T , then T̃ − c′I is a self-adjoint extension of T − c′I, and we will choose a
convenient constant in our proofs. Let us denote

(x, y)T := (Tx, y)H ,

a sesquilinear form on D(T ) such that (y, x)T = (x, y)T . If c > 0, then we
have an inner product.

Theorem 9.19 (Friedrichs-Stone6). If T is a semi-bounded symmetric op-

erator, with constant c, then it has a self-adjoint extension T̃ such that

(T̃ x, x)H ≥ c‖x‖2H , if x ∈ D(T̃ ).

Proof. We can suppose that c = 1, and then (x, y)T is a scalar product on

D = D(T ) which defines a norm ‖x‖T = (x, x)
1/2
T ≥ ‖x‖H .

Let DT be the ‖ · ‖T -completion of D. Since ‖x‖H ≤ ‖x‖T , every ‖ · ‖T -
Cauchy sequence {xn} ⊂ D, which represents a point x̃ ∈ DT , has a limit x
in H, and we have a natural mapping J : DT → H, such that Jx̃ = x.

This mapping J is one-to-one, since, if Jy = 0 and xn → y in DT ,
{xn} ⊂ D is also a Cauchy sequence in H and there exists x = limxn in H.
Then x = Jy = 0 and, from the definition of (y, x)T and by the continuity
of the scalar product, it follows that, for every v ∈ D,

(v, y)T = lim
n

(v, xn)T = lim
n

(Tv, xn)H = (Tv, x)H = 0.

But D is dense in DT and y = 0.

We have D = D(T ) ⊂ DT ↪→ H and, to define the Friedrichs extension

T̃ of T , we observe that, for every u = (·, y)H ∈ H ′,

|u(x)| ≤ ‖x‖H‖y‖H ≤ ‖x‖T ‖y‖H (x ∈ DT )

and there exists a unique element w ∈ DT such that u = (·, w)T on DT . We

define D(T̃ ) as the set of all these elements,

D(T̃ ) =
{
w ∈ DT ; (·, w)T = (·, y)H on DT for some y ∈ H

}
,

5In 1929 J. von Neumann and also A. Wintner identified this class of operators that admit

self-adjoint extensions.
6Kurt Otto Friedrichs (1901–1982) made contributions to the theory of partial differential

equations, operators in Hilbert space, perturbation theory, and bifurcation theory. He published
his extension theorem in Göttingen in 1934, and M. Stone did the same in New York in 1932.
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i.e., D(T̃ ) = D(T ∗) ∩ DT and T ∗w = y for a unique w ∈ D(T̃ ), for every
y ∈ H. Next we define

T̃w = y if (·, y)H = (·, w)T over DT

(
w ∈ D(T̃ )

)
,

so that T̃ is the restriction of T ∗ to D(T̃ ) = D(T ∗) ∩DT .

This new operator is a linear extension of T , since, for all v ∈ DT ,

(9.3) (v, w)T = (v, T̃w)H
(
w ∈ D(T̃ )

)
and, if y = Tx ∈ H with x ∈ D,

(v, y)H = (v, Tx)H = (Tv, x)H = (v, x)T (v ∈ D).

Thus, x = w and T̃w = Tx, i.e., D ⊂ D(T̃ ) and T ⊂ T̃ .

To show that T̃ is symmetric, apply (9.3) to w ∈ D(T̃ ) ⊂ DT . If

v, w ∈ D(T̃ ), then (w, v)T = (w, T̃ v)H and the scalar product is symmetric,

so that (T̃w, v)H = (w, T̃ v)H .

Observe that T̃ : D(T̃ )→ H is bijective, since, in our construction, since

every y ∈ H, w was the unique solution of the equation T̃w = y. Moreover,

the closed graph theorem shows that A := T̃−1 : H → D(T̃ ) ⊂ H is a

bounded operator, since yn → 0 and T̃−1yn → w imply

0 = lim
n

(T̃−1x, yn)H = (x, T̃−1yn)H = (y, w)H

for every x ∈ H, and then w = 0. This bounded operator, being the inverse
of a symmetric operator, is also symmetric, i.e., it is self-adjoint. But then,
every z ∈ C \R is in σ(A)c.

The identity z−1I−A−1 = A−1(A−zI)z−1 shows that z−1 ∈ σ(A−1)c =

σ(T̃ )c, if z 6∈ R. By Theorem 9.10, T̃ is self-adjoint. �

9.3. Spectral representation of unbounded self-adjoint
operators

T : D(T ) ⊂ H → H is still a possibly unbounded linear operator.

The functional calculus for a bounded normal operator T has been based
on the spectral resolution

T =

∫
σ(T )

λ dE(λ),

where E represents a spectral measure on σ(T ). If f is bounded, then this
representation allows us to define

f(T ) =

∫
σ(T )

f(λ) dE(λ).
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This functional calculus can be extended to unbounded functions, h,
and then it can be used to set a spectral theory for unbounded self-adjoint
operators. The last section of this chapter is devoted to the proof of the
following result:

Theorem 9.20 (Spectral theorem). For every self-adjoint operator T on
H, there exists a unique spectral measure E on R which satisfies

T =

∫
R
t dE(t)

in the sense that

(Tx, y)H =

∫ +∞

−∞
t dEx,y(t) (x ∈ D(T ), y ∈ H).

If f is a Borel measurable function on R, then a densely defined operator

f(T ) =

∫
R
f(t) dE(t)

is obtained such that

(f(T )x, y)H = (ΦE(f)x, y)H =

∫ +∞

−∞
f(t) dEx,y(t) (x ∈ D(f), y ∈ H),

where

D(f) =
{
x ∈ H;

∫ +∞

−∞
|f(λ)|2 dEx,x <∞

}
.

For this functional calculus,

(a) ‖f(T )x‖2H =
∫
σ(T ) |f |

2 dEx,x if x ∈ D(f(T )),

(b) f(T )h(T ) ⊂ (fh)(T ), D(f(T )h(T )) = D(h(T )) ∩ D((fh)(T )), and

(c) f(T )∗ = f̄(T ) and f(T )∗f(T ) = |f |2(T ) = f(T )f(T )∗.

If f is bounded, then D(f) = H and f(T ) is a bounded normal operator.
If f is real, then f(T ) is self-adjoint.

The following example will be useful in the next section.

Example 9.21. The spectral measure of the position operator of Exam-
ples 9.2 and 9.11,

Q =

∫
R
t dE(t),

is E(B) = χB· and dEϕ,ψ(t) = ϕ(t)ψ(t) dt, i.e.,∫
R
t dEϕ,ψ(t) = (Qϕ,ψ)2 =

∫
R
t ϕ(t)ψ(t) dt (ϕ ∈ D(Q)).
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This is proved by defining F (B)ψ := χBψ for every Borel set B ⊂ R;
that is, F (B) = χB·, a multiplication operator. It is easy to check that
F : BR → L(L2(R)) is a spectral measure, and to show that F = E, we
only need to see that ∫

R
tϕ(t)ψ(t) dt =

∫
R
t dFϕ,ψ(t),

where Fϕ,ψ(B) = (F (B)ϕ,ψ)2 =
∫
R(F (B)ϕ)(t)ψ(t) dt.

But the integral for the complex measure Fϕ,ψ is a Lebesgue-Stieltjes
integral with the distribution function

F (t) = Fϕ,ψ
(
(−∞, t]

)
= (χ(−∞,t]ϕ,ψ)2 =

∫ t

−∞
ϕ(s)ψ(s) ds,

and then dF (t) = ϕ(t)ψ(t) dt.

The spectrum σ(T ) of a self-adjoint operator can be described in terms
of its spectral measure E:

Theorem 9.22. If T =
∫
R t dE(t) is the spectral representation of a self-

adjoint operator T , then

(a) σ(T ) = suppE,

(b) σp(T ) = {λ ∈ R; E{λ} 6= 0}, and

(c) ImE{λ} is the eigenspace of every λ ∈ σp(T ).

Proof. We will use the fact that

‖(T − λI)x‖2H =

∫
R

(t− λ)2 dEx,x(t) (x ∈ D(T ), λ ∈ R),

which follows from Theorem 9.20(a).

(a) If λ 6∈ suppE, then Ex,x(λ− ε, λ+ ε) = 0 for some ε > 0, and

‖(T − λI)x‖2H =

∫
(λ−ε,λ+ε)

(t− λ)2 dEx,x(t) ≥ ε2‖x‖2H ,

which means that λ 6∈ σ(T ), by Theorem 9.9.

Conversely, if λ ∈ suppE, then E(λ− 1/n, λ+ 1/n) 6= 0 for every n > 0
and we can choose 0 6= xn ∈ ImE(λ − 1/n, λ + 1/n). Then suppExn,xn ⊂
[λ−1/n, λ+ 1/n] since it follows from V ∩ (λ−1/n, λ+ 1/n) = ∅ that E(V )
and E(λ − 1/n, λ + 1/n) are orthogonal and Ex,x(V ) = (E(V )x, x)H = 0.
Thus

‖(T − λI)xn‖2H =

∫
R

(t− λ)2 dExn,xn(t) ≤ 1

n2
‖xn‖2H

and λ is an approximate eigenvalue.
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(b) Tx = λx for 0 6= x ∈ D(T ) if and only if
∫
R(t − λ)2 dEx,x(t) = 0,

meaning that Ex,x{λ} 6= 0 and Ex,x(R \ {λ}) = 0.

(c) The identity Ex,x(R \ {λ}) = 0 means that x = E{λ}(x) satisfies
Tx = λx. �

Since E(B) = E(B ∩ suppE), in the spectral representation of the self-
adjoint operator, T , R can be changed by suppE = σ(T ); that is,

T =

∫
R
t dE(t) =

∫
σ(T )

t dE(t),

and also

h(T ) =

∫
R
h dE =

∫
σ(T )

h dE(t).

As an application, we define the square root of a positive operator:

Theorem 9.23. A self-adjoint operator T is positive ((Tx, x) ≥ 0 for all
x ∈ D(T )) if and only if σ(T ) ⊂ [0,∞). In this case there exists a unique
self-adjoint operator R which is also positive and satisfies R2 = T , so that
R =

√
T , the square root of T .

Proof. If (Tx, x)H ≥ 0 for every x ∈ D(T ) and λ > 0, we have

λ‖x‖2H ≤ ((T + λI)x, x)H ≤ ‖(T + λI)x‖H‖x‖H ,
so that

‖(T + λI)x‖H ≥ λ‖x‖H (x ∈ D(T )).

By Theorem 9.9 there exists (T + λI)−1 ∈ L(H) and −λ 6∈ σ(T ).

Conversely, if σ(T ) ⊂ [0,∞) and x ∈ D(T ), then
∫∞

0 t dEx,x(t) ≥ 0.
Moreover

(Tx, y)H =

∫ ∞
0

t dEx,y(t) (x ∈ D(T ), y ∈ H).

Define R = f(T ) with f(t) = t1/2. Then D(R) = {x;
∫∞

0 t dEx,x < ∞},
which contains D(T ) = {x;

∫∞
0 t2 dEx,x <∞}. Thus,

R =
√
T =

∫ ∞
0

t1/2 dE(t).

From Theorem 9.29(b), R2 = T , since D(f2) = D(T ) ⊂ D(f).

To prove the uniqueness, suppose that we also have

S =

∫ ∞
0

t dF (t)

such that S2 = T and

T =

∫ ∞
0

t2 dF (t).
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With the substitution λ = t2 we obtain a spectral measure E′(λ) = F (λ1/2)
such that T =

∫∞
0 λ dE′(λ). From the uniqueness of the spectral measure,

E′ = E and then S = R. �

9.4. Unbounded operators in quantum mechanics

To show how unbounded self-adjoint operators are used in the fundamentals
of quantum mechanics, we are going to start by studying the case of a single
particle constrained to move along a line.

9.4.1. Position, momentum, and energy. In quantum mechanics, what
matters about the position is the probability that the particle is in [a, b] ⊂
R, and this probability is given by an integral∫ b

a
|ψ(x)|2 dx.

The density distribution |ψ(x)|2 is defined by some ψ ∈ L2(R), which is
called the state function, such that

∫
R |ψ(x)|2 dx = ‖ψ‖22 = 1 is the total

probability. Here ψ is a complex-valued function and a complex factor α
in ψ is meaningless (|α| = 1 is needed to obtain ‖ψ‖2 = 1). There is a
dependence on the time, t, which can be considered as a parameter.

The mean position of the particle will be

µψ =

∫
R
x|ψ(x)|2 dx =

∫
R
xψ(x)ψ(x) dx =

∫
R
x dEψ,ψ(x)

with dEψ,ψ = ψ(x)ψ(x) dx.

If Q denotes the position operator, Qϕ(x) = xϕ(x), note that µψ =
(Qψ,ψ)2.

The dispersion of the position with respect to its mean value is measured
by the variance,

varψ =

∫
R

(x−µψ)2|ψ(x)|2 dq =

∫
R
x(x−µψ)2 dEψ,ψ(x) = ((Q−µψI)2ψ,ψ)2.

Similarly, if
∫
R |f(x)||ψ(x)|2 dx < ∞, the mathematical expectation of

f is

(9.4)

∫
R
f(x)|ψ(x)|2 dx = (fψ, ψ)2 =

∫
R
f(x) dEψ,ψ(x).

The momentum of the particle is defined as mass× velocity:

p = mẋ.
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Note that, from the properties of the Fourier transform,
(9.5)∫

R
ξ|ψ̂(ξ)|2 dξ =

∫
R
ξψ̂(ξ)ψ̂(ξ) dξ =

1

2πi

∫
R
ψ̂′(ξ)ψ̂(ξ) dξ =

1

2πi
(ψ′, ψ)2.

By assuming that the probability that p ∈ [a, b] is given by

1

h

∫ b

a

∣∣∣ψ̂(p
h

)∣∣∣2 dp =

∫ b/h

a/h
|ψ̂(ξ)|2 dξ,

where h = 6.62607095(44)·10−34 J ·sec is the Planck constant,7 the average
value of p is

1

h

∫
R
p
∣∣∣ψ̂(p

h

)∣∣∣2 dp = h

∫
R
ξ|ψ̂(ξ)|2 dξ.

Here the Fourier transform can be avoided by considering the momentum
operator P defined as

P =
h

2πi
D

(
D =

d

dx

)
,

since then, as noted in (9.5), this average is

(9.6) h

∫
R
ξ|ψ̂(ξ)|2 dξ = (Pψ,ψ)2.

If
∫
R |f(hξ)||ψ̂(ξ)|2 dξ <∞, then we have the value

µψ(f) =

∫
R
f(hξ)|ψ̂(ξ)|2 dξ

for the mathematical expectation of f , which in the case f(p) = pn is

µψ(pn) = (Pnψ,ψ)2.

The kinetic energy is

T =
p2

2m
,

so that its mathematical expectation will be

µψ(T ) =
1

2m
(P 2ψ,ψ)2.

The potential energy is given by a real-valued function V (x) and from (9.4)
we obtain the value

µψ(V ) =

∫
R
V (x)|ψ(x)|2 dx = (V ψ, ψ)2

for the mathematical expectation of V if
∫
R |V (x)||ψ(x)|2 dx <∞.

7This is the value reported in October 2007 by the National Physical Laboratory for this
constant, named in honor of Max Planck, considered to be the founder of quantum theory in 1901

when, in his description of the black-body radiation, he assumed that the electromagnetic energy
could be emitted only in quantized form, E = hν, where ν is the frequency of the radiation.
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The mathematical expectation is additive, so that the average of the
total energy is

µψ(T + V ) =
( 1

2m
P 2ψ + V ψ, ψ

)
2

= (Hψ,ψ)2,

where

H =
1

2m
P 2 + V

is the energy operator, or Hamiltonian, of the particle.

9.4.2. States, observables, and Hamiltonian of a quantic system.
As in the case of classical mechanics, the basic elements in the description
of a general quantic system are those of state and observable.

Classical mechanics associates with a given system a phase space, so
that for an N -particle system we have a 6N -dimensional phase state.

Similarly, quantum mechanics associates with a given system a complex
Hilbert space H as the state space, which is L2(R) in the case of a single
particle on the line. In a quantum system the observables are self-adjoint
operators, such as the position, momentum, and energy operators.

A quantum system, in the Schrödinger picture, is ruled by the fol-
lowing postulates:

Postulate 1: States and observables

A state of a physical system at time t is a line [ψ] ⊂ H, which we
represent by ψ ∈ H such that ‖ψ‖H = 1.

A wave function is an H-valued function of the time parameter t ∈
R 7→ ψ(t) ∈ H. If ψ(t) describes the state, then cψ(t), for any nonzero
constant c, represents the same state.

The observable values of the system are magnitudes such as position,
momentum, angular momentum, spin, charge, and energy that can be mea-
sured. They are associated to self-adjoint operators. In a quantic system,
an observable is a time-independent8 self-adjoint operator A on H, which
has a spectral representation

A =

∫
R
λ dE(λ).

By the “superposition principle”, all self-adjoint operators onH are assumed
to be observable,9 and all lines [ψ] ⊂ H are admissible states.

8In the Heisenberg picture of quantum mechanics, the observables are represented by time-

dependent operator-valued functions A(t) and the state ψ is time-independent.
9Here we are following the early assumptions of quantum mechanics, but the existence of

“superselection rules” in quantum field theories indicated that this superposition principle lacks
experimental support in relativistic quantum mechanics.
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The elements of the spectrum, λ ∈ σ(A), are the observable values of
the observable A.

Postulate 2: Distribution of an observable in a given state

The values λ ∈ σ(A) in a state ψ are observable in terms of a probability
distribution PAψ .

As in the case of the position operator Q for the single particle on R,
the observable A =

∫
R λ dE(λ) on H is evaluated in a state ψ at a given

time in terms of the probability PAψ (B) of belonging to a set B ⊂ R with

respect to the distribution dEψ,ψ(λ) (we are assuming that ‖ψ‖H = 1), so
that

PAψ (B) =

∫
B
λdEψ,ψ(λ) = (E(B)ψ,ψ)H

and the mean value is

Âψ :=

∫
R
λ dEψ,ψ(λ) = (Aψ,ψ)H.

When ψ ∈ D(A), this mean value Âψ exists, since λ2 is integrable with
respect to the finite measure Eψ,ψ, and also

∫
R |λ| dEψ,ψ(λ) <∞.

In general, if f ∈ L2(Eψ,ψ),

f̂(A)ψ = (f(A)ψ,ψ)H,

is the expected value of f , the mean value with respect to Eψ,ψ.

The variance of A in the state ψ ∈ D(A) is then

varψ(A) =

∫
R

(λ− Âψ)2 dEψ,ψ(λ) = ((A− ÂψI)2ψ,ψ)H = ‖Aψ − Âψψ‖2H.

It is said that A certainly takes the value λ0 in the state ψ if Âψ = λ0

and varψ(A) = 0.

This means that ψ is an eigenvector of A with eigenvalue λ0, since it

follows from Aψ = λ0ψ that Âψ = (Aψ,ψ)H = λ0, and also

varψ(A) = ‖Aψ − Âψψ‖2H = 0.

Conversely, varψ(A) = 0 if and only if Aψ − Âψψ = 0.

Postulate 3: Hamiltonians and the Schrödinger equation

There is an observable, H, the Hamiltonian, defining the evolution of
the system

ψ(t) = Utψ0,

where ψ0 is the initial state and Ut is an operator defined as follows:
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If h is the Planck constant and gt(λ) = e−
it
h
λ, a continuous function

with its values in the unit circle, then using the functional calculus, we can
define the unitary operators

Ut := gt(H) ∈ L(H) (t ∈ R)

that satisfy the conditions

U0 = I, UsUt = Us+t, and lim
t→s
‖Utx− Usx‖H = 0∀x ∈ H,

since gtḡt = 1, g0 = 1, gsgt = gst, and, if H =
∫
σ(H) λ dE(λ) is the spectral

representation of H, then the continuity property

‖Utψ − Usψ‖2H =

∫
σ(H)
|e−

it
h
λ − e−

is
h
λ|2 dEψ,ψ(λ)→ 0 as t→ s

follows from the dominated convergence theorem.

Such a family of operators Ut is called a strongly continuous one-
parameter group of unitary operators, and we say that A = −(i/h)H
is the infinitesimal generator.

It can be shown (Stone’s theorem) that the converse is also true: every
strongly continuous one-parameter group of unitary operators {Ut}t∈R has

a self-adjoint infinitesimal generator A = −(i/h)H; that is, Ut = e−
it
h
H for

some self-adjoint operator H.

It is said that

Ut = e−
it
h
H

is the time-evolution operator of the system.

It is worth noticing that, if ψ ∈ D(H), the function t 7→ Utψ is differen-
tiable and

d

dt
Utψ = UtAψ = AUtψ

at every point t ∈ R. Indeed,

1

s
(UsUtψ − Utψ) = Ut

1

s
(Usψ − ψ)

and

(9.7) lim
s→0

1

s
(Usψ − ψ) = Aψ = − i

h
Hψ,

since∥∥1

s
(Usψ − ψ) +

i

h
Hψ

∥∥2

H =

∫
σ(A)

∣∣e−isλ/h − 1

s
+
i

h
λ
∣∣2 dEψ,ψ(λ)→ 0

as s→ 0, again by dominated convergence.

For a given initial state ψ0, it is said that ψ(t) = Utψ0 is the correspond-
ing wave function.
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If ψ(t) ∈ D(H) for every t ∈ R, then the vector-valued function t 7→ ψ(t)
is derivable and satisfies the Schrödinger equation10

ihψ′(t) = Hψ(t),

since by (9.7)

ψ′(t) =
d

dt
(Utψ0) = AUtψ0 = − i

h
Hψ(t).

In this way, from a given initial state, subsequent states can be calculated
causally from the Schrödinger equation.11

9.4.3. The Heisenberg uncertainty principle and compatible ob-
servables. To illustrate the role of probabilities in the postulates, let us
consider again the case of a single particle on R. Recall that the momen-
tum operator,

Pψ(q) =
h

2πi
ψ′(q),

is self-adjoint on L2(R) and with domain H1(R).

From Example 9.4 we know that the commutator of P and Q is bounded
and

[P,Q] = PQ−QP =
h

2πi
I,

where D([P,Q]) = D(PQ)∩D(QP ), or extended to all L2(R) by continuity.

Lemma 9.24. The commutator C = [S, T ] = ST − TS of two self-adjoint
operators on L2(R) satisfies the estimate

|Ĉψ| ≤ 2
√

varψ(S)
√

varψ(T )

for every ψ ∈ D(C).

Proof. Obviously, A = S− ŜψI and B = T − T̂ψI are self-adjoint (note that

Ŝψ, T̂ψ ∈ R) and C = [A,B]. From the definition of the expected value,

|Ĉψ| ≤ |(Bψ,Aψ)2|+ |(Aψ,Bψ)2| ≤ 2‖Bψ‖2‖Aψ‖2,

where, A being self-adjoint, ‖Aψ‖22 = (A2ψ,ψ)2 = varψ(S). Similarly,
‖Bψ‖22 = varψ(T ). �

10E. Schrödinger published his equation and the spectral analysis of the hydrogen atom in a
series of four papers in 1926, which where followed the same year by Max Born’s interpretation
of ψ(t) as a probability density.

11We have assumed that the energy is constant and the Hamiltonian does not depend on t
but, if the system interacts with another one, the Hamiltonian is an operator-valued function H(t)

of the time parameter. In the Schrödinger picture, all the observables except the Hamiltonian are

time-invariant.
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Theorem 9.25 (Uncertainty principle).√
varψ(Q)

√
varψ(P ) ≥ h

4π
.

Proof. In the case C = [P,Q], |Ĉψ| = |(h/2πi)Îψ| = h/2π and we can apply
Lemma 9.24. �

The standard deviations
√

varψ(Q) and
√

varψ(P ) measure the uncer-
tainties of the position and momentum, and the uncertainty principle shows
that both uncertainties cannot be arbitrarily small simultaneously. Position
and moment are said to be incompatible observables.

It is a basic principle of all quantum theories that if n observables
A1, . . . , An are compatible in the sense of admitting arbitrarily accurate
simultaneous measurements, they must commute. However, since these op-
erators are only densely defined, the commutators [Aj , Ak] are not always
densely defined. Moreover, the condition AB = BA for two commuting
operators is unsatisfactory; for example, taking it literally, A0 6= 0A if A is
unbounded, but A0 ⊂ 0A and [A, 0] = 0 on the dense domain of A.

This justifies saying that Aj =
∫
R λ dE

j(λ) and Ak =
∫
R λ dE

k(λ) com-
mute, or that their spectral measures commute, if

(9.8) [Ej(B1), Ek(B2)] = 0 (B1, B2 ∈ BR).

If both Aj and Ak are bounded, then this requirement is equivalent to
[Aj , Ak] = 0 (see Exercise 9.18).12 For such commuting observables and
a given (normalized) state ψ, there is a probability measure Pψ on Rn so
that

Pψ(B1 × · · · ×Bn) = (E1(B1) · · ·En(Bn)ψ,ψ)H

is the predicted probability that a measurement to determine the values
λ1, . . . , λn of the observables A1, . . . , An will lie in B = B1 × · · · × Bn.
See Exercise 9.19, where it is shown how a spectral measure E on Rn can
be defined so that dEψ,ψ is the distribution of this probability; with this
spectral measure there is an associated functional calculus f(A1, . . . , An) of
n commuting observables.

9.4.4. The harmonic oscillator. A heuristic recipe to determine a quan-
tic system from a classical system of energy

T + V =

n∑
j=1

p2
j

2mj
+ V (q1, . . . , q1)

12But E. Nelson proved in 1959 that there exist essentially self-adjoint operators A1 and A2

with a common and invariant domain, so that [A1, A2] is defined on this domain and [A1, A2] = 0

but with noncommuting spectral measures.
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is to make a formal substitution of the generalized coordinates qj by the po-
sition operators Qj (multiplication by qj) and every pj by the corresponding
momentum Pj . Then the Hamiltonian or energy operator should be a self-
adjoint extension of

H =

n∑
j=1

P 2
j

2mj
+ V (Q1, . . . , Q1).

For instance, in the case of the two-body problem under Coulomb force,
which derives from the potential −e/|x|, n = 3 and the energy of the system
is

E = T + V =
1

2m
|p|2 − e2

|x|
.

Hence, in a convenient scale, H = −∆− 1
|x| is the possible candidate of the

Hamiltonian of the hydrogen atom. In Example 9.15 we have seen that it is
a self-adjoint operator with domain H2(R3).

With the help of his friend Hermann Weyl, Schrödinger calculated the
eigenvalues of this operator. The coincidence of his results with the spec-
tral lines of the hydrogen atom was considered important evidence for the
validity of Schrödinger’s model for quantum mechanics.

Several problems appear with this quantization process, such as finding
the self-adjoint extension of H, determining the spectrum, and describing
the evolution of the system for large values of t (“scattering”).

Let us consider again the simple classical one-dimensional case of a single
particle with mass m, now in a Newtonian field with potential V , so that

−∇V = F =
d

dt
(mq̇),

q denoting the position. We have the linear momentum p = mq̇, the kinetic
energy T = (1/2)mq̇2 = p2/2m, and the total energy E = T + V .

The classical harmonic oscillator corresponds to the special case of
the field F (q) = −mω2q on a particle bound to the origin by the potential

V (q) = m
ω2

2
q2

if q ∈ R is the position variable. Hence, in this case,

E = T + V =
1

2
mq̇2 +m

ω2

2
q2 =

1

2m
p2 +m

ω2

2
q2.

From Newton’s second law, the initial state q̇(0) = 0 and q(0) = a > 0
determines the state of the system at every time,

q = a cos(ωt).
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The state space for the quantic harmonic oscillator is L2(R), and the
position Q = q· and the momentum P are two observables. By making the
announced substitutions, we obtain as a possible Hamiltonian the operator

H =
1

2m
P 2 +m

ω2

2
Q2.

On the domain S(R), which is dense in L2(R), it is readily checked that

(Hϕ,ψ)2 = (ϕ,Hψ)2,

so that H is a symmetric operator. We will prove that it is essentially
self-adjoint and the Hamiltonian will be its unique self-adjoint extension
H̄ = H∗∗, which is also denoted H.

In coordinates,

H = − h2

2m · 4π2

d2

dq2
+
mω2

2
q2

which after the substitution x = aq, with a2 = 2πmω/h, can be written

H =
hω

2

(
x2 − d2

dx2

)
.

Without loss of generality, we suppose hω = 1, and it will be useful to
consider the action of

H =
1

2

(
x2 − d2

dx2

)
on

F := {P (x)e−x
2/2; P polynomial},

the linear subspace of S(R) that has the functions xne−x
2/2 as an algebraic

basis.

Since H(xne−x
2/2) ∈ F , we have H(F) ⊂ F . Similarly, A(F) ⊂ F and

B(F) ⊂ F if

A :=
1√
2

(
x+

d

dx

)
,

the annihilation operator, and

B :=
1√
2

(
x− d

dx

)
,

the creation operator.

Theorem 9.26. The subspace F of S(R) is dense in L2(R), and the Gram-

Schmidt process applied to {xne−x2/2}∞n=0 generates an orthonormal basis

{ψ̃n}∞n=0 of L2(R). The functions ψ̃n are in the domain S(R) of H and
they are eigenfunctions with eigenvalues λn = n+ 1/2. According to Theo-
rem 9.17, the operator H is essentially self-adjoint.
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Proof. On F , a simple computation gives

H = BA+
1

2
I = AB − 1

2
I;

hence HB = BAB + 1
2B and BH = BAB − 1

2B, so that

[H,B] = B.

Then, if Hψ = λψ and Bψ 6= 0 with ψ ∈ F , it follows that λ+ 1 is also an
eigenvalue of H, with the eigenfunction Bψ, since

H(Bψ) = B(Hψ) +Bψ = λBψ +Bψ = (λ+ 1)Bψ.

For

ψ0(x) := e−x
2/2,

we have 2Hψ0(x) = x2e−x
2/2 − (e−x

2/2)′′ = e−x
2/2, so that

Hψ0 =
1

2
ψ0

and ψ0 is an eigenfunction with eigenvalue 1/2.

We have
√

2Bψ0(x) = 2xe−x
2/2 6= 0 and, if we denote

ψn := (
√

2B)nψ0 =
√

2Bψn−1,

from the above remarks we obtain

Hψn =
(
n+

1

2

)
ψn (n = 0, 1, 2, . . .)

and ψn(x) = Hn(x)e−x
2/2. By induction over n, it follows that Hn is a

polynomial with degree n. It is called a Hermite polynomial.

The functions ψn are mutually orthogonal, since they are eigenfunctions
with different eigenvalues, and they generate F .

To prove that F is a dense subspace of L2(R), let f ∈ L2(R) be such

that
∫
R f(x)xne−x

2/2 dx = (xne−x
2/2, f(x))2 = 0 for all n ∈ N. Then

F (z) :=

∫
R
f(x)e−x

2/2e−2πixz dx

is defined and continuous on C, and the Morera theorem shows that F is
an entire function, with

F (n)(z) = (−2πi)n
∫
R
xnf(x)e−x

2/2e−2πixz dx.

But F (n)(0) = (xne−x
2/2, f(x))2 = 0 for all n ∈ N, so that F = 0. From the

Fourier inversion theorem we obtain f(x)e−x
2/2 = 0 and f = 0.

It follows that the eigenfunctions ψ̃n := ‖ψn‖−1
2 ψn of H are the elements

of an orthonormal basis of L2(R), all of them contained in S(R), which is
the domain of the essentially self-adjoint operator H. �
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Remark 9.27. In the general setting, for any mh,

H =
hω

2

(
x2 − d2

dx2

)
,

and we have Hψ̃n = hω(n+ 1
2)ψ̃n. Thus

σ(H) = {hω/2, hω(1 + 1/2), hω(2 + 1/2), . . .}.

The wave functions ψ̃n are known as the bound states, and the numbers
are the energy eigenvalues of these bound states. The minimal energy is

hω/2,13 and ψ̃0 is the “ground state”.

9.5. Appendix: Proof of the spectral theorem

The proof of Theorem 9.20 will be obtained in several steps. First, in Theo-
rem 9.28, we define a functional calculus with bounded functions for spectral
measures. Then this functional calculus will be extended to unbounded func-
tions in Theorem 9.29. The final step will prove the spectral theorem for
unbounded self-adjoint operators by the von Neuman method based on the
use of the Cayley transform.

9.5.1. Functional calculus of a spectral measure. Our first step in the
proof of the spectral theorem for unbounded self-adjoint operators will be
to define a functional calculus associated to a general spectral measure

E : BK → L(H)

as the integral with respect to this operator-valued measure.

Denote by L∞(E) the complex normed space of all E-essentially bounded
complex functions (the functions coinciding E-a.e. being identified as usual)
endowed with the natural operations and the norm

‖f‖∞ = E- sup |f |.
With the multiplication and complex conjugation, it becomes a commutative
C∗-algebra, and the constant function 1 is the unit. Every f ∈ L∞(E) has
a bounded representative.

We always represent simple functions as

s =
N∑
n=1

αnχBn ∈ S(K),

where {B1, . . . , BN} is a partition of K. Since every bounded measurable
function is the uniform limit of simple functions, S(K) is dense in L∞(E),
and we will start by defining the integral of simple functions:

13Max Planck first applied his quantum postulate to the harmonic oscillator, but he assumed
that the lowest level energy was 0 instead of hω/2. See footnote 7 in this chapter.
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As in the scalar case,∫
s dE :=

N∑
n=1

αnE(Bn) ∈ L(H)

is well-defined and uniquely determined, independently of the representation
of s, by the relation

(
(∫

s dE
)
x, y)H =

∫
K
s dEx,y (x, y ∈ H),

since
∫
K s dEx,y =

∑N
n=1 αn(E(Bn)x, y)H = (

∑N
n=1 αnE(Bn)x, y)H .

It is readily checked that this integral is clearly linear,
∫

1 dE = I, and
(
∫
s dE)∗ =

∫
s̄ dE.

It is also multiplicative,

(9.9)

∫
st dE =

∫
s dE

∫
t dE =

∫
t dE

∫
s dE,

since for a second simple function t we can suppose that t =
∑N

n=1 βnχBn ,
with the same sets Bn as in s, and then∫

s dE

∫
t dE =

N∑
n=1

βn

(∫
s dE

)
E(Bn)

=
N∑
n=1

βnαnE(Bn)E(Bn) =
N∑
n=1

αnβnE(Bn)

=

∫
st dE.

Also ∥∥∥(∫ s dE
)
x
∥∥∥2

H
=

∫
K
|s|2 dEx,x (x ∈ H, s ∈ S(K))

since

(
(∫

s dE
)
x,
(∫

s dE
)
x)H = (

(∫
s dE

)∗(∫
s dE

)
x, x)H

= (
(∫
|s|2 dE

)
x, x)H .

This yields ∥∥∥∫ s dE
∥∥∥ ≤ ‖s‖∞

and, in fact, the integral is isometric. Indeed, if we choose n so that ‖s‖∞ =
|αn| with E(Bn) 6= 0 and x ∈ ImE(Bn), then(∫

s dE
)
x = αnE(Bn)x = αnx
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and necessarily ∥∥∥(∫ s dE
)
x
∥∥∥
H

= ‖s‖∞.

Now the integral can be extended over L∞(E) by continuity, since it is
a bounded linear map from the dense vector subspace S(K) of L∞(E) to
the Banach space L(H).

We will denote

ΦE(f) :=

∫
f dE = lim

n

∫
sn dE

if sk → f in L∞(E) (sk ∈ S(K)).

The identities (ΦE(sk)x, y)H =
∫
K sk dEx,y extend to

(ΦE(f)x, y)H =

∫
K
f dEx,y

by taking limits. All the properties of ΦE contained in the following theorem
are now obvious:

Theorem 9.28. If E : BK → L(H) is a spectral measure, then there is a
unique homomorphism of C∗-algebras ΦE : L∞(K)→ L(H) such that

(ΦE(f)x, y)H =

∫
K
f dEx,y (x, y ∈ H, f ∈ L∞(K)).

This homomorphism also satisfies

(9.10) ‖ΦE(f)x‖2H =

∫
K
|f |2 dEx,x (x ∈ H, f ∈ L∞(K)).

9.5.2. Unbounded functions of bounded normal operators. To ex-
tend the functional calculus f(T ) = Φf (T ) of a bounded normal operator
with bounded functions to unbounded measurable functions h, we start by
extending to unbounded functions the functional calculus of Theorem 9.28
for any spectral measure E:

Theorem 9.29. Suppose K a locally compact subset of C, E : BK → L(H)
a spectral measure, h a Borel measurable function on K ⊂ C, and

D(h) :=
{
x ∈ H;

∫
K
|h(λ)|2 dEx,x <∞

}
.

Then there is a unique linear operator ΦE(h) on H, represented as

ΦE(h) =

∫
K
h dE,

with domain D(ΦE(h)) = D(h) and such that

(ΦE(h)x, y)H =

∫
K
h(λ) dEx,y(λ) (x ∈ D(h), y ∈ H).
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This operator is densely defined and, if f and h are Borel mesurable func-
tions on K, the following properties hold:

(a) ‖ΦE(h)x‖2H =
∫
K |h|

2 dEx,x, if x ∈ D(h).

(b) ΦE(f)ΦE(h) ⊂ ΦE(fh) and D(ΦE(f)ΦE(h)) = D(h) ∩ D(fh).

(c) ΦE(h)∗ = ΦE(h̄) and ΦE(h)∗ΦE(h) = ΦE(|h|2) = ΦE(h)ΦE(h)∗.

Proof. It is easy to check that D(h) is a linear subspace of H. For instance,
‖E(B)(x+ y)‖2H ≤ 2‖E(B)x‖2H + 2‖E(B)y‖2H so that

Ex+y,x+y(B) ≤ 2Ex,x(B) + 2Ey+y(B)

and D(h) +D(h) ⊂ D(h).

This subspace is dense. Indeed, if y ∈ H, we consider

Bn :=
{
|h| ≤ n

}
↑ K,

so that, from the strong σ-additivity of E,

y = E(K)y = lim
n
E(Bn)y,

where xn := E(Bn)y ∈ D(h) since

E(B)xn = E(B)E(Bn)xn = E(B ∩Bn)xn (B ⊂ K)

and Exn,xn(B) = Exn,xn(B ∩Bn), the restriction of Exn,xn to Bn, so that∫
K
|h|2 dExn,xn =

∫
Bn

|h|2 dExn,xn ≤ n2‖xn‖2H <∞.

If h is bounded, then let us also prove the estimate

(9.11)
∣∣∣ ∫

K
h dEx,y

∣∣∣ ≤ ∫
K
|h| d|Ex,y| ≤

(∫
K
|h|2 dEx,x

)1/2
‖y‖H <∞,

where |Ex,y| is the total variation of the Borel complex measure Ex,y.

From the polar representation of a complex measure (see Lemma ??),
we obtain a Borel measurable function % such that |%| = 1 and

%h dEx,y = |h| d|Ex,y|,

where |Ex,y| denotes the total variation of Ex,y. Thus,∣∣∣ ∫
K
h dEx,y

∣∣∣ ≤ ∫
K
|h| d|Ex,y| =

∫
K
%h dEx,y = (ΦE(%h)x, y)H

≤ ‖ΦE(%h)x‖H‖y‖H =
(∫

K
|%h|2 dEx,x

)1/2
‖y‖H

=
(∫

K
|h|2 dEx,x

)1/2
‖y‖H ,

where in the second line we have used (9.10), and (9.11) holds.
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When h is unbounded, to define ΦE(h)x for every x ∈ D(h), we are
going to show that y 7→

∫
K h dEx,y is a bounded conjugate-linear form on

H. Let us consider hn(z) = h(z)χBn(z)→ h(z) if z ∈ K, so that∣∣∣ ∫
K
hn dEx,y

∣∣∣ ≤ (∫
K
|hn|2 dEx,x

)1/2
‖y‖H ,

and by letting n→∞, we also obtain (9.11) for h in this unbounded case if
x ∈ D(h).

Then the conjugate-linear functional y 7→
∫
K h dEx,y is bounded with

norm ≤ (
∫
K |h|

2 dEx,x)1/2, and by the Riesz representation theorem there is
a unique ΦE(h)x ∈ H such that, for every y ∈ H,

(ΦE(h)x, y)H =

∫
K
h(λ) dEx,y(λ), ‖ΦE(h)x‖H ≤

(∫
K
|h|2 dEx,x

)1/2
.

The operator ΦE(h) is linear, since Ex,y is linear in x, and densely defined.

We know that (a) holds if h is bounded. If it is unbounded, then let
hk = hχBk and observe that D(h−hk) = D(h). By dominated convergence,

‖ΦE(h)x− ΦE(hk)x‖2H = ‖ΦE(h− hk)x‖2H ≤
∫
K
|h− hk|2 dEx,x → 0

as k → ∞; according to Theorem 9.28, every hk satisfies (a), which will
follow for h by letting k →∞.

To prove (b) when f is bounded, we note that D(fh) ⊂ D(h) and
dEx,Φ̄E(f)z = f dEx,z, since both complex measures coincide on every Borel
set. It follows that, for every z ∈ H,

(ΦE(f)ΦE(h)x, z)H = (ΦE(h)x, Φ̄E(f)z)H =

∫
K
h dEx,Φ̄E(f)z

= (ΦE(fh)x, z)H

and, if x ∈ D(h), we obtain from (a) that∫
K
|f |2 dEΦE(h)x,ΦE(h)x =

∫
K
|fh|2 dEx,x (x ∈ D(h)).

Hence, ΦE(f)ΦE(h) ⊂ ΦE(fh).

If f is unbounded, then we take limits and∫
K
|f |2 dEΦE(h)x,ΦE(h)x =

∫
K
|fh|2 dEx,x (x ∈ D(h))

holds, so that ΦE(h)x ∈ D(f) if and only if x ∈ D(fh), and

D(ΦE(f)ΦE(h)) = {x ∈ D(h); ΦE(h)x ∈ D(f)} = D(h) ∩ D(fh),

as stated in (b).
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Now let x ∈ D(h) ∩ D(fh) and consider the bounded functions fk =
fχBk , so that fkh → fh in L2(Ex,x). From (a) we know that ΦE(fkh)x →
ΦE(fh)x,

ΦE(f)ΦE(h)x = lim
k

ΦE(fk)ΦE(h)x = lim
k

ΦE(fkh)x = ΦE(fh)x,

and (b) is true.

To prove (c), let x, y ∈ D(h) = D(h̄). If hk = hχBk , then

(ΦE(h)x, y)H = lim
k

(ΦE(hk)x, y)H = lim
k

(x,ΦE(h̄k)y)H = (x,ΦE(h̄)y)H ,

and it follows that y ∈ D(ΦE(h)∗) and Φ̄E(h) ⊂ ΦE(h)∗. To finish the proof,
let us show that D(ΦE(h)∗) ⊂ D(h) = D(h̄).

Let z ∈ D(ΦE(h)∗). We apply (b) to hk = hχBk and we have ΦE(hk) =
ΦE(h)ΦE(χBk) with ΦE(χBk) bounded and self-adjoint. Then

ΦE(χBk)ΦE(h)∗ = ΦE(χBk)∗ΦE(h)∗ ⊂ (ΦE(h)ΦE(χBk))∗

= ΦE(hk)
∗ = ΦE(h̄k)

and χBk(ΦE(h)∗)z = ΦE(h̄k)z. But |χk| ≤ 1, so that∫
K
|hk|2dEz,z =

∫
K
|χBk |

2 dEΦE(h)∗z,ΦE(h)∗z ≤ EΦE(h)∗z,ΦE(h)∗z(K).

We obtain that z ∈ D(h) by letting k →∞ .

The last part follows from (b), since D(ΦE(hh̄)) ⊂ D(h). �

Remark 9.30. In Theorem 9.29, if ΦE(B0) = 0, we can change K to K\B0:

(ΦE(h)x, y)H :=

∫
K\B0

h(λ) dEx,y(λ) (x ∈ D(ΦE(h)), y ∈ H)

if h is Borel measurable on K \B0.

If E is the spectral measure of a bounded normal operator T , then we
write h(T ) for ΦE(h), and then the results of Theorem 9.29 read

h(T ) =

∫
σ(T )

h dE

on D(h) = {x ∈ H; ‖f‖2Ex,x <∞}, in the sense that

(h(T )x, y)H =

∫
σ(T )

h dEx,y (x ∈ D(h), y ∈ H).

Also

(a) ‖h(T )x‖2H =
∫
σ(T ) |h|

2 dEx,x if x ∈ D(h(T )),
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(b) f(T )h(T ) ⊂ (fh)(T ), D(f(T )h(T )) = D(h(T )) ∩ D((fh)(T )) with

f(T )h(T ) = (fh)(T ) if and only if D((fh)(T )) ⊂ D(h(T )),

and

(c) h(T )∗ = h̄(T ) and h(T )∗h(T ) = |h|2(T ) = h(T )h(T )∗.

9.5.3. The Cayley transform. We shall obtain a spectral representation
theorem for self-adjoint operators using von Neumann’s method of making
a reduction to the case of unitary operators.

If T is a bounded self-adjoint operator on H, then the continuous func-
tional calculus allows a direct definition of the Cayley transform of T as14

U = g(T ) = (T − iI)(T + iI)−1,

where g(t) = (t− i)/(t+ i), a continuous bijection from R onto S \ {1}, and
it is a unitary operator (cf. Theorem 8.24).

Let us show that in fact this is also true for unbounded self-adjoint
operators.

Let T be a self-adjoint operator on H. By the symmetry of T and from
the identity ‖Ty ± iy‖2H = ‖y‖2H + ‖Ty‖2H ± (iy, Ty)H ± (Ty, iy)H ,

‖Ty ± iy‖2H = ‖y‖2H + ‖Ty‖2H
(
y ∈ D(T )

)
.

The operators T±iI : D(T )→ H are bijective and with continuous inverses,
since ±i ∈ σ(T )c.

For every x = Ty + iy ∈ Im (T + iI) = H (y ∈ D(T )), we define
Ux = U(Ty + iy) := Ty − iy; that is,

Ux = (T − iI)(T + iI)−1x (x ∈ H).

Then U is a bijective isometry of H, since ‖Ty + iy‖2H = ‖Ty − iy‖2H and
Im (T ± iI) = H, and U is called the Cayley transform of T .

Lemma 9.31. The Cayley transform

U = (T − iI)(T + iI)−1

of a self-adjoint operator T is unitary, I − U is one-to-one, Im (I − U) =
D(T ), and

T = i(I + U)(I − U)−1

on D(T ).

14Named after Arthur Cayley, this transform was originally described by Cayley (1846) as a

mapping between skew-symmetric matrices and special orthogonal matrices. In complex analysis,
the Cayley transform is the conformal mapping between the upper half-plane and the unit disc

given by g(z) = (z−i)/(z+i). It was J. von Neumann who, in 1929, first used it to map self-adjoint
operators into unitary operators.
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Proof. We have proved that U is unitary and, from the definition, Ux =
(T − iI)y if x = (T + iI)y for every y ∈ D(T ) and every x ∈ H. It follows
that (I + U)x = 2Ty and (I − U)x = 2iy, with (I − U)(H) = D(T ). If
(I −U)x = 0, then y = 0 and also (I +U)x = 0, so that a subtraction gives
2Ux = 0, and x = 0. Finally, if y ∈ D(T ), 2Ty = (I+U)(I−U)−1(2iy). �

Remark 9.32. Since I − U is one-to-one, 1 is not an eigenvalue of U .

9.5.4. Proof of Theorem 9.20: Let T be a self-adjoint operator on H.
To construct the (unique) spectral measure E on σ(T ) ⊂ R such that

T =

∫
σ(T )

t dE(t),

the Cayley transform U of T will help us to transfer the spectral represen-
tation of U to the spectral representation of T .

According to Theorem 8.24, the spectrum of U is a closed subset of the
unit circle S, and 1 is not an eigenvalue, so that the spectral measure E′ of
U satisfies E′{1} = 0, by Theorem 8.26. We can assume that it is defined
on Ω = S \ {1} and we have the functional calculus

f(U) =

∫
σ(U)

f(λ) dE′(λ) =

∫
Ω
f(λ) dE′(λ) (f ∈ B(Ω)),

which was extended to unbounded functions in Subsection 9.5.2.

If h(λ) := i(1 + λ)/(1− λ) on Ω, then we also have

(h(U)x, y)H =

∫
Ω
h(λ) dE′x,y(λ) (x ∈ D(h(U)), y ∈ H),

with

D(h(U)) = {x ∈ H;

∫
Ω
|h|2 dE′x,x <∞}.

The operator h(U) is self-adjoint, since h is real and h(U)∗ = h̄(U) =
h(U).

From the identity

h(λ)(1− λ) = i(1 + λ),

an application of (b) in Theorem 9.29 gives

h(U)(I − U) = i(I + U),

since D(I − U) = H. In particular, Im (I − U) ⊂ D(h(U)).

From the properties of the Cayley transform, T = i(I + U)(I − U)−1,
and then

T (I − U) = i(I + U), D(T ) = Im (I − U) ⊂ D(h(U)),
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so that h(U) is a self-adjoint extension of the self-adjoint operator T . But,
T being maximally symmetric, T = h(U). This is,

(Tx, y)H =

∫
Ω
h(λ) dE′x,y(λ) (x ∈ D(T ), y ∈ H).

The function t = h(λ) is a homeomorphism between Ω and R that
allows us to define E(B) := E′(h−1(B)), and it is readily checked that E is
a spectral measure on R such that

(Tx, y)H =

∫
R
t dEx,y(t) (x ∈ D(T ), y ∈ H).

Conversely, if E is a spectral measure on R which satisfies

(Tx, y)H =

∫
R
t dEx,y(t) (x ∈ D(T ), y ∈ H),

by defining E′(B) := E(h(B)), we obtain a spectral measure on Ω such that

(h(U)x, y)H =

∫
Ω
h(λ) dE′x,y(λ) (x ∈ D(h(U)), y ∈ H).

But U = h−1(h(U)) and

(Ux, y)H =

∫
Ω
λ dE′x,y(λ) (x, y ∈ H).

From the uniqueness of E′ with this property, the uniqueness of E follows.

Of course, the functional calculus for the spectral measure E defines the
functional calculus f(T ) =

∫ +∞
−∞ f dE for T =

∫ +∞
−∞ λ dE(λ), and f(T ) =

f(h(U)).

9.6. Exercises

Exercise 9.1. Let T : D(T ) ⊂ H → H be a linear and bounded operator.

Prove that T has a unique continuous extension on D(T ) and that it has a
bounded linear extension to H. Show that this last extension is unique if
and only if D(T ) is dense in H.

Exercise 9.2. Prove that if T is a symmetric operator on a Hilbert space
H and D(T ) = H, then T is bounded.

Exercise 9.3. Prove that the derivative operator D is unbounded on L2(R).

Exercise 9.4. If T is an unbounded densely defined linear operator on a
Hilbert space, then prove that ( ImT )⊥ = KerT ∗.

Exercise 9.5. If T is a linear operator on H and λ ∈ σ(T )c, then prove
that ‖RT (λ)‖ ≥ 1/d(λ, σ(T )).
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Exercise 9.6. Show that, if T is a symmetric operator on H and ImT = H,
then T is self-adjoint.

Exercise 9.7. If T is an injective self-adjoint operator on D(T ) ⊂ H, then
show that ImT = D(T−1) is dense in H and that T−1 is also self-adjoint.

Exercise 9.8. Prove that the residual spectrum of a self-adjoint operator
on a Hilbert space H is empty.

Exercise 9.9. Suppose A is a bounded self-adjoint operator on a Hilbert
space H and let

A =

∫
σ(A)

λ dE(λ)

be the spectral representation of A. A vector z ∈ H is said to be cyclic for
A if the set {Anz}∞n=0 is total in H.

If A has a cyclic vector z and µ = Ez,z, then prove that A is unitarily
equivalent to the multiplication operator M : f(t) 7→ tf(t) of L2(µ); that is,
M = U−1AU where U : L2(µ)→ H is unitary.

Exercise 9.10. Let

A =

∫
σ(A)

λ dE(λ)

be the spectral resolution of a bounded self-adjoint operator of H and denote

F (t) := E(−∞, t] = E(σ(A) ∩ (−∞, t]).

Prove that the operator-valued function F : R→ L(H) satisfies the follow-
ing properties:

(a) If s ≤ t, then F (s) ≤ F (t); that is, (F (s)x, x)H ≤ (F (t)x, x)H for
every x ∈ H.

(b) F (t) = 0 if t < m(A) and F (t) = I if t ≥M(A).

(c) F (t+) = F (t); that is, lims↓t F (s) = F (t) in L(H).

If a < m(A) and b > M(A), then show that with convergence in L(H)

A =

∫ b

a
t dF (t) =

∫ M(A)

m(A)+
t dF (t) =

∫
R
f dF (t)

as a Stieltjes integral.

Exercise 9.11. On L2(0, 1), let S = iD with domain H1(0, 1). Prove the
following facts:

(a) ImS = L2(R).

(b) S∗ = iD with domain H1
0 (0, 1).

(c) S is a non-symmetric extension of iD with D(iD) = H2(0, 1).
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Exercise 9.12. On L2(0, 1), let R = iD with domain H1
0 (0, 1) (i.e, S∗ in

Exercice 9.11). Prove the following facts:

(a) ImR = {u ∈ L2(R);
∫ 1

0 u(t) dt = 0}.
(b) R∗ = iD with domain H1(0, 1) (i.e, R∗ = S of Exercice 9.11).

Exercise 9.13. As an application of Theorem 9.17, show that the operator
−D2 = −d2/dx2 in L2(0, 1) with domain the C∞ functions f on [0, 1] such
that f(0) = f(1) = 0 is essentially self-adjoint.

Exercise 9.14. Show also that the operator −D2 = −d2/dx2 in L2(0, 1)
with domain the C∞ functions f on [0, 1] such that f ′(0) = f ′(1) = 0 is
essentially self-adjoint.

Exercise 9.15. Prove that −D2 = −d2/dx2 with domain D(0, 1) is not an
essentially self-adjoint operator in L2(0, 1).

Exercise 9.16. Let V be a nonnegative continuous function on [0, 1]. Then
the differential operator T = −d2/dx2 +V on L2(0, 1) with domain D2(0, 1)
has a self-adjoint Friedrichs extension.

Exercise 9.17. Let

Qkϕ(x) = xkϕ(x), Pkϕ =
h

2πi
∂kϕ (1 ≤ k ≤ n)

represent the position and momentum operators on L2(Rn).

Prove that they are unbounded self-adjoint operators whose commuta-
tors satisfy the relations

[Qj , Qk] = 0, [Pj , Pk] = 0, [Pj , Qk] = δj,k
h

2πi
I.

Note: These are called the canonical commutation relations satisfied
by the system {Q1, . . . , Qn;P1, . . . , Pn} of 2n self-adjoint operators, and it
is said that Qk is canonically conjugate to Pk.

Exercise 9.18. Prove that, if A1 and A2 are two bounded self-adjoint op-
erators in a Hilbert space, then A1A2 = A2A1 if and only if their spectral
measures E1 and E2 commute as in (9.8): E1(B1)E2(B2) = E2(B2)E1(B1)
for all B1, B2 ∈ BR.

Exercise 9.19. Let

A1 =

∫
R
λ dE1(λ), A2 =

∫
R
λ dE1(λ)

be two self-adjoint operators in a Hilbert space H. If they commute (in
the sense that their spectral measures commute), prove that there exists a
unique spectral measure E on R2 such that

E(B1 ×B2) = E(B1)E(B2) (B1, B2 ∈ BR).
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In the case of the position operators A1 = Q1 and A2 = Q2 on L2(R2), show
that E(B) = χB· (B ⊂ BR2).

Exercise 9.20. Find the infinitesimal generator of the one-parameter group
of unitary operators Utf(x) := f(x+ t) on L2(R).

Exercise 9.21. Suppose that g : R→ R is a continuous function. Describe
the multiplication g· as a self-adjoint operator in L2(R) and Utf := eitgf as a
one-parameter group of unitary operators. Find the infinitesimal generator
A of Ut (t ∈ R).
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