
The Work of Kyosi Itô
Philip Protter

The Notices solicited the following article describing the work of Kiyosi Itô, recipient
of the 2006 Gauss Prize. The International Mathematical Union also issued a news
release, which appeared in the November 2006 issue of the Notices.
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Kyosi Itô, 1954, when
he was a Fellow at the
Institute for Advanced

Study, Princeton.

On August 22, 2006, the Inter-
national Mathematical Union
awarded the Carl Friedrich
Gauss Prize at the opening
ceremonies of the International
Congress of Mathematicians in
Madrid, Spain. The prizewinner
is Kyosi Itô. The Gauss prize
was created to honor mathe-
maticians whose research has
had a profound impact not just
on mathematics itself but also
on other disciplines.

To understand the achieve-
ments of Itô, it is helpful
to understand the context in
which they were developed.
Bachelier in 1900, and Einstein
in 1905, proposed mathemat-

ical models for the phenomenon known as
Brownian motion. These models represent the
random motion of a very small particle in a liquid
suspension. Norbert Wiener and collaborators
showed in the 1920s that Einstein’s model exists
as a stochastic process, using the then-new ideas
of Lebesgue measure theory. Many properties of
the process were established in the 1930s, the
most germane for this article being that its sample
paths are of infinite variation on any compact
time interval, no matter how small. This made the
Riemann-Stieltjes integration theory inapplicable.
Wiener wanted to use such integrals to study filter-
ing theory and signal detection, important during
the second world war. Despite these problems he
developed a theory of integrals, known today as

Philip Protter is professor of operations research at Cor-
nell University. His email address is pep4@cornell.edu.

Wiener integrals, where the integrands are non-
random functions. This served his purpose but
was unsatisfying because it ruled out the study
of stochastic differential equations, among other
things.

The problem in essence is the following: how
can one define a stochastic integral of the form∫ t
0 HsdWs , where H has continuous sample paths

andW is a Wiener process (another name for Brow-
nian motion), as the limit of Riemann-style sums?
That is, to define an integral as the limit of sums
such as

∑
1≤i≤n Hξi (Wti+1 −Wti ), with convergence

for all such H. Unfortunately as a consequence
of the Banach-Steinhaus theorem, W must then
have sample paths of finite variation on compact
time intervals. What Itô saw, and Wiener missed,
was that if one restricts the class of potential
integrands H to those that are adapted to the
underlying filtration of sigma algebras generated
by the Wiener process, and if one restricts the
choice of ξi ∈ [ti , ti+1) to ti, then one can use
the independence of the increments of the Wiener
process in a clever way to obtain the convergence
of the sums to a limit. This became the stochastic
integral of Itô. One should note that Itô did this
in the mathematical isolation of Japan during the
second world war and was one of the pioneers
(along with G. Maruyama) of modern probability
in Japan, which has since spawned some of the
world’s leading probabilists. Moreover since Jean
Ville had named martingales as such only in 1939,
and J. L. Doob had started developing his theory
of martingales only in the 1940s, Itô was unaware
of the spectacular developments in this area that
were happening in the U.S., France, and the Soviet
Union. Thus modern tools such as Doob’s martin-
gale inequalities were unavailable to Itô, and his
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creativity in the proofs, looked at today, is impres-
sive. But the key result related to the stochastic
integral was Itô’s change of variables formula.

Indeed, one can argue that most of applied
mathematics traditionally comes down to changes
of variable and Taylor-type expansions. The clas-
sical Riemann-Stieltjes change of variables, for a
stochastic process A with continuous paths of
finite variation on compacts, and f ∈ C1 is of
course

f (At) = f (A0)+

∫ t
0
f
′

(As)dAs.

With the Itô integral it is different and contains a
“correction term”. Indeed, for f ∈ C2 Itô proved

f (Wt) = f (W0)+

∫ t
0
f
′

(Ws)dWs +
1

2

∫ t
0
f
′′

(Ws)ds.

This theorem has become ubiquitous in modern
probability theory and is astonishingly useful.
Moreover Itô used this formula to show the exis-
tence and uniqueness of solutions of stochastic
ordinary differential equations:

dXt = σ (Xt)dWt + b(Xt)dt ; X0 = x0,

when σ and b are Lipschitz continuous. This
approach provided methods with an alternative in-
tuition to the semigroup/partial differential equa-
tions approaches of Kolmogorov and Feller, for
the study of continuous strong Markov process-
es, known as diffusions. These equations found
applications without much delay: for example
as approximations of complicated Markov chains
arising in population and ecology models in bi-
ology (W. Feller), in electrical engineering where
dW models white noise (N. Wiener, I. Gelfand,
T. Kailath), in chemical reactions (e.g., L. Arnold),
in quantum physics (P. A. Meyer, L. Accardi, etc.),
in differential geometry (K. Elworthy, M. Emery), in
mathematics (harmonic analysis (Doob), potential
theory (G. Hunt, R. Getoor, P. A. Meyer), PDEs,
complex analysis, etc.), and, more recently and
famously, in mathematical finance (P. Samuelson,
F. Black, R. Merton, and M. Scholes).

When Wiener was developing his Wiener inte-
gral, his idea was to study random noise, through
sums of iterated integrals, creating what is now
known as “Wiener chaos”. However his papers on
this were a mess, and the true architect of Wiener
chaos was (of course) K. Itô, who also gave it
the name “Wiener chaos”. This has led to a key
example of Fock spaces in physics, as well as in
filtering theory, and more recently to a fruitful
interpretation of the Malliavin derivative and its
adjoint, the Skorohod integral.

Itô also turned his talents to understanding
what are now known as Lévy processes, after
the renowned French probabilist Paul Lévy. He
was able to establish a decomposition of a Lévy
process into a drift, a Wiener process, and an inte-
gral mixture of compensated compound Poisson

processes, thus revealing the structure of such
processes in a more profound way than does the
Lévy-Khintchine formula.

In the late 1950s Itô collaborated with Feller’s
student H. P. McKean Jr. Together Itô and
McKean published a complete description of one-
dimensional diffusion processes in their classic
tome, Diffusion Processes and Their Sample Paths
(Springer-Verlag, 1965). This book was full of
original research and permanently changed our
understanding of Markov processes. It developed
in detail such notions as local times and described
essentially all of the different kinds of behavior
the sample paths of diffusions could manifest. The
importance of Markov processes for applications,
and especially that of continuous Markov process-
es (diffusions), is hard to overestimate. Indeed,
if one is studying random phenomena evolving
through time, relating it to a Markov process is
key to understanding it, proving properties of it,
and making predictions about its future behavior.

Later in life, when conventional wisdom holds
that mathematicians are no longer so spectacular,
Itô embraced the semimartingale-based theory of
stochastic integration, developed by H. Kunita,
S. Watanabe, and principally P. A. Meyer and his
school in France. This permitted him to integrate
certain processes that were no longer adapted
to the underlying filtration. Of course, this is a
delicate business, due to the sword of Damocles
Banach-Steinhaus theorem. In doing this, Itô be-
gan the theory of expansion of filtrations with
a seminal paper and then left it to the work of
Meyer’s French school of the 1980s (Jeulin, Yor,
etc.). The area became known as grossissements
de filtrations, or in English as “the expansions of
filtrations”. This theory has recently undergone a
revival, due to applications in finance to insider
trading models, for example.

A much maligned version of the Itô integral is
due to Stratonovich. While others were ridiculing
this integral, Itô saw its potential for explaining
parallel transport and for constructing Brownian
motion on a sphere (which he did with D. Stroock),
and his work helped to inspire the successful use
of the integral in differential geometry, where it be-
haves nicely when one changes coordinate maps.
These ideas have also found their way into other
domains, for example in physics, in the analysis
of diamagnetic inequalities involving Schrödinger
operators (D. Hundertmark, B. Simon).

It is hard to imagine a mathematician whose
work has touched so many different areas of ap-
plications, other than Isaac Newton and Gottfried
Leibniz. The legacy of Kyosi Itô will live on a long,
long time.
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Construction of Brownian Motion

Mark H.A. Davis

22 November 2004

1 Definition

Brownian motion is a stochastic process (Wt, t ≥ 0) such that

• W0 = 0.

• (Wt2 −Wt1) and (Wt4 −Wt3) are independent, for any t1 < t2 ≤ t3 < t4.

• (Wt2 −Wt1) ∼ N(0, t2 − t1).

• For almost all ω, the sample function t %→Wt(ω) is continuous.

Since Wt has stationary independent increments, we already know that EWt = 0 and that

the covariance function is r(t, s) = t∧ s. Thus the covariance matrix of the random vector
X = (Wt1 , . . . ,Wtn) is

Q =





t1 t1 · · · t1
t1 t2 · · · t2
...
...
...
...

t1 t2 · · · tn




.

X therefore has characteristic function

ψX(u) = E
[
eiu

TX
]
= e−

1
2u
TQu, (1)

corresponding to the normal distribution with mean zero and covariance matrix Q. One

can check that (1) satisfies the Kolmogorov consistency conditions, so a process with finite-

dimensional distributions given by (1) exists on some probability space. The point of what

follows is to show that we can construct it in such a way that the sample functions are

continuous, which does not follow from the consistency theorem.

2 Orthonormal bases in L2[0, 1]

Recall that any function f ∈ L2[0, 1] can be expanded in a Fourier series

f(t) = a0 +
∞∑

i=1

ai sin 2πnt+
∞∑

i=1

bi cos 2πnt.

This is a special case of the more general result below. In fact, the trigonometric functions

{1,
√
2sin2πnt,

√
2 cos 2πnt, n = 1, . . .} provide an orthonormal basis of H = L2[0, 1].

For f, g ∈ H the norm and inner product are defined by

||f || =

√∫ 1

0
f2(t)dt

< f, g > =
∫ 1

0
f(t)g(t)dt

1



A countable set of functions Φ = {φ1,φ2, . . .} is orthonormal if

||φi|| = 1 for all i

< φi,φj > = 0, i != j

Let

Hn =

{
n∑

i=1

αiφi : α ∈ Rn
}

be the linear subspace spanned by (φ1, . . . ,φn). The projection onto Hn of an arbitrary

f ∈ H is

f̂n =
n∑

1

< f,φi > φi.

Indeed, < f̂,φj >=
∑n
i=1 < f,φi >< φi,φj >=< f,φj >, so that < f − f̂n,φj >= 0 for

all j, so that1 (f − f̂n) ⊥ Hn.
Φ is complete if, for any f ∈ H, f̂n → f as n → ∞. This is the same thing as saying

that if f ⊥ φi for all i then f = 0. In this case Φ is said to be a complete orthonormal
basis (CONB). For a CONB we have the Parseval equality

||f ||2 =
∞∑

1

< f,φ2i >, (2)

and, as a corollary, the following identity

< f, g >=
∞∑

1

< f,φi >< g,φi > (3)

Indeed, (3) follows from (2) and the fact that

< f, g >=
1

4

(
||f + g||2 − ||f − g||2

)
.

3 Construction of Brownian motion: the L2 theory

Let {φi} be an arbitrary CONB of H and let X1,X2, . . . be a sequence of independent
identically distributed random variables defined on a probability space (Ω,F , P ), with
Xi ∼ N(0, 1). For n = 1, 2, . . ., define

Wnt =
n∑

i=1

Xi

∫ t

0
φi(s)ds. (4)

Theorem 1 For each t, Wnt is a Cauchy sequence in L2(Ω,F , P ) whose limit Wt is a
normal random variable with mean zero and variance t. For any two times t, s, E[WtWs] =

t ∧ s, where t ∧ s = min(t, s).

Proof: Define

It(s) =

{
1, s < t

0, s ≥ t.

Then ∫ t

0
φi(s)ds =< It,φi > .

1f ⊥ g means < f, g >= 0, and f ⊥ Hn ⇐⇒ f ⊥ g for all g ∈ Hn.
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Since φi is a CONB,

It =
∞∑

i

< It,φi > φi and t = ||It||2 =
∞∑

1

< It,φi >
2 . (5)

Thus for n > m

E (Wnt −Wmt )
2 = E




n∑

i=m+1

Xi

∫ t

0
φi(s)ds




2

=
n∑

i=m+1

< It,φi >
2

→ 0 as m,n→∞.

Thus Wnt is a Cauchy sequence in L2(Ω,F , P ). Denoting the limit Wt we see from (5)
that var(Wt) = limvar(Wnt ) = t. It now follows from (3) that

E[WtWs] =
∞∑

1

< It,φi >< Is,φi >

= < It, Is >

= t ∧ s.

It remains to show that Wt is normal. Note that Wnt is a finite sum of normal random

variables and is therefore normal, with variance σ2n =
∑n
1 < It,φi >

2. Hence the char-

acteristic function of Wnt is χn(u) = E[exp(iuW
n
t )] = exp(−σ2nu2/2), which converges as

n→∞ to χ(u) ≡ exp(−tu2/2). Now Wnt →Wt in L2 implies that there is a sub-sequence
Wnkt such that W

nk
t → Wt a.s. as k →∞. It follows from the bounded convergence the-

orem that E[exp(iuWnkt )] → E[exp(iuWt)] and hence that E[exp(iuWt)] = χ(u). Thus
Wt ∼ N(0, t). ♦

Theorem 1 shows that Brownian motion ‘exists’ in the sense that we have a gaussian

process Wt with the right covariance function, but we have not shown a key property of

Brownian motion, namely that it has continuous sample paths. To do this we need to

introduce a special ONB, the Haar functions.

4 The Haar Functions

The Haar functions {f0, fj,n, j = 1, . . . , 2n−1, n = 1, 2, . . .} are defined by f0(t) ≡ 1 and,
with k = 2j − 1,

fj,n =






2(n−1)/2, k−1
2n ≤ t ≤

k
2n

−2(n−1)/2, k
2n < t ≤

k+1
2n

0 elsewhere.

Theorem 2 The Haar functions are a complete orthonormal basis in L2[0, 1].

It is easy to check that the Haar functions are orthonormal. We have to show that they

are complete, i.e. that if for any f ∈ H we have < f, f0 >= 0 and < f, fj,n >= 0 for all
(j, n) then f = 0. Suppose f satisfies these conditions. Fix an integer n and define

Jk =
∫ (k+1)/2n

k/2n
f(t)dt, k = 0, 1, . . . , 2n − 1.

3



Now f ⊥ f0,n implies J0 = J1, f ⊥ f1,n implies J2 = J3, and similarly J4 = J5 etc.
Moving from n to n− 1, we see that f ⊥ f0,n−1 is equivalent to

(J0 + J1)− (J2 + J3) = 0,

implying that J0 = J1 = J2 = J3. Similarly, J4 = J5 = J6 = J7 etc. Now move to n − 2
to show that

Ji = J0, i = 1, 2, . . . 7

Ji = J8, i = 9, 10, . . . 15,

and so forth. Continuing in this way we conclude that all the Ji are equal to J0. But now

0 =< f, f0 >=
2n−1∑

0

Ji = 2
nJ0,

so that J0 = 0. We have proved the following:

∫ b

a
f(t)dt = 0 for all dyadic rational numbers a, b. (6)

(A dyadic rational number is one of the form j/2n for some j, n.) Since for any real number

a there is a sequence an of dyadic rational numbers an converging to a, (6) implies that

∫ b

a
f(t)dt = 0 for all real numbers a, b. (7)

A ‘monotone class’ argument as in Problems II now shows that
∫

A
f(t)dt = 0 for all Borel sets B ∈ B. (8)

However, any integrable function f satisfying (8) is equal to zero almost surely. This

completes the proof. ♦

5 The Lévy-Ciesielski Construction

This argument is described in McKean [1]. It is based on the following lemma from real

analysis.

Lemma 1 Suppose that, for n = 1, 2, . . ., fn : [0, 1] → R is a continuous function, and
that fn converges uniformly to a function f , i.e. given ε > 0 there is a number N such

that n ≥ N implies |fn(t)− f(t)| < ε for any t ∈ [0, 1]. Then f is a continuous function.

Proof: For any t0, s ∈ [0, 1] we can write

|f(t0)− f(s)| ≤ |f(t0)− fn(t0)|+ |fn(t0)− fn(s)|+ |fn(s)− f(s)|.

Given ε > 0 we can find n such that the first and third terms on the right are each less

than ε/3 (whatever t0, s). Now fn is continuous, so for fixed t0 we can choose δ so that

then second term is less than ε/3 for all s such that |t0 − s| < δ. Consequently, f is
continuous at t0. ♦

The idea now is to show that Wnt → Wt uniformly almost surely when we take the
ONB φi to be the Haar functions.

4



The Schauder functions {F0, Fn,j} are the indefinite integrals of the Haar functions,
i.e.

F0(t) = t

and

Fn,j(t) =






2(n−1)/2(t− (k − 1)/2n), t ∈ [(k − 1)/2n, k/2n[
2(n−1)/2((k + 1)/2n − t), t ∈ [k/2n, (k + 1)/2n[
0 elsewhere.

As McKean puts it, the Schauder functions are “little tents” of height 2−(n+1)/2, as shown

in figure 1.

k−1
2n

k
2n

k+1
2n

2−(n+1)/2

Figure 1: Schauder function

Now let {X0,Xn,j , n = 1, 2, . . . , j = 1, 2, . . . , 2n−1} be independent N(0, 1) random
variables defined on some probability space (Ω,F , P ), and for t ∈ [0, 1], N = 1, 2, . . .
define

WNt (ω) = X0F0(t) +
N∑

n=1

Yn(t,ω), (9)

where

Yn(t,ω) =
2n−1∑

j=1

Xn,j(ω)Fn,j(t).

For each N,ω the sample function t #→ WN (t,ω) is a continuous function. We want to
show that WNt →Wt a.s. as N →∞ for some continuous-path process Wt.

Theorem 3 The sequence WNt defined by (9) converges uniformly in t, almost surely.

Thus the process Wt = limN→∞WNt is a stochastic process with continuous sample paths.

Proof: The proof is an application of the Borel-Cantelli Lemma. Define Hn(ω) =

maxt∈[0,1] |Yn(t,ω)|. Since for fixed n the Schauder functions Fn,1, Fn,2, . . . are non-zero on
disjoint intervals we see that

Hn = 2
−(n+1)/2 max

1≤j≤2n−1
|Xn,j |.

Thus for any constant cn,

P
[
Hn > 2

−(n+1)/2cn
]
= P

[
max
j
|Xn,j | > cn

]

= P
⋃

j

[|Xn,j | > cn]

≤
∑

j

P [|Xn,j | > cn]

≤ 2n−1 × 2

cn
√
2π
e−

1
2 c
2
n . (10)

5



(The last inequality follows from Lemma 2 below.) We now ingeniously choose cn =

θ
√
2n log 2 for some θ > 1. Then the right hand side of (10) is

const× 2(1−θ2)n 1√
n
,

which is the general term in a convergent series, and

bn := 2
−(n+1)/2cn = θ

√
n2−n log 2,

also a convergent series. From (10) and the Borel-Cantelli Lemma,

P [Hn > bn infinitely often] = 0,

i.e. for almost all ω there exists N(ω) such that

Hn(ω) ≤ bn for n ≥ N(ω).

This shows that Hn is a convergent series and completes the proof.

Lemma 2 For a standard normal r.v. X ∼ N(0, 1) and any c > 0

P [|X| > c] < 2

c
√
2π
e−

1
2 c
2

Proof: Since x/c > 1 for x > c,

P [X > c] =
1√
2π

∫ ∞

c
e−x

2/2dx <
1√
2π

∫ ∞

c

x

c
e−x

2/2dx =
1

c
√
2π
e−

1
2 c
2
,

and by symmetry P [|X| > c] = 2P [X > c] for c > 0.

References

[1] H.P. McKean, Stochastic Integrals, Academic Press 1969

6



7

Appendix: Itô Calculus Without Probabilities

Séminaire de Probabilités XV 1979/80

ITO CALCULUS WITHOUT PROBABILITIES

by H. Föllmer

The aim of this note is to show that the Itô calculus can be devel-
oped “path by path” in the strict meaning of this term. We will derive
Itô’s formula as an exercise in analysis for a class of real functions of
quadratic variation, including the construction of the stochastic inte-

gral
∫

F ′(Xs−)dXs, by means of Riemann sums. Only afterwards we

shall speak of probabilities in order to verify that for certain stochas-
tic processes (semimartingales, processes of finite energy,...) almost all
paths belong to this class.

Let x be a real function on [0,∞[ which is right continuous and has left
limits (also called càdlàg). We will use the following notation: xt = x(t),
"xt = xt − xt−, "x2

t = ("xt)2.

We define a subdivision to be any finite sequence τ = (to, · · · , tk) such
that 0 ≤ to < · · · < tk < ∞, and we put tk+1 = ∞ and x∞ = 0. Let
(τn)n=1,2,··· be a sequence of subdivisions whose meshes converge to 0
on each compact interval. We say that x is of quadratic variation along
(τn) if the discrete measures
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ξn =
∑

ti∈τn

(xti+1 − xti)
2εti (1)

converge weakly to a Radon measure ξ on [0,∞[ whose atomic part is
given by the quadratic jumps of x:

[x, x]t = [x, x]ct +
∑

s≤t

"x2
s, (2)

where [x, x] denotes the distribution function of ξ and [x, x]c its con-
tinuous part.

Theorem. Let x be of quadratic variation along (τn) and F a function
of class C2 on IR. Then the Itô formula

F (xt) = F (xo) +
t∫

0

F (xs−)dxs +
1
2

∫

]0,t]

F
′′
(xs−)d[x, x]s (3)

+
∑

s≤t

[F (xs) − F (xs−) − F ′(xs−)"xs −
1
2
F

′′
(xs−)"x2

s],

holds with

t∫

0

F ′(xs−)dxs = lim
n

∑

τn&ti≤t

F ′(xti)(xti+1 − xti), (4)

and the series in (4) is absolutely convergent.

Remark. Due to (2) the last two terms of (3) can be written as

1
2

t∫

0

F
′′
(xs−)d[x, x]cs +

∑

s≤t

[F (xs) − F (xs−) − F ′(xs−)"xs], (5)

and we have

t∫

0

F
′′
(xs−)d[x, x]cs =

t∫

0

F
′′
(xs)d[x, x]cs, (6)



7 Appendix: Itô Calculus Without Probabilities 127

since x is a càdlàg function.

Proof. Let t > 0. Since x is right continuous we have

F (xt) − F (xo) = lim
n

∑

τn&ti≤t

[F (xti+1) − F (xti)].

1) For the sake of clarity we first treat the particularly simple case
where x is a continuous function. Taylor’s formula can be written
as

∑

τn&ti≤t

[F (xti+1) − F (xti)] =
∑

F ′(xti)(xti+1 − xti)

+
1
2

∑
F

′′
(xti)(xti+1 − xti)

2 +
∑

r(xti , xti+1),

where

r(a, b) ≤ ϕ(|b − a|)(b − a)2, (7)

and where ϕ(·) is an increasing function on [0,∞[ such that ϕ(c) →
0 for c → 0·. For n ↑ ∞ the second sum of the right hand side
converges to

1
2

∫

[0,t]

F
′′
(xs)d[x, x]s =

1
2

∫

]0,t]

F
′′
(xs−)d[x, x]s

due to the weak convergence of the discrete measures (ξn); note that
by (2) the continuity of x implies the continuity of [x, x]. The third
sum, which is dominated by

ϕ( max
τn&ti≤t

|xti+1 − xti |)
∑

τn&ti≤t

(xti+1 − xti)
2,

converges to 0 since x is continuous. Thus one obtains the existence
of the limit (4) and Itô’s formula (3).
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2) Consider now the general case. Let ε > 0. We divide the jumps of
x on [0, t] into two classes: a finite class C1 = C1(ε, t), and a class
C2 = C2(ε, t) such that

∑

s∈C2

"x2
s ≤ ε2. Let us write

∑

τn&ti≤t

[F (xti+1)−F (xti)] =
∑

1 [F (xti+1−F (xti)]+
∑

2 [F (xti+1−F (xti)]

where
∑

1 indicates the summation over those ti ∈ τn with ti ≤ t
for which the interval ]ti, ti+1] contains a jump of class C1. We have

lim
n

∑
1 [F (xti+1) − F (xti)] =

∑

s∈C1

[F (xs) − F (xs−)].

On the other hand, Taylor’s formula allows us to write
∑

2 [F (xti+1) − F (xti)] =

∑

τn&ti≤t

F ′(xti)(xti+1 − xti) +
1
2

∑

τn&ti≤t

F
′′
(xti)(xti+1 − xti)

2

−
∑

1 [F
′(xti)(xti+1−xti)+

1
2
F

′′
(xti)(xti+1−xti)

2]+
∑

2r(xti , xti+1)

We will show below that the second sum on the right hand side
converges to

1
2

∫

]0,t]

F
′′
(xs−)[x, x]s,

as n ↑ ∞; see (9). The third sum converges to

∑

s∈C1

[F ′(xs−)"xs +
1
2
F

′′
(xs−)"x2

s].

Due to the uniform continuity of F
′′ on the bounded set of values

xs (0 ≤ s ≤ t) we can assume (7), and this implies

lim sup
n

∑
2r(xti , xti+1) ≤ ϕ(ε+)[x, x]t+. (8)
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Let ε converge to 0. Then (8) converges to 0, and

∑

s∈C1(ε,t)

[F (xs) − F (xs−) − F ′(xs−)"xs] −
1
2

∑

s∈C1(ε,t)

F
′′
(xs−)"x2

s

converges to the series in (3). Furthermore the series converges ab-
solutely since

∑

s≤t

|F (xs) − F (xs−) − F ′(xs−)"xs| ≤ const
∑

s≤t

"x2
s

by Taylor’s formula. Thus we obtain the existence of the limit in (4)
and Itô’s formula (3).

3) Let us show that

lim
n

∑

τn&ti≤t

f(xti)(xti+1 − xti)
2 =

∫

]0,t]

f(xs−)d[x, x]s (9)

for any continuous function f on IR. Let ε > 0, and denote by z the
distribution function of the jumps in class C1 = C1(ε, t), i. e.,

zu =
∑

C1&s≤u

"xs (u ≥ 0).

We have

lim
n

∑

τn&ti≤u

f(xti)(zti+1 − zti)
2 =

∑

C1&s≤u

f(xs−)"x2
s (10)

for each u ≥ 0. Denote by ζn and ηn the discrete measures associated
with z and y = x − z in the sense of (1). By (10) the measures ζn

converge weakly to the discrete measure

ζ =
∑

s∈C1

"x2
sεs.
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Since the last sum of
∑

τn&ti≤u

(xti+1 − xti)
2 =

∑
(yti+1 − yti)

2 +
∑

(zti+1 − zti)
2

+2
∑

(yti+1 − yti)(zti+1 − zti)

converges to 0, the measures ηn converge weakly to the measure
η = ξ−ζ whose atomic part has total mass ≤ ε2. Hence the function
f ◦x is almost surely continuous with respect to the continuous part
of η, and this implies

lim
n

sup|
∑

τn&ti≤t

f(xti)(yti+1−yti)
2−

∫

]0,t]

f(xs−)dη|≤ 2 ‖f ‖t ε
2 (11)

where ‖f ‖t= sup{f(xs); 0 ≤ s ≤ t}. Combining (10) and (11) we
obtain (9), and this completes the proof. Let us emphasize that we
have followed closely the “classical ” argument; see Meyer [4]. The
only new contribution is the use of weak convergence, which allows
us to give a completely analytic version.

Remarks.

1) Let x = (x1, · · · , xn) be a càdlàg function on [0,∞[ with values in
IRn. We say that x a is of quadratic variation along (τn) if this holds
for all real functions xi, xi + xj (1 ≤ i, j ≤ n) . In this case we put

[xi, xj ]t =
1
2
([xi + xj , xi + xj ]t − [xi, xi]t − [xj , xj ]t)

= [xi, xj ]ct +
∑

s≤t

"xi
s"xj

s.

Then we have the Itô formula

F(xt)=F (xo)+
t∫

0

DF(xs−)dxs +
1
2

∑

i,j

t∫

0

DiDjF (xs−)d[xi, xj ]cs

+
∑

s≤t

[F (xs) − F (xs−) −
∑

i

DiF (xs−)"xi
s] (12)
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for any function F of class C2 on IRn, where

t∫

0

DF (xs−)dxs = lim
n

∑

τn&ti≤t

< DF (xti), xti+1 − xti > (13)

(< ·, · >= scalar product on IRn). The proof is the same as above,
but with more cumbersome notation.

2) The class of functions of quadratic variation is stable with respect to
C1 - operations. More precisely, if x = (x1, · · · , xn) is of quadratic
variation along (τn) and F a continuously differentiable function on
IRn then y = F ◦ x is of quadratic variation along (τn), with

[y, y]t =
∑

i,j

t∫

0

DiF (xs)DjF (xs)d[xi, xj ]cs +
∑

s≤t

"y2
s . (14)

This is the analytic version of a result of Meyer for semimartingales,
see [4] p. 359. The proof is analogous to the previous one.
Let us now turn to stochastic processes. Let (Xt)t≥0 be a semi-
martingale. Then, for any t ≥ 0, the sums

Sτ,t =
∑

τ&ti≤t

(Xti+1 − Xti)
2 (15)

converge in probability to

[X, X]t =< Xc, Xc >t +
∑

s≤t

"X2
s

when the mesh of the subdivision τ converges to 0 on [0, t]; see Meyer
[4] p. 358. For each sequence there exists thus a subsequence (τn)
such that, almost surely,

lim
n

Sτn,t = [X, X]t (16)

for each rational t . This implies that almost all paths are of
quadratic variation along (τn). Furthermore the relation (16) is
valid for all t ≥ 0 due to (9). The Itô formula (3), applied strictly
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pathwise, does not depend on the sequence (τn). In particular, we
obtain the convergence in probability of the Riemann sums in (4)
to the stochastic integral

t∫

0

F ′(Xs−)dXs,

when the mesh of τ goes to 0 on [0, t].

Remarks.

1) For Brownian motion and an arbitrary sequence of subdivisions (τn)
with mesh tending to 0 on each compact interval, almost all paths
are of quadratic variation along (τn). Indeed, by Lévy’s theorem we
have (16) without passing to subsequences.

2) For the above argument it suffices to know that the sums (15)
converge in probability to an increasing process [X, X] which has
paths of the form (2). The class of processes of quadratic varia-
tion is clearly larger than the class of semimartingales: Just con-
sider a deterministic process of quadratic variation which is of un-
bounded variation. Let us mention also the processes of finite energy
X = M + A where M is a local martingale and A is a process with
paths of quadratic variation 0 along the dyadic subdivisions. These
processes occur in the probabilistic study of Dirichlet spaces: see
Fukushima [3].

3) For a semimartingale it is known how to construct the stochastic

integral
∫

Hs−dXs (H càdlàg and adapted) pathwise as a limit of

Riemann sums, in the sense that the sums converge almost surely
outside an exceptional set which depends on H; see Bichteler [1].
We have just shown that for the particular needs of Itô calculus,
where H = f ◦X (f of class C1), the exceptional set can be chosen
in advance, independently of H. It is possible to go beyond the class
C1 by treating local times “path by path”. But not too far beyond:
Stricker [5] has just shown that an extension to continuous functions
is only possible for processes with paths of finite variation.

Jose Orihuela

Traducción tomada del texto de Dieter Sondermann

Jose Orihuela






The Fundamental Theorem of Asset Pricing

The subsequent theorem is one of the pillars supporting the modern theory
of Mathematical Finance.

Fundamental Theorem of Asset Pricing:

The following two statements are essentially equivalent for a model S of
a financial market:
(i) S does not allow for arbitrage (NA)
(ii) There exists a probability measure Q on the underlying probability space
(Ω,F , P), which is equivalent to P and under which the process is a martin-
gale (EMM).

We have formulated this theorem in vague terms which will be made pre-
cise in the sequel: we shall formulate versions of this theorem below which
use precise definitions and avoid the use of the word essentially above. In
fact, the challenge is precisely to turn this vague “meta-theorem” into sharp
mathematical results.

The story of this theorem started - like most of modern Mathematical Fi-
nance - with the work of F. Black, M. Scholes [3] and R. Merton [25]. These
authors consider a model S = (St)0≤t≤T of geometric Brownian motion pro-
posed by P. Samuelson [30], which today is widely known under the name of
Black–Scholes model. Presumably every reader of this article is familiar with
the by now wellknown technique to price options in this framework (compare
eqf04/003: Risk Neutral Pricing): one changes the underlying measure
P to an equivalent measure Q under which the discounted stock price process
is a martingale. Subsequently one prices options (and other derivatives) by
simply taking expectations with respect to this “risk neutral” or “martin-
gale” measure Q.

In fact, this technique was not the novel feature of [3] and [25]. It was
used by actuaries for some centuries and it was also used by L. Bachelier [2]
in 1900 who considered Brownian motion (which, of course, is a martingale)
as a model S = (St)0≤t≤T of a stock price process. In fact, the prices obtained
by Bachelier by this method were - at least for the empirical data considered
by Bachelier himself - very close to those derived from the celebrated Black–
Merton–Scholes formula (compare [34]).

The decisive novel feature of the Black–Merton–Scholes approach was the
argument which links this pricing technique with the notion of arbitrage: the
pay-off function of an option can be precisely replicated by trading dynam-
ically in the underlying stock. This idea, which is credited in footnote 3 of
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[3] to R. Merton, opened a completely new perspective on how to deal with
options, as it linked the pricing issue with the idea of hedging, i.e., dynami-
cally trading in the underlying asset.

The technique of replicating an option is completely absent in Bachelier’s
early work; apparently the idea of “spanning” a market by forming linear
combinations of primitive assets first appears in the Economics literature in
the classic paper by K. Arrow [1]. The mathematically delightful situation,
that the market is complete in the sense that all derivatives can be replicated,
occurs in the Black–Scholes model as well as in Bachelier’s original model
of Brownian motion (compare eqf04/008: Second Fundamental Asset
Pricing Theorem). Another example of a model in continuous time shar-
ing this property is the compensated Poisson process, as observed by J. Cox
and S. Ross [4]. Roughly speaking, these are the only models in continuous
time sharing this seducingly beautiful “martingale representation property”
(see [16] and [39] for a precise statement on the uniqueness of these families
of models).

Appealing as it might be, the consideration of “complete markets” as
above is somewhat dangerous from an economic point of view: the precise
replicability of options, which is a sound mathematical theorem in the frame-
work of the above models, may lead to the illusion that this is also true in
economic reality. But, of course, these models are far from matching reality
in a one-to-one manner. Rather they only highlight important aspects of
reality; therefore they should not be considered as ubiquitously appropriate.

For many purposes it is of crucial importance to put oneself into a more
general modeling framework.

When the merits as well as the limitations of the Black–Merton–Scholes
approach unfolded in the late 70’s, the investigations on the Fundamental
Theorem of Asset Pricing started. As J. Harrison and S. Pliska formulate it
in their classic paper [15]: “it was a desire to better understand their formula
which originally motivated our study,...”

The challenge was to obtain a deeper insight into the relation of the fol-
lowing two aspects: on the one side the methodology of pricing by taking
expectations with respect to a properly chosen “risk neutral” or “martingale”
measure Q; on the other hand the methodology of pricing by “no arbitrage”
considerations. Why, after all, do these two seemingly unrelated approaches
yield identical results in the Black–Merton–Scholes approach? Maybe even
more importantly: how far can this phenomenon be extended to more in-
volved models?

To the best of my knowledge the first one to take up these questions in a
systematic way was S. Ross ([29]; see also [4], [28], and [27]).
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He chose the following setting to formalize the situation: fix a topolog-
ical, ordered vector space (X, τ), modeling the possible cash flows (e.g. the
pay-off function of an option) at a fixed time horizon T . A good choice is,
e.g. X = Lp(Ω,F , P), where 1 ≤ p ≤ ∞ and (Ω,F , (Ft)0≤t≤T , P) is the under-
lying filtered probability space. The set of marketed assets M is a subspace
of X.

In the context of a stock price process S = (St)0≤t≤T as above, one
might think of M as all the outcomes of an initial investment x ∈ R plus
the result of subsequent trading according to a predictable trading strategy
H = (Ht)0≤t≤T . This yields (in discounted terms) an element

m = x +

∫ T

0

HtdSt (1)

in the set M of marketed claims. It is natural to price the above claim m
by setting π(m) = x, as this is the net investment necessary to finance the
above claim m.

For notational convenience we shall assume in the sequel that S is a one-
dimensional process. It is straightforward to generalize to the case of d risky
assets by assuming that S is Rd-valued and replacing the above integral by

m = x +

∫ T

0

d∑

i=1

H i
tdSi

t.

Some words of warning about the stochastic integral (1) seem necessary.
The precise admissibility conditions which should be imposed on the stochas-
tic integral (1), in order to make sense both mathematically as well as eco-
nomically, are a subtle issue. Much of the early literature on the Fundamental
Theorem of Asset Pricing struggled exactly with this question. An excellent
reference is [14]. In [29] S. Ross circumvented this problem by deliberately
leaving this issue aside and simply starting with the modeling assumption
that the subset M ⊆ X as well as a pricing operator π : M → R are given.

Let us now formalize the notion of arbitrage. In the above setting, we
say that the no arbitrage assumption is satisfied if, for m ∈ M , satisfying
m ≥ 0, P-a.s. and P[m > 0] > 0, we have π(m) > 0. In prose this means that
it is not possible to find a claim m ∈ M , which bears no risk (as m ≥ 0, P-
a.s.), yields some gain with strictly positive probability (as P[m > 0] > 0),
and such that its price π(m) is less than or equal to zero.

The question now arises whether it is possible to extend π : M → R to a
non-negative, continuous linear functional π∗ : X → R.

What does this have to do with the issue of martingale measures? This
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theme was developed in detail by M. Harrison and D. Kreps [14]. Sup-
pose that X = Lp(Ω,F , P) for some 1 ≤ p < ∞, that the price process
S = (St)0≤t≤T satisfies St ∈ X, for each 0 ≤ t ≤ T , and that M contains (at
least) the “simple integrals” on the process S = (St)0≤t≤T of the form

m = x +
n∑

i=1

Hi(Sti − Sti−1). (2)

Here x ∈ R, 0 = t0 < t1 < · · · < tn = T and (Hi)n
i=1 is a (say) bounded

process which is predictable, i.e. Hi is Fti−1-measurable. The sums in (2)
are the Riemann sums corresponding to the stochastic integrals (1). The
Riemann sums (2) have a clear-cut economic interpretation (see [14]). In
(2) we do not have to bother about subtle convergence issues as only finite
sums are involved in the definition. It therefore is a traditional (minimal)
requirement that the Riemann sums of the form (2) are in the space M of
marketed claims; naturally, the price of a claim m of the form (2) should be
defined as π(m) = x.

Now suppose that the functional π, which is defined for the claims of
the form (2) can be extended to a continuous, non-negative functional π∗

defined on X = Lp(Ω,F , P). If such an extension π∗ exists, it is induced by
some function g ∈ Lq(Ω,F , P), where 1

p + 1
q = 1. The non-negativity of π∗ is

tantamount to g ≥ 0, P-a.s., and the fact that π∗(1) = 1 shows that g is the
density of a probability measure Q with Radon–Nikodym derivative dQ

dP = g.
If we can find such an extension π∗ of π, we thus find a probability measure

Q on (Ω,F , P) for which

π∗
( n∑

i=1

Hi(Sti − Sti−1)
)

= EQ

[ n∑

i=1

Hi(Sti − Sti−1)
]

for every bounded predictable process H = (Hi)n
i=1 as above, which is tanta-

mount to (St)0≤t≤T being a martingale (see [14, Th. 2], or [11, Lemma 2.2.6]).
Summing up: in the case 1 ≤ p < ∞, finding a continuous, non-negative

extension π∗ : Lp(Ω,F , P) → R of π amounts to finding a P-absolutely con-
tinuous measure Q with dQ

dP ∈ Lq and such that (St)0≤t≤T is a martingale
under Q.

At this stage it becomes clear that in order to find such an extension π∗

of π, the Hahn–Banach theorem should come into play in some form, e.g., in
one of the versions of the separating hyperplane theorem.

In order to be able to do so, S. Ross assumes ([29, p. 472]) that “...we will
endow X with a strong enough topology to insure that the positive orthant
{x ∈ X|x > 0} is an open set,...”. In practice, the only infinite-dimensional

4



ordered topological vector space X, such that the positive orthant has non-
empty interior, is X = L∞(Ω,F , P), endowed with the topology induced by
‖.‖∞.

Hence the two important cases, applying to S. Ross’ hypothesis, are when
either the probability space Ω is finite, so that X = Lp(Ω,F , P) simply is
finite dimensional and its topology does not depend on 1 ≤ p ≤ ∞, or if
(Ω,F , P) is infinite and X = L∞(Ω,F , P) equipped with the norm ‖.‖∞.

After these preparations we can identify the two convex sets to be sepa-
rated: let A = {m ∈ M : π(m) ≤ 0} and B be the interior of the positive
cone of X. Now make the easy, but crucial, observation: these sets are dis-
joint if and only if the no arbitrage condition is satisfied. As one always can
separate an open convex set from a disjoint convex set, we find a functional
π̃ which is strictly positive on B, while π̃ takes non-positive values on A.
By normalizing π̃, i.e., letting π∗ = π̃(1)−1π̃ we have thus found the desired
extension.

In summary, the first precise version of the Fundamental Theorem of
Asset Pricing is established in [29], the proof relying on the Hahn–Banach
theorem. There are, however, serious limitations: in the case of infinite
(Ω,F , P) the present result only applies to L∞(Ω,F , P) endowed with the
norm topology. In this case the continuous linear functional π∗ only is in
L∞(Ω,F , P)∗ and not necessarily in L1(Ω,F , P); in other words we cannot
be sure that π∗ is induced by a probability measure Q, as it may happen
that π∗ ∈ L∞(Ω,F , P)∗ also has a singular part.

Another drawback, which already appears in the case of finite-dimensional
Ω (in which case π∗ certainly is induced by some Q with dQ

dP = g ∈ L1(Ω,F , P))
is the following: we cannot be sure that the function g is strictly positive P-
a.s. or, in other words, that Q is equivalent to P.

After this early work by S. Ross a major advance in the theory was
achieved between ’79 and ’81 by three seminal papers [14], [15], [24] by
M. Harrison, D. Kreps and S. Pliska. In particular, [14] is a landmark in
the field. It uses a similar setting as [29], namely an ordered topological
vector space (X, τ) and a linear functional π : M → R, where M is a linear
subspace of X. Again the question is whether there exists an extension of
π to a linear, continuous, strictly positive π∗ : X → R. This question is
related in [14] to the issue whether (M, π) is viable as a model of economic
equilibrium. Under proper assumptions on the convexity and continuity of
the preferences of agents this is shown to be equivalent to the extension dis-
cussed above.

The paper [14] also analyses the case when Ω is finite. Of course, only
processes S = (St)T

t=0 indexed by finite, discrete time {0, 1, ..., T} make sense
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in this case. For this easier setting the following precise theorem was stated
and proved in the subsequent paper [15] by J. Harrison and S. Pliska:

Theorem 1. ([15, Th. 2. 7.]): Suppose the stochastic process S = (St)T
t=0

is based on a finite, filtered, probability space (Ω,F , (Ft)T
t=0, P). The market

model contains no arbitrage possibilities if and only if there is an equivalent
martingale measure for S.

The proof again relies on a (finite-dimensional version) of the Hahn–
Banach theorem plus an extra argument making sure to find a measure Q
which is equivalent to P. M. Harrison and S. Pliska thus have achieved a
precise version of the above meta-theorem in terms of equivalent martingale
measures which does not use the word “essentially”. Actually, the theme of
the Harrison–Pliska theorem goes back much further, to the work of A. Shi-
mony [35] and J. Kemeny [22] on symbolic logic in the tradition of R. Carnap,
B. de Finetti, and F. Ramsey. These authors showed that, in a setting with
only finitely many states of the world, a family of possible bets does not allow
(by taking linear combinations) for making a riskless profit (i.e. one certainly
does not lose but wins with strictly positive probability), if and only if there
is a probability measure Q on these finitely many states, which prices the
possible bets by taking conditional Q-expectations.

The restriction to finite Ω is very severe in applications: the flavor of
the theory, building on Black–Scholes–Merton, is precisely the concept of
continuous time. Of course, this involves infinite probability spaces (Ω,F , P).

Many interesting questions were formulated in the papers [14] and [15]
hinting on the difficulties to prove a version of the Fundamental Theorem of
Asset Pricing beyond the setting of finite probability spaces.

A major break-through in this direction was achieved by D. Kreps [24]: as
above, let M ⊆ X and a linear functional π : M → R be given. The typical
choice for X will now be X = Lp(Ω,F , P), for 1 ≤ p ≤ ∞, equipped with the
topology τ of convergence in norm, or, if X = L∞(Ω,F , P), equipped with
the Mackey topology τ induced by L1(Ω,F , P). This setting will make sure
that a continuous linear functional on (X, τ) will be induced by a measure
Q which is absolutely continuous with respect to P.

The no arbitrage assumption means that M0 := {m ∈ M : π(m) = 0}
intersects the positive orthant X+ of X only in {0}. In order to obtain an
extension of π to a continuous, linear functional π∗ : X → R we have to find
an element in (X, τ)∗ which separates the convex set M0 from the disjoint
convex set X+\{0}, i.e., the positive orthant of X with 0 deleted.

Easy examples show that, in general, this is not possible. In fact, this is
not much of a surprise (if X is infinite-dimensional) as we know that some
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topological condition is needed for the Hahn–Banach theorem to work.
It is always possible to separate a closed convex set from a disjoint compact

convex set by a continuous linear functional. In fact, one may even get strict
separation in this case. It is this version of the Hahn–Banach theorem which
D. Kreps eventually applies.

But how? After all, neither M0 nor X+\{0} are closed in (X, τ), let alone
compact.

Here is the ingenious construction of D. Kreps: define

A = M0 − X+ , (3)

where the bar denotes the closure with respect to the topology τ . We shall
require that A still satisfies

A ∩ X+ = {0}. (4)

This property is baptized as “no free lunch” by D. Kreps:

Definition 2. [24]: The financial market defined by (X, τ), M , and π admits
a free lunch if there are nets (mα)α∈I ∈ M0 and (hα)α∈I ∈ X+ such that

lim
α∈I

(mα − hα) = x (5)

for some x ∈ X+\{0}.

It is easy to verify that the negation of the above definition is tantamount
to the validity of (4).

The economic interpretation of the “no free lunch” condition is a sharp-
ening of the “no arbitrage condition”. If the latter is violated, we can simply
find an element x ∈ X+\{0} which also lies in M0. If the former fails, we
cannot quite guarantee this, but we can find x ∈ X+\{0} which can be ap-
proximated in the τ -topology by elements of the form mα − hα. The passage
from mα to mα −hα means that agents are allowed to “throw away money”,
i.e. to abandon a positive element hα ∈ X+. This combination of the “free
disposal” assumption with the possibility of passing to limits is crucial in
Kreps’ approach (3) as well as in most of the subsequent literature. It was
shown in [32, Ex. 3.3]; (compare also [33]) that the (seemingly ridiculous)
“free disposal” assumption cannot be dropped.

Definition (3) is tailor-made for the application of Hahn–Banach. If the
no free lunch condition (4) is satisfied, we may, for any h ∈ X+, separate the
τ -closed, convex set A from the one-point set {h} by an element πh ∈ (X, τ)∗.
As 0 ∈ A we may assume that πh|A ≤ 0 while πh(h) > 0. We thus have ob-
tained a non-negative (as −X+ ⊆ A), continuous linear functional πh which
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is strictly positive on a given h ∈ X+. Supposing that X+ is τ -separable
(which is the case in the above setting of Lp-spaces if (Ω,F , P) is countably
generated), fix a dense sequence (hn)∞n=1 and find strictly positive scalars
µn > 0 such that π∗ =

∑∞
n=1 µnπhn converges to a probability measure in

(X, τ)∗ = Lq(Ω,F , P), where 1
p + 1

q = 1. This yields the desired extension π∗

of π which is strictly positive on X+\{0}.
We still have to specify the choice of (M0, π). The most basic choice is to

take for given S = (St)0≤t≤T the space generated by the “simple integrands”
(2) as proposed by J. Harrison and D. Kreps [14]. We thus may deduce from
Kreps’ arguments in [24] the following version of the Fundamental Theorem
of Asset pricing.

Theorem 3. Let (Ω,F , P) be countably generated and X = Lp(Ω,F , P) en-
dowed with the norm topology τ , if 1 ≤ p < ∞, or the Mackey topology
induced by L1(Ω,F , P), if p = ∞.

Let S = (St)0≤t≤T be a stochastic process taking values in X. Define
M0 ⊆ X to consist of the simple stochastic integrals

∑n
i=1 Hi(Sti − Sti−1) as

in (2).
Then the “no free lunch” condition (3) is satisfied if and only if there is

a probability measure Q with dQ
dP ∈ Lq(Ω,F , P), where 1

p + 1
q = 1, such that

(St)0≤t≤T is a Q-martingale.

This remarkable theorem of D. Kreps sets new standards. For the first
time, we have a mathematically precise statement of our meta-theorem ap-
plying to a general class of models in continuous time. There are still some
limitations, however.

When applying the theorem to the case 1 ≤ p < ∞ we find the require-
ment dQ

dP ∈ Lq(Ω,F , P) for some q > 1, which is not very pleasant. After
all, we want to know: what exactly corresponds (in terms of some no ar-
bitrage condition) to the existence of an equivalent martingale measure Q?
The q-moment condition is unnatural in most applications. In particular, it
is not invariant under equivalent changes of measures as is done often in the
applications.

The most interesting case of the above theorem is p = ∞. But in this
case the requirement St ∈ X = L∞(Ω,F , P) is unduly strong for most ap-
plications. In addition, for p = ∞ we run into the subtleties of the Mackey
topology τ (or the weak-star topology, which does not make much of a dif-
ference) on L∞(Ω,F , P). We shall discuss this issue below.

The “heroic period” of the development of the Fundamental Theorem of
Asset Pricing marked by S. Ross [29], Harrison–Kreps [14], Harrison–Pliska
[15] and D. Kreps [24], put the issue on safe mathematical grounds and
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brought some spectacular results. However, it still left many questions open;
quite a number of them were explicitly stated as open problems in these
papers.

Subsequently a rather extensive literature developed, answering these
problems and opening new perspectives. We cannot give a full account on
all of this literature and refer, e.g., to the monograph [11] for more extensive
information. We can give an outline.

As regards the situation for 1 ≤ p ≤ ∞ in Kreps’ theorem, this issue
was further developed by D. Duffie and C.F. Huang [12] and, in particu-
lar, by C. Stricker [36]. This author related the no free lunch condition
of D. Kreps to a theorem by J.A. Yan [37] obtained in the context of the
Bichteler–Dellacherie theorem on the characterisation of semi-martingales.
Using Yan’s theorem, Stricker gave a different proof of Kreps’ theorem which
does not need the assumption that (Ω,F , P) is countably generated.

A beautiful extension of the Harrison–Pliska theorem was obtained in
1990 by R. Dalang, A. Morton and W. Willinger [5]. They showed that, for
an Rd-valued process (St)T

t=0 in finite discrete time, the no arbitrage condi-
tion is indeed equivalent to the existence of an equivalent martingale measure.
The proof is surprisingly tricky, at least for the case d ≥ 2. It is based on
the measurable selection theorem (the suggestion to use this theorem is ac-
knowledged to F. Delbaen). Different proofs of the Dalang–Morton–Willinger
theorem have been given in [31], [20], [26], [17], and [21].

A important question left unanswered by D. Kreps was whether one can,
in general, replace the use of nets (mα − hα)α∈I , indexed by α ranging in a
general ordered set I, simply by sequences (mn − hn)∞n=1. In the context of
continuous processes S = (St)0≤t≤T a positive answer was given by F. Del-
baen in [6], if one is willing to make the harmless modification to replace the
deterministic times 0 = t0 ≤ t1 ≤ · · · ≤ tn = T in (2) by stopping times
0 = τ0 ≤ τ1 ≤ · · · ≤ τn = T . A second case, where the answer to this ques-
tion is positive are processes S = (St)∞t=0 in infinite, discrete time as shown
in [32].

The Banach–Steinhaus theorem implies that, for a sequence (mn−hn)∞n=1

converging in L∞(Ω,F , P) with respect to the weak-star (or Mackey) topol-
ogy, the norms (||mn − hn||∞)∞n=1 remain bounded (“uniform boundedness
principle”). Therefore it follows that in the above two cases of continuous
processes S = (St)0≤t≤T or processes (St)∞t=0 in infinite, discrete time, the
“no free lunch” condition of D. Kreps can be equivalently replaced by the
“no free lunch with bounded risk” condition introduced in [32]: in (5) above
we additionally impose that (||mα−hα||∞)α∈I remains bounded. In this case
we have that there is a constant M > 0 such that mα ≥ −M, P-a.s. for each
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α ∈ I, which explains the wording “bounded risk”.

However, in the context of general semi-martingale models S = (St)0≤t≤T ,
a counter-example was given by F. Delbaen and the present author in ([7,
Ex. 7.8]) showing that the “no free lunch with bounded risk” condition does
not imply the existence of an equivalent martingale measure. Hence, in a
general setting and by only using simple integrals, there is no hope to get any
more precise information on the free lunch condition than the one provided
by Kreps’ theorem.

At this stage it became clear that, in order to obtain sharper results, one
has to go beyond the framework of simple integrals (2) and rather use general
stochastic integrals (1). After all, the simple integrals only are a technical
gimmick, analogous to step functions in measure theory. In virtually all the
applications, e.g., the replication strategy of an option in the Black–Scholes
model, one uses general integrals of the form (1).

General integrands pose a number of questions to be settled. First of
all, the integral (1) has to be mathematically well-defined. The theory of
stochastic calculus starting with K. Itô, and developed in particular by the
Strasbourg school of probability around P.-A. Meyer, provides very precise
information on this issue: there is a good integration theory for a given
stochastic process S = (St)0≤t≤T if and only if S is a semi-martingale (theo-
rem of Bichteler–Dellacherie).

Hence mathematical arguments lead to the model assumption that S has
to be a semi-martingale. But what about an economic justification of this
assumption? Fortunately the economic reasoning hints in the same direc-
tion. It was shown by F. Delbaen and the present author that, for a locally
bounded stochastic process S = (St)0≤t≤T , a very weak form of Kreps’ no
free lunch condition involving simple integrands (2), implies already that S
is a semi-martingale (see [7, Theorem 7.2], for a precise statement).

Hence it is natural to assume that the model S = (St)0≤t≤T of stock
prices is a semi-martingale so that the stochastic integral (2) makes sense
mathematically, for all S-integrable, predictable processes H = (Ht)0≤t≤T .
As pointed out, [14] and [15] impose in addition an admissibility condition
to rule out doubling strategies and similar schemes.

Definition 4. ([7, Def. 2.7]): An S-integrable predictable process H =
(Ht)0≤t≤T is called admissible if there is a constant M > 0 such that

∫ t

0

HudSu ≥ −M, a.s., for 0 ≤ t ≤ T. (6)
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The economic interpretation is that the economic agent, trading according
to the strategy, has to respect a finite credit line M .

Let us now sketch the approach of [7]. Define

K =
{∫ T

0

HtdSt : H admissible
}

(7)

which is a set of (equivalence classes of) random variables. Note that by (6)
the elements f ∈ K are uniformly bounded from below, i.e., f ≥ −M for
some M ≥ 0. On the other hand, there is no reason why the positive part
f+ should obey any boundedness or integrability assumption.

As a next step we “allow agents to throw away money” similarly as in
Kreps’ work [24]. Define

C = {g ∈ L∞(Ω,F , P) : g ≤ f for some f ∈ K}
= [K − L0

+(Ω,F , P)] ∩ L∞(Ω,F , P), (8)

where L0
+(Ω,F , P) denotes the set of non-negative measurable functions.

By construction, C consists of bounded random variables, so that we can
use the functional analytic duality theory between L∞ and L1. The difference
of the subsequent definition to Kreps’ approach is that it pertains to the norm
topology ‖.‖∞ rather than to the Mackey topology on L∞(Ω,F , P).

Definition 5. ([11, 2.8]): A locally bounded semi-martingale S = (St)0≤t≤T

satisfies the no free lunch with vanishing risk condition if

C̄ ∩ L∞
+ (Ω,F , P) = {0}, (9)

where C̄ denotes the ‖.‖∞-closure of C.

Here is the translation of (9) into prose: the process S fails the above
condition iff there is a function g ∈ L∞

+ (Ω,F , P) with P[g > 0] > 0 and a
sequence (fn)∞n=1 of the form

fn =

∫ T

0

Hn
t dSt,

where Hn are admissible integrands, such that

fn ≥ g − 1
n , a.s. (10)

Hence the condition of no free lunch with vanishing risk is intermediate
between the (stronger) no free lunch condition of D. Kreps and the (weaker)
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no arbitrage condition. The latter would require that there is a non-negative
function g with P[g > 0] > 0 which is of the form

g =

∫ T

0

HtdSt,

for an admissible integrand H . Condition (10) does not quite guarantee this,
but something - at least from an economic point of view - very close: we can
uniformly approximate from below such a g by the outcomes fn of admissible
trading strategies.
The main result of F. Delbaen and the author [7] reads as follows.

Theorem 6. ([7, Corr. 1.2]): Let S = (St)0≤t≤T be a locally bounded real-
valued semi-martingale.

There is a probability measure Q on (Ω,F) which is equivalent to P and
under which S is a local martingale if and only if S satisfies the condition of
no free lunch with vanishing risk.

This is a mathematically precise theorem which, in my opinion, is quite
close to the vague “meta-theorem” at the beginning of this article. The dif-
ference to the intuitive “no arbitrage” idea is that the agent has to be willing
to sacrifice (at most) the quantity 1

n in (10), where we may interpret 1
n as,

say, 1 Cent.
The proof of the above theorem is rather longish and technical and a more

detailed discussion goes beyond the scope of the present article. To the best
of my knowledge, no essential simplification of this proof has been achieved
so far (compare [19]).

Mathematically speaking, the statement of the theorem looks very suspi-
cious at first glance: after all, the no free lunch with vanishing risk condition
pertains to the norm topology of L∞(Ω,F , P). Hence it seems that, when
applying the Hahn–Banach theorem, one can only obtain a linear functional
in L∞(Ω,F , P)∗, which is not necessarily of the form dQ

dP ∈ L1(Ω,F , P), as we
have seen in Ross’ work [29].

The reason why the above theorem nevertheless is true is a little miracle:
it turns out ([7, Th. 4.2]) that, under the assumption of no free lunch with
vanishing risk, the set C defined in (8) is automatically weak-star closed in
L∞(Ω,F , P). This pleasant fact is not only a crucial step in the proof of
the above theorem; maybe even more importantly, it also found other ap-
plications. For example, to find general existence results in the theory of
utility optimisation (eqf04/009: Expected utility maximization) it is
of crucial importance to have a closedness property of the set over which one
optimizes: for these applications the above result is very useful (see, e.g.,
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[23]).
Without going into the details of the proof let me point out the impor-

tance of certain elements in the set K. The admissibility rules out the use of
doubling strategies. The opposite of such a strategy can be called a suicide
strategy. It is the mathematical equivalent of making a bet at the roulette,
leaving it as well as all gains on the table as long as one keeps winning, and
wait until one loses for the first time. Such strategies, although admissible,
do not reflect economic efficiency. More precisely we define

Definition 7. : An admissible outcome
∫ T

0 HtdSt is called maximal if there

is no other admissible strategy H ′ such that
∫ T

0 H ′
tdSt ≥

∫ T

0 HtdSt with

P[
∫ T

0 H ′
tdSt >

∫ T

0 HtdSt] > 0

In the proof of Theorem 6, these elements play a crucial role and the heart
of the proof consists in showing that every element in K is dominated by a
maximal element. But besides their mathematical relevance they also have
a clear economic interpretation. There is no use in implementing a strategy
that is not maximal as one can do better. Non-maximal elements can also
be seen as bubbles, see [18].

In Theorem 6 we only assert that S is a local martingale under Q. In
fact, this technical concept cannot be avoided in this setting. Indeed, fix
an S-integrable, predictable, admissible process H = (Ht)0≤t≤T as well as
a bounded, predictable, strictly positive process (kt)0≤t≤T . The subsequent
identity trivially holds true.

∫ t

0

HudSu =

∫ t

0

Hu

ku
dS̃u, 0 ≤ t ≤ T, (11)

where

S̃u =

∫ u

0

kvdSv, 0 ≤ u ≤ T. (12)

The message of (11) and (12) is that the class of processes obtained by
taking admissible stochastic integrals on S or S̃ simply coincide. An easy
interpretation of this rather trivial fact is that the possible investment op-
portunities do not depend on whether stock prices are denoted in Euros or
in Cents (this corresponds to taking kt ≡ 100 above).

But it may very well happen that S̃ is a martingale while S only is a local
martingale. In fact, the concept of local martingales may even be charac-
terized in these terms ([10, Proposition 2.5]): a semi-martingale S is a local
martingale if and only if there is a strictly positive, decreasing, predictable
process k such that S̃ defined in (12) is a martingale.
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Again we want to emphasize the role of the maximal elements. It turns
out, see [8] and [11], that if

∫ T

0 HtdSt is maximal, if and only if there is

an equivalent local martingale measure Q such that the process
∫ t

0 HudSu is
a martingale and not just a local martingale under Q. One can show, see
[9] and [11], that for a given sequence of maximal elements

∫ T
0 Hn

t dSt, one
can find one and the same equivalent local martingale measure Q such that
all the processes

∫ t
0 Hn

u dSu are Q-martingales. Another useful and related

characterisation, see [8] and [11], is that if a process Vt = x +
∫ t

0 HudSu

defines a maximal element
∫ T

0 HudSu and remains strictly positive, the whole
financial market can be rewritten in terms of V as a new numéraire without
losing the no-arbitrage properties. The change of numéraire and the use of
the maximal elements allows to introduce a numéraire invariant concept of
admissibility, see [9] for details. An important result in this paper is that the
sum of maximal elements is again a maximal element.

Theorem 6 above still contains one severe limitation of generality, namely
the local boundedness assumption on S. As long as we only deal with con-
tinuous processes S, this requirement is, of course, satisfied. But if one also
considers processes with jumps, in most applications it is natural to drop the
local boundedness assumption.

The case of general semi-martingales S (without any boundedness as-
sumption) was analyzed in [10]. Things become a little trickier as the concept
of local martingales has to be weakened even further: we refer to eqf04/007:
Equivalent Martingale Measure and Ramifications for a discussion of
the concept of sigma-martingales. This concept allows to formulate a result
pertaining to a perfectly general setting.

Theorem 8. ([7, Corr. 1.2]): Let S = (St)0≤t≤T be an Rd-valued semi-
martingale.

There is a probability measure Q on (Ω,F) which is equivalent to P and
under which S is a sigma-martingale if and only if S satisfies the condition
of no free lunch with vanishing risk with respect to admissible strategies.

One still may ask whether it is possible to formulate a version of the
fundamental theorem which does not rely on the concepts of local or sigma-,
but rather on “true” martingales.

This was achieved by J. Yan [38] by applying a clever change of numéraire
technique, (eqf04/010: Change of Numéraire compare also [13, Section
5]): let us suppose that (St)0≤t≤T is a positive semi-martingale, which is
natural if we model, e.g., prices of shares (while the previous setting of not
necessarily positive price processes also allows for the modeling of forwards,
futures etc.).
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Let us weaken the admissibility condition (6) above, by calling a pre-
dictable, S-integrable process allowable if

∫ t

0

HudSu ≥ −M(1 + St) a.s., for 0 ≤ t ≤ T. (13)

The economic idea underlying this notion is wellknown and allows for the
following interpretation: an agent holding M units of stock and bond may,
in addition, trade in S according to the trading strategy H satisfying (13);
she will then remain liquid during [0, T ].

By taking S + 1 as new numéraire and replacing admissible by allowable
trading strategies Yan obtains the following Theorem.

Theorem 9. ([38, Theorem 3.2]) Suppose that S is a positive semi-martingale.
There is a probability measure Q on (Ω,F) which is equivalent to P and un-
der which S is a martingale if and only if S satisfies the condition of no free
lunch with vanishing risk with respect to allowable trading strategies.

Walter Schachermayer

References

[1] Arrow, K. (1964) The role of securities in the optimal allocation of risk-
bearing. Rev. Econ. Stud. 31, 91–96 (1964).
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