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1. INTRODUCCION

El estudio de la continuidad de las aplicaciones lineales entre espacios
normados es uno de los primeros temas que aparecen en cualquier asignatura
de introduccién al Andlisis Funcional. Los espacios de operadores lineales
continuos definidos entre espacios de Banach y de Hilbert conducen, de
manera natural, a la definiciéon de C*-algebra y otras algebras de operadores.
La definicion del término “Analisis Funcional” que puede encontrarse en la
Encyclopedia Britannica es la siguiente:

“Functional Analysis, Branch of mathematical analysis dealing
with functionals, or functions of functions. It emerged as a dis-
tinct field in the 20th century, when it was realized that diverse
mathematical processes, from arithmetic to calculus procedures,
exhibit very similar properties. A functional, like a function, is
a relationship between objects, but the objects may be numbers,
vectors, or functions.”

Esta definicion esta fuertemente influenciada por el hecho contrastado de
que los primeros espacios de Banach de dimensién infinita que aparecen en
la literatura que origina el Andlisis Funcional son los espacios de funciones.
Los puntos o vectores de dichos espacios son funciones. Uno de los espacios
de Banach que mdés atencién ha recibido y maéas estudios ha motivado es
el espacio C(K) de las funciones continuas C-valuadas sobre un espacio
topolégico compacto y Hausdorff K. Es decir los elementos de C'(K) son
funciones continuas f : K — C. Es bien conocido que el espacio C(K)
equipado con la norma del supremo

[flloc = sup{[f(t)] : t € K} (f € C(K)),

es un espacio de Banach (que en la mayoria de ocasiones tiene dimensién
infinita). En el trabajo que abordaremos necesitaremos considerar algunos
subespacios notables de C'(K). Por supuesto el espacio C'(K,R) de las fun-
ciones continuas de K en el cuerpo de los nimeros reales R. Para dar algin
otro ejemplo recordamos que, dado un espacio topolégico localmente com-
pacto Hausdorff L y una funcién f : @ — C, se dice que f se anula en
infinito si para cada € > 0, el conjunto

{tel:[f(t) e}
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es compacto. Notaremos mediante el simbolo Cy(L) al espacio de las fun-
ciones continuas de L en C que se anulan en infinito, es decir, si L U {oco}
denota la compactificacién de L mediante un punto (co en este caso), con-
sideramos las funciones continuas f : L U {oo} — C verificando f(o0) = 0.
De nuevo, Cy(L) es un espacio de Banach (complejo) cuando lo equipamos
con la norma del supremo. El espacio Cy(L,R) se define de forma anéloga.

Otra de las grandes virtudes del Andlisis Funcional moderno es, si lugar a
dudas, su gran versatilidad para adaptar y aplicar herramientas de otras dis-
ciplinas y ramas de la Matematica a problemas propios, junto con la capaci-
dad de exportar resultados y herramientas al estudio de otros problemas ex-
istentes en otras ramas de la Matematica y la Fisica. En algunos espacios de
Banach, el Anélisis Matematico, el Algebra, la Geometria y la Topologia se
encuentran tan mutuamente entrelazadas que ciertas propiedades analiticas
estan completamente determinadas mediante propiedades algebraicas y vice-
versa. Uno de los ejemplos donde este fendmeno se puede apreciar de manera
mas evidente es el problema que estudiaremos en esta Escuela Taller.

Para comenzar vamos a presentar otra parte de la estructura de los espa-
cios C(K) y Co(L) que nos hemos dejado atras. En estos espacios es posible
definir el producto de dos funciones f, g como otra funciéon dada por la ex-
presién (fg)(t) :== f(t)g(t). Este sencillo producto se conoce como producto
puntual de funciones. La asociatividad y la conmutatividad del producto de
C nos permite asegurar que el producto puntual, tanto en C'(K) como en
Co(L) es asociativo y conmutativo. Ademads, la desigualdad

gl < WIf1 gl

se verifica para todo par de funciones continuas f y ¢ en los anteriores
espacios. Existe otra operacién algebraica en los espacios C(K) y Co(L),
nos referimos a la involucién natural f — f* donde f*(t) = f(t). Es facil
comprobar que f toma valores reales si, y solo si, f* = f. Por dltimo, resaltar
una identidad donde se mezclan las estructuras algebraicas y analiticas de

C(K)
1£ 1 *lloo = 1113

igualdad conocida como identidad o axioma de Gelfand-Naimark.

2. CUANDO LAS PROPIEDADES ALGEBRAICAS DETERMINAN LAS
PROPIEDADES ANALITICO-GEOMETRICAS

En C(K) tenemos dos estructuras bien diferenciadas, la estructura ana-
litico-geométrica que proporciona su norma de espacio de Banach (||.||~),
y por otro lado su estructura algebraica de algebra conmutativa con in-
volucién. Las conexiones que tienen estas dos estructuras parecen estar muy
limitadas a las propiedades que hemos comentado anteriormente. Sin embar-
go los resultados que las conectan son sorprendentes. Veremos, por ejemplo,
que, a nivel algebraico, un homomorfismo (es decir, una aplicacién lineal
que preserva los productos puntuales de funciones) T : C(K;) — C(K3)
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tiene que ser automdticamente continuo. Los homomorfismos de C(K) en el
cuerpo C tienen incluso mejores propiedades. Esto permitira comprobar que
toda identificacién algebraica de dos C'(K)-espacios (es decir, toda biyeccién
lineal que preserva los productos y las involuciones entre dichos espacios),
es una isometria sobreyectiva. En otras palabras, una identificacion a nivel
algebraico de dos C'(K)-espacios nos proporciona una identificacién a nivel
analitico de dichos espacios.

Existe una versién con menos requerimientos. Recordamos que, dadas
dos funciones continuas f,g : K — C, diremos que f y g son ortogonales o
disjuntas o tienen soportes disjuntos (y lo notamos mediate f L g) cuando
fg = 0. Supongamos que tenemos un homomorfismo 7" : C(K;) — C(K3).
Si f L gen C(Ky), entonces T'(f)T(g) = T(fg) = 0 en C(K2). Es decir,
todo homomorfismo entre C'(K )-espacios preserva funciones ortogonales.

Sean K7 y Ky dos espacios topoldgicos compactos Hausdorff y sea T :
C (K1) — C(K2) una aplicacién lineal. Diremos que 1" preserva ortogonali-
dad o es un operador de Lamperti si

fLginC(Ky)=T(f) LT(g) en C(K2).

Ahora solo suponemos que T' preserva funciones ortogonales. Todo homo-
morfismo preserva ortogonalidad, pero existen otros casos, por ejemplo, sea
h una funcién en C(K3) y sea ¢ : K9 — Kj una funcién continua en el
conjunto {s € K — 2 : h(s) # 0}, entonces el operador

T: C(Kl) — C(KQ)
T(f)(s) = (h-Co)(f)(s) = h(s)f(p(s)) (f € C(K1),s € Ky),

es un operador lineal que preserva ortogonalidad y no es necesariamente un
homomorfismo. El gran objetivo de este tema sera determinar la estructura
que tiene toda transformacion lineal que preserva ortogonalidad entre espa-
cios C(K). Pare ello nos proponemos revisar los Teoremas de Arendt [1] y
Jarosz [3] que permiten describir este tipo de operadores como generaliza-
ciones de operadores de composiciéon con peso.

Primero supondremos que T es continuo y determinaremos que 71" es ex-
actamente un operador de composicién con peso como el expuesto anterior-
mente. El trabajo de Jarosz permite una descripcion sin asumir continuidad
alguna sobre T'. Entre las consecuencias de este resultado, probaremos que
toda biyeccién lineal T' : C(K;) — C(K2) que preserva ortogonalidad es
automaticamente continua, y en tal caso K; y Ky son topoldgicamente
homeomorfos. Es decir, unas propiedades algebraicas sobre la aplicacion T
determinan una consecuencias analiticas y topolégicas.

3. CUANDO LAS PROPIEDADES ANALITICO-GEOMETRICAS DETERMINAN
LAS PROPIEDADES ALGEBRAICAS

La magia no termina demostrando implicaciones analiticas y topolégicas
desde hipétesis algebraicas, el otro camino también puede ser explorado. En
este caso nos encontraremos con uno de los grandes resultados establecidos
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durante los primeros anos de desarrollo del Anélisis Funcional, nos referi-
mos al Teorema de Banach-Stone. Este resultado establece que para toda
isometria lineal y sobreyectiva T : C(K;) — C(K3), existen h en C(K3) y
¢ : K9 — Kj continua y biyectiva con |h(t)| = 1,Vt € K, tales que

T(f)(s) = h(s)f(p(s)),

para todo f € C(Ki), s € K. En este caso, T(f)T'(g9)" # T(fg*), pero
T(f)T(g)*T'(h) =T (fg*h), para toda terna f,gy h en C(K;). Es decir, una
identificacion analitico-geométrica de C'(K) y C(K2) permite obtener una
identificacién algebraica de estos espacios, y una identificacién topolégica de
Kl y KQ.

Si tenemos tiempo y disponibilidad exploraremos estos resultados en el
caso en que C(K) es reemplazado por Cy(L).

Conocimientos Previos: Conocimientos bésicos de Anélisis Funcional:
espacios de Banach, operadores lineales continuos, isometrias, dual de un
espacio de Banach. Conocimientos basicos de Topologia: continuidad, com-
pacidad, axiomas de separacién (espacios de Hausdorff), Lemma de Urysohn,
particiones de la unidad.
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AUTOMATIC CONTINUITY OF SEPARATING LINEAR
ISOMORPHISMS

BY
KRZYSZTOF JAROSZ

ABSTRACT. A linear map A : C(T) — C(S) is called separating if
f-& =0 implies Af - Ag = 0. We describe the general form of such maps
and prove that any separating isomorphism is continuous.

Let T, S be compact Hausdorff spaces and let A be a linear map from the Banach
space C(T) into C(S). The map A is said to be separating or disjointness preserving
if f - g =0 implies Af - Ag =0 for all f, g in C(T). For f in C(T) or C(S) we define
the cozero set of f by coz(f ) = {r: f(r) # 0}. Hence A is separating if and only if it
maps functions with disjoint cozero sets into functions with disjoint cozero sets.

The concept of separating maps in this context was introduced by E. Beckenstein
and L. Narici [5-7]. However, disjointness preserving maps between general vector
lattices and similar automatic-continuity problems were considered earlier by other
authors; see e.g., [1, 2, 8] and [3, 4]. In [7] the authors prove that if A is separating
and satisfies a number of additional conditions then it is automatically continuous.

In this note we describe the general form of a separating linear map A : C(T) —
C(S). Roughly speaking we can always divide S into three subsets. On the first part A
is just the zero map, on the second part A is given by a composition of a continuous
map from a subset of S into T and a multiplication by a continuous scalar function.
The third part of S is finite, possibly empty, and A is discontinuous at every point of
this part. As a consequence we prove that any separating isomorphism is automatically
continuous but we also show that there is always a discontinuous separating linear map
A from C(T) into C(S), provided T is infinite.

Our results hold both in the real and in the complex case.

THEOREM. Let A be a linear separating map from C(T) into C(S). Then S is a sum
of three disjoint sets Sy, Sy, S3 where S, is open and S3 is closed, there is a continuous
map ¢ : S US, — T and a continuous, bounded, non-vanishing scalar-valued func-
tion x on Sy such that for any f € C(T)

A(FXS) = x(5) fop(s) Vs €S
A(fXs)=0 Vs € 8.

*)
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Furthermore the set F = ¢(S5) is finite, all functionals of the form
CT)sf — A )s) fors€S,
are discontinuous and

AP =0 if suppfOF =0.

ProoOF. For any s € S we denote by §; the functional “evaluation at the point s”.
We define S3 = {s € § : 5,04 =0}, S, = {s € S : § o A is discontinuous}
and §; = S\ (S5, US3). For any s € S we define supp(§; o A) to be the set of
all ¢+ € T such that for any open neighborhood U of ¢ there is an f in C(T) with
A(f)(s) # 0 and coz(f) C U. We contend that supp(§; o A) contains at most one
point. Assuming the contrary we get two open, disjoint sets U; and’ Us, both having
non-empty intersection with supp(é; o A) and then fi,f, € C(T) with coz(f;) C Uj,
A(fj)(s) # 0, j = 1,2 which contradicts the assumption that A is separating. Assume
now supp(d; o A) = @. Then there is an open finite cover of T, T = U; UU,U...UU,
such that Af(s) = 0 if coz(f) C Uj, for some j = 1,...,n. Let 1 = 377 f; be a
continuous decomposition of the identity subordinate to {U;}"_,. For any f € C(T)
we have Af(s) = AQ T, fif)(s) = z;;, A(f;f)(s) = 0, and this means §; 04 = 0, so
s € S3. Hence we can define a function ¢ : §; US, — T by {cp(s)} = supp(é; o A).

Note that by exactly very similar arguments as above, we also get Af(s) = O for
any f € C(T) such that ¢(s) & coz(f ) =: supp f.

LeEMMA 1. ¢ is continuous.

PROOF OF THE LEMMA. Assuming the contrary, by the compactness of T, there is a
net (So)oer in S) U Sy convergent to so € S; US, such that ¢(s,) = t, converges to
11 # ty = ¢(s0). Let Uy, U; be open, disjoint neighborhoods respectively of ty and #,,
and let fy € C(T) be such that coz(fy) C Up and Afy(so) # 0. Fix an « € T such that
Afo(so) # 0 and 1, € U). Let f; € C(T) be such that coz(f;) C U; and Afi(ss) # O.
We get fo - fi = 0 but Afy. Afi(se) # 0, which contradicts the assumption that A is
separating.

The definition of ¢ and Lemma 1 are taken from [7]; we present the above proof
here for the sake of completeness.

LEMMA 2. Let (s,)52, be a sequence in Sy US, such that t, = ¢(s,), n € N are
distinct points of T. Then
lim sup ||65, 0 Al| < oo.

Note that the above says, in particular, that ||6,, 0 A|| < oo for all, but finitely many
n€N.

PRrOOF OF THE LEMMA. Assume the contrary. Taking an appropriate subsequence, we
can assume without loss of generality that

6)) 165, o All > n®, VneN,
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and that there is a sequence (U,) of pairwise disjoint open subsets of T with #, € Up.
By the definition of ¢ and (1), there is a sequence (f,) in C(T) such that

supp fn C U, |Ifull £ 1/n, and |Afu(sn)| 2 n.

Put

By the comment preceding Lemma 1 we have

JAF (520)] = |AC0)(5p) + A an) ()] = 1A (50)] Z 10.
n#ng :

Hence Af is unbounded, which is not possible. This proves the lemma.
Put
F={teT:sup{||6; 0A| :s € ¢ ()} = oo}.

By Lemma 2, F is a finite set. We want to show that F = ¢(S). The inclusion
©(S2) C F is obvious by the definition of S,; to show the converse one fix at € F
and define

Q:C(T)—C~' @) by ®(f) = Afly1)-

Since ¢ € F, the map @ is discontinuous, and by the closed graph theorem there is a
sequence (f,)22, in C(T) convergent to 0 and such that (®(f,));2, is convergent to a
non-zero function gy € C (@ 1@). Let s € <p"(t) be such that go(s) # 0. We have
In ;_—o;O and &; o A(f,) — go(s) # 0 so s € S, and hence F C ¢(S»).

Fix now an s € §; and put

Jo={f€CT): p(s)¢suppf}
K, = {f € C(T) : f(p(s)) = O}

Fixg €K;ande >0.Put Ty ={t€T:|g@)|2¢}, T, ={t€T: lg(®] = (1/2)e}
and let g’ € C(T) be such that ||g’|| = 1, g’|r, =1, g'|r, =0. We have g -g’ € J; and
llg <&’ — gll £ ¢, so Js is a dense subspace of K. Moreover, since s € S;,§;0A is a
non-zero continuous functional and by the remark before Lemma 1 J; C ker(é; o A).
Hence K, C ker(6; o A) and ‘since the codimensions of these spaces are both equal to
one we have ker(§; o A) = K and so §; o A is of the form

0 OA(f) = X(s)f(‘P(s))a Vf € C(T)a

for some scalar x(s) # 0. Let f € C(T) be such that f(¢(s)) # 0. In some neigh-
borhood of s, namely on {s € S; : f(¢(s)) # 0} we have x = A(f)/f o . Since s
is an arbitrary point of §;, by Lemma 1, x is locally a well-defined quotient of two
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continuous functions and so is continuous itself on S;. It is also a bounded function,
since otherwise A(1) would be unbounded.
It remains to prove that S; is open. For any f € C(T) we have

sup{|Af(s)| : s € S1US3} = sup{|Af(s)| : s € Sy US3} = [Ixl I £1]-

Hence S, US; = {s € S : §; 0 A is continuous} is closed, and we are done.

From the theorem and the definition of ¢, we can immediately deduce the following
observations:
(2) A is surjective = S3 = ) and s, is injective.
(3) S3 =0 = S, is a compact subset of S.
(4) F consists of non-isolated points only.
(5) A is injective & o(S)) = @($1US) =T

Statements (2) and (3) are obvious. To prove (4), assume ¢(so) = o is an isolated
point of T. By the definition of ¢, A(f )(so) = O if f(#) = 0, hence §5, 0 A = ab,, for
some scalar a, so ¢(sg) & F. Implication “<” of (5) is obvious; to get ‘="’ assume
©(S1) C T. By (4) and since F is finite, we get p(S;)UF C T, so there is an f € C(T)
such that f # 0 and supp f N (¢(S;) UF) = 0. By Theorem, Af = 0 and A is not
injective.

COROLLARY. Assume A is a linear, separating isomorphism from C(T) onto C(S).
Then A is continuous and S and T are homeomorphic.

Proor. By (2), (3), and (5), since ¢ is continuous we get ¢(S;) = T. For any
f € C(T) we have
Aflsl EO#fEOiAngZ =0.

Hence, since A is surjective, we get S, = (), and by (2)"¢ is a homeomorphism from
S onto T.

ExampLe. Let T be an infinite compact set, S a compact set, and let E be a
linear subspace of C(S) with dim E = ¢ := continuum. We show that there is a
discontinuous, linear separating map A from C(T) onto E. Observe that the cardinality
of any separable metric space is at most ¢, so E may be any separable linear subspace
of C(S). There are also many non-separable Banach spaces £ with dimE = ¢, e.g.,
~ E =I*. Hence, in particular we have an example of a discontinuous, linear, separating
map from ¢ = Banach space of all convergent sequences onto [*°.

Let (U,)2, be a sequence of pairwise disjoint, non-empty, open subsets of T,
and let t, € U,, for n € N. Fix an xy € SN — N, where N is the Stone- Cech
compactification of the set of positive integers. Any sequence (a,)5; of non-negative
real numbers can be extended to a continuous function from N into R* U {+o0},
which we denote by [(a,)52,]. We define two vector spaces

V={(ft.)2, €1®:f €CM)}
Vo = {(@)72y €V : xo & suppl(an)p,1}-
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Lemma. dim(V /Vp) = c.

The equation dim(V /V,) < ¢ is obvious since dim(V /Vg) £ dimV £ diml*® = .
The converse equation can be proven in several ways. Probably the shortest one is to
observe that V /V, can be seen as a subset of the non-standard model *C(*R) of the
set of all complex (real) numbers, that V /Vo contains the monad M, of 0, and that
M, is a c-dimensional linear space over C(R) [9, 10]. To get a more elementary and
self-contained proof let f, € C(T) be such that supp f, C U, and 1Al = 1 = f@t).
Let A be the set of all infinite subsets of N. Clearly card(4) = c. Let (a,)32, be any
decreasing sequence of positive numbers tending to zero and such that

lim bl

_—_ =0.
no0p 0. Oy

For any A € 4 we define a sequence (a2), by

a = H a, forn €N,

k€EA(n)

where A(n) = {k € N: n—k € A}; if A(n) = 0 then we understand that a4 = 1. Let
A, B be distinct subsets of N and let ko be the smallest integer which is contained in
exactly one of these sets, say kg € A. Then

al -
(6) 0< < Ao —0.
a, [0 4] -cxz-...-a,,_ko_l n—oo
For any A € 4 we now define fy € C(T) by
[ee]
fA = Zaﬁfn
n=1
Let Ay, ...,A; be distinct subsets of N. By (6) sequences (fa,(£,));2; tend to zero with
quite “different speed”, this means in particular that there is one set among Ay, ..., A,

say Aj, such that

limM=+oo forj=2,...,k.
n fA| (tﬂ) N
Hence a non-trivial linear combination of Ja @Ry s (fa, (#:))52, is distinct from

zero for all, except possibly finitely many, indices; hence the set

{(fa@ 2 +Voe(V/Vy): A€ 4}

is linearly independent, so dim(V /Vp) = c.
Let ® be any linear map from V onto E such that Vo C ker® and

°(().)#
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We define A : C(T') — C(S) by

Af(s) = D((f(t));2,) fors€S.

The map A is evidently discontinuous. We prove that it is separating.
Let hy, hy € C(T) be such that

{(teT: mO#0YN{t T : @) #0}=0.

Put
N;={n€N:ht,)#0}, fori=1,2.

We have N; NN, = () and hence the closures of these sets in AN are also disjoint.
This means that at most one of the sets N; or N, contains X0. Assume that xo & N;.
Then (h(2,))32, € Vo and Ah; = 0.
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In this paper, we prove that into isometries and disjointness preserving linear
maps from Cy(X) into Cy(Y) are essentially weighted composition operators
Tf=h-fo¢ for some continuous map ¢ and some continuous scalar-valued
function A. © 1996 Academic Press, Inc.

1. INTRODUCTION

Let X and Y be locally compact Hausdorff spaces. Let Cy(X) (resp.
Co(Y)) be the Banach space of continuous scalar-valued (i.e., real- or
complex-valued) functions defined on X (resp. Y) vanishing at infinity and
equipped with the supremum norm. The classical Banach—Stone theorem
gives a description of surjective isometries from C,(X) onto C,(Y). They
are all weighted composition operators Tf = h-fo ¢ (Ge., Tf(y) =
h(y)f(e(y),Vy € Y) for some homeomorphism ¢ from Y onto X and
some continuous scalar-valued function 4 on Y with |h(y)| =1, Vy €Y.
Different generalizations (see, e.g., [1, 2, 4, 5, 7)) of the Banach—Stone
Theorem have been studied for many years. Some of them discuss the
structure of into isometries and disjointness preserving linear maps (see,
e.g., [3, 6]). A linear map from Cy(X) into C,(Y) is said to be disjointness
preserving if f-g = 01in Cy(X) implies 7f - Tg = 0 in Cy(Y). In this paper,
we shall discuss the structure of weighted composition operators from
Co(X) into Cy(Y). We prove that every into isometry and every disjoint-
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ness preserving linear map from C,(X) into C,(Y) is essentially a weighted
composition operator.

THEOREM 1. Let X and Y be locally compact Hausdorff spaces and T a
linear isometry from Cy(X) into Co(Y). Then there exist a locally compact
subset Y, (i.e., Y, is locally compact in the subspace topology) and a weighted
composition operator T, from Cy(X) into C(Y,) such that for all f in
Co(X),

Tf|Y1=T1f=h'f°‘P7

for some quotient map ¢ from Y, onto X and some continuous scalar-valued
function h defined on Y, with |h(y)| = 1,Vy €Y.

THEOREM 2. Let X and Y be locally compact Hausdorff spaces and T a
bounded disjointness preserving linear map from Cy(X) into C(Y). Then
there exist an open subset Y, of Y and a weighted composition operator T,
from Cy(X) into C(Y,) such that for all fin Co(X), Tf vanishes outside Y,
and

Tf|Y1=T1f=h‘f°€D,

for some continuous map ¢ from Y, into X and some continuous scalar-val-
ued function h defined on Y, with h(y) + 0, Vy € Y.

Since weighted composition operators from Cy(X) into C(Y) are
disjointness preserving, Theorem 2 gives a complete description of all such
maps. When X and Y are both compact, Theorems 1 and 2 reduce to the
results of W. Holsztynski [3] and K. Jarosz [6], respectively. It is plausible
to think that Theorems 1 and 2 could be easily obtained from their
compact space versions by simply extending an into isometry (or a bounded
disjointness preserving linear map) T: Cy(X) — C,(Y) to a bounded
linear map T, : C(X,) — C(Y,) of the same type, where X, = X U {0}
and Y, = Y U {«} are the one-point compactifications of the locally com-
pact Hausdorff spaces X and Y, respectively. However, the example given
in Section 4 will show that this idea is sometimes fruitless because 7" can
have no such extensions at all. We thus have to modify, and in some cases
give new arguments to, the proofs of W. Holsztynski [3] and K. Jarosz [6] to
fit into our more general settings in this paper.

Recall that for f in Cy(X), the cozero of f is coz(f) = {x € X : f(x) # 0}
and the support supp(f) of f is the closure of coz(f) in X,. A linear map
T: Co(X) — Cy(Y) is disjointness preserving if 7 maps functions with
disjoint cozeros to functions with disjoint cozeros. For x in X, §, denotes
the point evaluation at x, that is, 8, is the linear functional on Cy(X)
defined by 8,(f) = f(x). For y in Y, let supp(8, o T') be the set of all x in
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X, such that for any open neighborhood U of x in X, there is an f in
Co(X) with Tf(y) # 0 and coz(f) € U. The kernel of a function f is
denoted by ker f.

2. ISOMETRIES FROM C,(X) INTO C,(Y)

DEerFINITION. Let X and Y be locally compact Hausdorff spaces. A map
¢ from Y into X is said to be proper if preimages of compact subsets of X
under ¢ are compact in Y.

It is obvious that a continuous map ¢ is proper if and only if
lim, ., ¢o(y) = . As a consequence, a proper continuous map ¢ from a
locally compact Hausdorff space Y onto a locally compact Hausdorff space
X is a quotient map, i.e., ¢ '(O) is open in Y if and only if O is open in
X. A quotient map from a locally compact space onto another is, however,
not necessarily proper. For example, the quotient map ¢ from (— o, + )
onto [0, + ) defined by

, y >0,
e(¥) = 1% v <0

is not proper.

LEMMA 3. Let X and Y be locally compact Hausdorff spaces, ¢ a map
from Y into X, and h a continuous scalar-valued function defined on Y with
bounds M, m > 0 such that m < |h(y)| < M, Yy € Y. Then the weighted
composition Tf = h - f o ¢ defines a (necessarily bounded) linear map from
Co(X) into C(Y) if and only if ¢ is continuous and proper.

Proof. For the sufficiency, we need to verify that /4 - f o ¢ vanishes at «
for all f in Cy(X). For any € > 0, |f(x)| < ¢/M outside some compact
subset K of X. Since ¢ is proper, ¢~ !(K) is compact in Y. Now the fact
that |a(y) - f(e(y)] < M|f(o(y))| < € outside ¢ '(K) indicates that
h-feo ¢ e Cy(Y). The boundedness of T is trivial in this case.

For the necessity, we first check the continuity of ¢. Suppose y, — y in
Y. We want to show that x, = ¢(y,) = ¢(y) in X. Suppose not, by passing
to a subnet if necessary, we can assume that x, either converges to some
x # ¢(y)in X or . If x, = x in X then for all f in Cy(X),

h(y)f(x) = lim h(y,) f(x,) = lim h(y/\)f(GD(J’A))
=m 7f(y,) = Tf(y) = h(y) f(e(¥))-

As h(y) # 0, f(x) =f(p(y), Vfe C(X). Consequently, we obtain a
contradiction x = ¢(y). If x, — « then a similar argument gives f(¢(y))
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= 0 for all f in Co(X). Hence ¢(y) = =, a contradiction again. Therefore,
¢ is continuous from Y into X. Finally, let K be a compact subset of X
and we are going to see that ¢~ '(K) is compact in Y, or equivalently,
closed in Y, = Y U {0}, the one-point compactification of Y. To see this,
suppose y, =y in Y, and x, = ¢(y,) € K. We want y € ¢ '(K), ie.,
y # o and ¢(y) € K. Without loss of generality, we can assume that
x, — x for some x in K. Now,

lim|7f(y,)| = ﬁm|h(YA)f(¢(YA))| > mlim|f(x,)| = ml|f(x)l

for all f in Cy(X). This implies that y # o« and then a similar argument
gives p(y) =x e K. 1

The assumption on the bounds of f in Lemma 3 is significant. For
example, let X =Y = R = (—», + ) and define

e y <0, _ | siny, y <0,
h(y)—{l, yso and so(y)—{y, V> 0.

Then the weighted composition operator Tf = i -fo ¢ from Cy(R) into
C,(R) is well-defined. It is not difficult to see that ¢ !([— 3, 3]) is not
compact in R. On the other hand, if we redefine 4(y) = ¢’ and ¢(y) =y
for all y in R then the weighted composition operator 7 is not well-de-
fined from C,(R) into C,(R), even though ¢ is proper and continuous in
this case.

Recall that a bounded linear map 7 from a Banach space E into a
Banach space F is called an injection if there is an m > 0 such that
ITx|| = mllx|l, Vx € E. It follows from the open mapping theorem that T is
an injection if and only if 7 is one-to-one and has closed range.

PROPOSITION 4. Let X and Y be locally compact Hausdorff spaces, ¢ a
map from Y into X, and h a continuous scalar-valued function defined on Y.
The weighted composition operator Tf = h - f o ¢ from C(X) into C,(Y) is
an injection if and only if ¢ is continuous, proper, and onto and h has bounds
M, m > 0 such that m < |h(y)l < M, Yy €Y. In this case, ¢ is a quotient
map and thus X is a quotient space of Y.

Proof. The sufficiency follows easily from Lemma 3 and the observa-
tion that [|Tfll = llh-fe oll = mllfll, Vf € Cy(X). For the necessity, we
first note that there are constants M, m > 0 such that ml f| < [|Tf]l <
M| |fl for all f in Co(X). It is then obvious that m < |h(y)| < M, Vy €Y.
By Lemma 3, ¢ is continuous and proper. Finally, we check that ¢ is onto.
It is not difficult to see that ¢ has dense range. In fact, if ¢(Y) were not
dense in X, then there would be an x in X and a neighborhood U of x in
X such that U N o(Y) = J. Choose an f in Cy(X) such that f(x) =1
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and f vanishes outside U. Then Tf(y) = h(y)f(¢(y)) = 0 for all y in Y,
i.e., Tf = 0. Since T is an injection, we get a contradiction that f = 0. We
now show that ¢(Y) = X. Let x € X and K a compact neighborhood of x
in X. By the density of ¢(Y) in X, there is a net {y,} in Y such that
x, = ¢(y,) = x in X. Without loss of generality, we can assume that x,
belongs to K for all A. Since ¢ '(K) is compact in Y, ¢(¢ '(K)) is a
compact subset of X containing the net {x,}. Consequently, x = lim x,
belongs to (¢ '(K)) C o(Y).

Proof of Theorem 1. We adopt some notations from W. Holsztynski [3]
and K. Jarosz [6]. Let X, = X U {«} and Y, = Y U {«} be the one-point
compactifications of X and Y, respectively. For each x in X and y in Y,
put

S, ={fe Cy(X):If(x) =lIflIl =1},
R, ={ge C(Y):lg(y)=lgll= 1]},

and
0,={yevY:7(S,) cR,}.

We first claim that {Q.}. . , is a disjoint family of non-empty subsets of
Y. In fact, for f, f,,...,f, in S, let h = X! | f(x)f;. Then ||All = n and
thus ||7h|l = n. Hence there is a y in Y such that [X7, f:(x)Tf.(y)| =
|Th(y)| = n. This implies |7f,(y)| = 1 for all i = 1,2,..., n. In other words,
y € N, (Tf,) ('), where I = {z :|z| = 1}. We have just proved that the
family {(7f) '(T'): f € S} of closed subsets of the compact space Y, has
finite intersection property. It is plain that « & (Tf)~!'(I) for all f in S,.
Hence Q. = N fes‘(Tf)’l(F) is non-empty for all x in X. Moreover,
0, NQ, =Dif x; #x, in X. In fact, f, in §, and f, in S, exist such
that coz(f;) N coz(f,) = &. If there is a y in O, N Q, then it follows
from 7f, € R, and Tf, € R, that 1 = If, + L0l =ITCf + Nl =I1T(f, +
f2,)(»)| = 2, a contradiction.

Let Y, = U,y Q,. It is not difficult to see that supp(5, o T) = {x}
whenever y € Q.. So we can define a surjective map ¢: Y, — X by

{e(y)} = supp(8,°T).
Note that for all f in Cy(X) and for all y in Y],

@(y) €supp(f) = T(f)(y) =0. (1)

In fact, if Tf(y) # 0, without loss of generality, we can assume Tf(y) = r
> 0 and [|f]l = 1. Since ¢(y) & supp(f), there is a g in C,(X) such that
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coz(f) Ncoz(g) = & and Tg(y) =|lgll=1. Hence 1 +r=T(f + g)y)
> ||f + gll = 1, a contradiction.

Now, we want to show that ¢ is continuous. Suppose ¢ were not
continuous at some y in Y}, without loss of generality, let {y,} be a net
converging to y in Y, such that ¢(y,) = x # ¢(y) in X,. Then there exist
disjoint neighborhoods U, and U, of x and ¢(y) in X,, respectively, and a
A such that ¢(y,) € U}, VA > A,. Let f € C,(X) such that coz(f) c U,
and T(f)(y) = lIfll = 1. As supp(f) N U, = &, we have ¢(y,) & supp(f),
VA > A,. By (1), T(f)y,) = 0, VA > A,. This implies 7(f) is not continu-
ous at y, a contradiction.

For each y in Y;, put

J,={fe Co(X):¢(y) & supp(f)},

and
K, ={feCo(X): f(e(y)) =0}

For f in K, and &> 0, let X, = {x eX:If(Wl= e} and X, ={x
X :|f(x)| < &/2}. Let g be a continuous function defined on X such that
0<g(x)<1,VxeX, gx) =1, Vx e X, and g(x) =0, Vx € X,. Let
f.=g f Then f € J, and ||f, — fll < 2&. One thus can show that J, is a
dense subset of K. By (D), J, ker(Sy o T), and hence ker(8¢(y)) =K, c
ker(§, o T). Consequently, there exists a scalar /4(y) such that § T =
h(y) - 8, ie.,

T(f)(y) =h(y) -f(e(y)), VfeECy(X).

It follows from the definition of Y, that % is continuous on Y, and
lh(y)l =1,Vy €Y,.

It is the time to see that Y, is locally compact. For each y, in Y, and a
neighborhood U, of y, in Y;, we want to find a compact neighborhood K;
of y, in Y, such that y, € K, c U,. Let x, = ¢(y,) in X. Then

Tyl =1f(x)l Vf e Co(X).

Fix f, in S, . Then V; = ¢~ '({x € X :[f,(x)| > 3}) N U, is an open neigh-
borhood of y, in Y; and contained in U,. Since V;, = W N Y, for some
neighborhood W of y, in Y, there exists a compact neighborhood K of y,
in Y such that y, € K C W. We are going to verify that K, =K NY, isa
compact neighborhood of y, in Y,. Let {y,} be a net in K; C V. By
passing to a subnet, we can assume that y, converges to y in K and we
want to show y € Y;. Let x, = ¢(y,) in X. Since X, is compact, by
passing to a subnet again, we can assume that x, converges to x in X or
x, 2% If x,>x in X, |Tf(y)l = lim|Tf(y)| = lim|ACy,) f(e(y)| =



WEIGHTED COMPOSITION OPERATORS 987

lim|f(x)| = | f(x)], for all f in Co,(X). Hence y € Q,, and thus y € Y,. If
x, = %, |Tf(y)l = lim|Tf(y)| = lim|A(y,)f,(e(y )| = lim|f,(x)] = 0.
However, the fact that y, € V; ensures |Tf,(y,)| = |f,(x)] > 1/2 for all A,
a contradiction. Hence Y, is locally compact.

Let T, : Cy(X) = Cy(Y;) be defined by T, f = h - f o ¢. It is clear that T,
is a linear isometry and Tf, = T)f. By Proposition 4, the surjective
continuous map ¢ is proper and thus a quotient map. The proof is
complete. |

In Theorem 1, Y, can be neither open nor closed in Y and ¢ may not be
an open map. See the following examples.

ExaMpPLE 5. Let X =[0,+%) and Y =[—, +x]. Let T be a linear
isometry from Cy(X) into C,(Y) defined for all f in C,(X) by

f(») 0<y< e,
TO) = S ), =<y <o,
0, y =t

Then in the notation of Theorem 1, Y; = [ 0, + ) is neither closed nor
open in Y. In this case, ¢(y) =y for all y in [0, +), and X and Y, are
homeomorphic.

EXxaMPLE 6. Let X =R and Y={(x,y) €R?>:y=0}U{(x,y) €
R?*:0 <x,0 <y < 1}. Let ¢:Y — X be defined by ¢(u,, u,) = u,. Then
¢ is continuous, onto, and proper, and thus a quotient map. Moreover,
T:Cy(X) = Cy(Y) defined by Tf = f o ¢ is a linear isometry. Note that
O={(x,y)€R*:0<x<1,0<y<1}isopenin Y, but ¢(0)=[0,1)
is not open in X. Hence ¢ is not an open map.

3. DISJOINTNESS PRESERVING LINEAR MAPS FROM
Co(X) INTO C,(Y)

It is clear that Theorem 2 follows from the following more general result
in which discontinuity of the linear disjointness preserving map 7 is
allowed. The payoff of the discontinuity is a finite subset F' of X at which
the behaviour of T is not under control.

THEOREM 7. Let X and Y be locally compact Hausdorff spaces and T a
disjointness preserving linear map from Cy(X) into C(Y). Then Y can be
written as a disjoint union Y =Y, UY, U Y;, in which Y, is open and Y, is
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closed. A continuous map ¢ from Y, U'Y, into X,, exists such that for every f
in Cy(X),

¢(y) & supp(f) = T(f)(y) = 0. (2)

Moreover, a continuous bounded non-vanishing scalar-valued function h on
Y, exists such that

Tf|y1:h'f°<P,
and

If\y, = 0.

Furthermore, F = @(Y,) is a finite set and the functionals 8, o T are discon-
tinuous on Co(X) forally in'Y,.

Proof. We shall follow the plan of K. Jarosz in his compact space
version [6]. Set

Y,={yevlis-T=0),
Y,={yeYl 8,oT is discontinuous},

and
Y, =Y\ (Yz UYa)'

First, we claim that supp( 8, ° T) contains exactly one point for every y
in Y, U Y,. Suppose on the contrary that supp( S, ° T) contains two distinct
points x; and x, in X,. Let U, and U, be neighborhoods of x; and x, in
X, respectively, such that U, N U, = &. Let f, and f, in Cy(X) with
coz(f;) € U, and coz(f,) € U, be such that Tf,(y) # 0 and Tf,(y) # 0.
However, f,f, = 0 implies 7Tf,7f, = 0, a contradiction. Suppose
supp( S, ° T) is empty. Then we can write the compact Hausdorff space X,
as a finite union of open sets X,, = U!_, U, such that 7f(y) = 0 whenever
coz(f) c U. for some i =1,2,...,n. Let 1 =1X" , f, be a continuous
decomposition of the identity subordinate to {U;}/.,. Then for all f in
Co(X), Tf(y) = Xi_, T(ff;)(y) = 0. This says 8,7 = 0 and thus y € Y;.

Next we define a map ¢ from Y, U Y, into X, by

{e(y)} =supp(8,°T).

We now prove (2). Assume ¢(y) & supp(f). Then there is an open
neighborhood U of ¢(y) disjoint from coz(f). Let g € C,(X) such that
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coz(g) c U and Tg(y) # 0. Since fg = 0 and T is disjointness preserving,
Tf(y) = 0 as asserted.

It then follows from (2) the continuity of ¢ as one can easily modify an
argument of the proof of Theorem 1 for this goal. Similarly, it also follows
from (2) the desired representation

Tf(y) = h(y)f(e(y)), VfeCy(X),VyeY, (3)

where /1 is a continuous non-vanishing scalar-valued function defined on
Y,
I

Claim. Let{y,};,_, be asequence in Y; U Y, such that the x, = ¢(y,)’s
are distinct points of X. Then

lim supIISyn oT|| < oo.

In particular, only finitely many J, ° 7' can have infinite norms.

Assume the contrary and, by passing to a subsequence if necessary, we
have

18, e Tl >n*, n=12,....
Let f, € Cy(X) with [|f,|| < 1 such that
ITf,(y)l=n*,  n=12,...

Let V,, W, and U, be open subsets of X such that x, €V, CV,C W,
cW,cU and U NU, =D if n#m, n,m=1,2,..., and let g, €
C(X,) such that 0 <g, <1, g,,, =1 and g, x\w =0, n=1,2,....
Then (2) implies

Tf(y,) = T(£,8,) () + T(f,(1 —8,))(¥,)
=T(f,8)(y,), n=12,....

Therefore, we can assume supp f, C U,. Let f = Y7 _,(1/n*)f, in Cy(X).
By (2) again, |Tf(y,)| = [(1/n*)Tf (y,)l = n for n = 1,2,.... This conflicts
with the boundedness of 7f in C,(Y), and the claim is thus verified.

The assertion that F = ¢(Y,) is a finite subset of X is clearly a
consequence of the claim while the boundedness of 4 follows from the
claim and (3). It is also plain that Y; = N{ker 7f: f € C,(X)} is closed in
Y. Finally, to see that Y, is open, we consider for every f in Cy(X),

sup{ITf(y)l:y € Y, UY;} = sup{|Tf(y)l: y € Y, U Y;}
sup{|Tf(y)l:y € Y}
sup{|(y) f(¢(¥))I:y € Y}} < MIIfl,
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where M > 0 is a bound of 4 on Y. It follows that the linear functional
8,° T is bounded for all y in Y; U Y;, and thus Y, N'Y, U Y;= . Hence,
Y, UY, =Y, UY; is closed. In other words, Y, is open. |

THEOREM 8. Let X and Y be locally compact Hausdorff spaces and T a
bijective disjointness preserving linear map from Cy(X) onto C(Y). Then T is
a bounded weighted composition operator, and X and Y are homeomorphic.

Proof. We adopt the notations used in Theorem 7. Since T is surjec-
tive, Y; = J. We are going to verify that Y, = (J, too. First, we note that
the finite set F \ {} consists of non-isolated points in X. In fact, if y € Y,
such that x = ¢(y) is an isolated point in X then it follows from (2) that
for every f in Cy(X), f(x) =0 implies ¢(y) =x & supp f and thus
Tf(y) = 0. Hence, 8,oT = A3, for some scalar A. Therefore, 5 T is
continuous, a contradiction to the assumption that y € Y,. We then claim
that ¢(Y) = ¢(Y; UY,) is dense in X. In fact, if a nonzero f in Cy(X)
exists such that supp f N ¢(Y) = & then Tf = 0 by (2), conflicting with the
injectivity of 7. Since

X=0(Y) =e(Y)) Ue(Y,) =¢(Y)) UF=0¢(Y,) or
o(Yy) U{=},

for every f in Cy(X),
Tf|y1 =0 :f|¢(yl)=O:f=O = TfW2 =0.

Therefore, the open set Y, = (J by the surjectivity of 7. Theorem 7 then
gives

Tf=h-(foe), VfeC(X).
This representation implies that 7! is also a bijective disjointness pre-

serving linear map from C,(Y) onto C,(X). The above discussion provides
that

T 'g=h,-g°e, Vg e Cy(Y),

for some continuous non-vanishing scalar-valued function /%, on X and
continuous function ¢, from X into Y. It is plain that ¢, = ¢! and thus
X and Y are homeomorphic. |

4. A COUNTER EXAMPLE

The following example shows that not every into isometry or bounded
disjointness preserving linear map from C,(X) into C,(Y) can be ex-
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tended to a bounded linear map from C(X,) into C(Y,) of the same type.
Here X and Y are locally compact Hausdorff spaces with one-point
compactifications X, and Y, respectively.

EXaMPLE 9. Let X =[0,+»), Y= (—=, +») and the underlying
scalar field is the field R of real numbers. Let

1, y > 2,
h(y)={y—-1, 0<y<2,
-1, y <0,
and
Yy y=0,

Then the weighted composition operator 7f = /- f o ¢ is simultaneously
an into isometry and a bounded disjointness preserving linear map from
Co([ 0, +) ) into Cy((—oe, +)). However, no bounded linear extension
T, from C([0,]) into C((— o, + ) U {o0}) of T can be an into isometry or
a disjointness preserving linear map.

Suppose, on the contrary, 7, were an into isometry. Consider f, in
Co([ 0, + ) ) defined by

1, O0<x<n,
2n —x
fu(x) = , n<x<2n, n=1,2,....
n
0, 2n <x < +oo,

Note that 8y o T, can be considered as a bounded Borel measure m , on
[0, + 0] for all point evaluation 8, at y in (—o, + ) U {0} with total
variation IImyII = ||8y oT |l < 1. Let 1 be the constant function 1(x) = 1 in
C([0, +<)]). For all y in (— o, + %),

TA(y) =8,°T(1) = [  1dm

[0, +2] Y

lim ]f,, dm, +m({=}) = Lim 8 T(f,) + m,({=})

n—>" Y0, +w
lim 7, (y) +m, (=) = lim h(y) £,(e(2)) +m,({=))

=h(y) +m,({=}).

Let g(y) = my({oo}) for all y in (—oo, + ), Then g(y) = T.1(y) — h(y) is
continuous on (—o, +%) and |g(y)| = |m (P < llm [l <1, Vye
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(—o0, + ). Note that ||7.1|| = 1. Therefore, g(y) = T.1(y) — 1 < 0 when
y>2, and g(y)=T1(y) +1 >0 when y < —2. We claim that
g(y)g(—y) = 0 whenever |y| > 2. In fact, if for example g(y,) < — & for
some y, > 2 and some & > 0, then for each small € >0, 0 < T 1(y) <
1 — 6 forall y in(y, — €,y, + €). We can choose an f in Cy([ 0, +))
satisfying that f(y,) = [|fll = 1 and f vanishes outside (y, — €, y, + €) C
(2, + ). Now,

T.(1+ 8f)(y) = T.(1)(y) + 8T.(f)(y)
= T(1)(y) + 8T(f)(»)
=h(y) +g(y) + 8h(y)f(e(y))

L+g(y) +8f(y), y>2,
= T1(y), -2<y<2,
—1+g(y) —8f(—y), y < —2.

Since [T (1 + 8N)Il=I1+8fll=1+ 8 and |T (A + 8f)y)| <1 unless
—ye(y,— €y, + €),thereisa y, in (y, — €, y, + €) such that | — 1 +
g(=y) — of(ypl =1+ 4. It forces that g(—y,) = 0. Since e can be
arbitrary small, we have g(—y,) = 0 and our claim that g(y)g(—y) =0
whenever |y| > 2 has thus been verified. As 7.1 is continuous on
(=, +0) U {oc}, we must have

lim T 1(y) = lim T.1(y),
y— + oo y—> —®©
that is,
im —1+g(y)= lim 1+g(y).
y—o —x

y— + oo
Let L be their common (finite) limit. Then
lim g(y)=L +1, lim g(y)=L —1.
y—o +o> y—o> —®
Consequently,
0= lim g(y)g(-y) = L -1

It follows that L = +1, and thus either lim,_, . gy) =2 or
lim, , . g(y) = —2. Both of them contradicts the fact that [g(y)l < 1,
Vy € (—o, + ),

On the other hand, suppose 7., were disjointness preserving. Since
£, = f,,) =0, we have T.f, - (1 — f,,) = 0. That is,

Tf(y) - T1 = f,,)(y) =0, Vye (=, +o) U {=}.



WEIGHTED COMPOSITION OPERATORS 993

When |yl <nand y # 1, T..f,(y) = Tf,(y) = h(y) # 0 and hence T, (1)(y)
= T.(f,,)y) = T(f,,(y) = h(y). Since T.1 is continuous on (—o, +) U
{}, we must have

+1= lim A(y) = lim h(y) = -1,
y—> +> y—o —®

a contradiction again.
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