Aplicaciones lineales que preservan órdenes parciales

Antonio Carlos Márquez García
Trabajo conjunto con M. Burgos, A. Morales y P. Patrício

Universidad de Almería

XII Encuentro de la Red de Análisis Funcional 3 de marzo de 2016, Cáceres

Introduction

Introduction

Linear preserver problems: the study of linear maps between Banach algebras that leave invariant certain function, subset o property.

Let $T: A \rightarrow B$ be a linear map between Banach algebras.

- (I) Function preservers: $T(F(a))=F(T(a))$ for a scalar, set or vector valued function F.

Example (Frobenius '1897)

Every linear map $T: M_{n}(\mathbb{C}) \longrightarrow M_{n}(\mathbb{C})$ with $\operatorname{det}(T(R))=\operatorname{det}(R)$ for all $R \in M_{n}(\mathbb{C})$ has the form

$$
\begin{array}{ll}
T(R)=M R N, & \text { for every } R \in M_{n}(\mathbb{C}) \quad \text { or } \\
T(R)=M R^{t} N, & \text { for every } R \in M_{n}(\mathbb{C})
\end{array}
$$

with $\operatorname{det}(M N)=1$.

Further examples: spectrum, spectral radius, norm, reduced minimum modulus...

- (II) Subset preservers: $T\left(S_{A}\right) \subset S_{B}$ or $T\left(S_{A}\right)=S_{B}$.

Example (Kaplansky's problem)

Let A, B be unital semisimple Banach algebras and $T: A \longrightarrow B$ a linear unital surjective map such that $T\left(A^{-1}\right)=B^{-1}$.

Then T is a Jordan homomorphism.

- Many positive partial results.
- Still unsolved in general C^{*}-algebras!

Further examples: idempotent elements, regular elements, extreme points of the unit ball...

- (III) Relation preservers: $a \sim b \Longrightarrow T(a) \sim T(b)$.

Example (Burgos, Fernández-Polo, Garcés, Martínez, Peralta '08)

Let A, B be C^{*}-algebras, $T: A \rightarrow B$ a bounded linear map, $h=T^{* *}(1)$ and $r=r(h)$.

Then T preserves orthogonality if, and only if, there exists a triple homomorphism $S: A \rightarrow B^{* *}$ such that $h^{*} S(z)=S\left(z^{*}\right)^{*} h, S(z) h^{*}=h S\left(z^{*}\right)^{*}$ and

$$
T(z)=\frac{h r^{*} S(z)+S(z) r^{*} h}{2}=h r^{*} S(z)=S(z) r^{*} h
$$

for all $z \in A$.
Further examples: commutativity, zero product, partial order relations...

- (IV) Strongly preservers: $T(F(a))=F(T(a))$, for a map F defined from the algebra into itself.

Example (Boudi, Mbekhta '10)

Let A, B be Banach algebras with A unital and $T: A \rightarrow B$ an additive map.

Then $T\left(a^{-1}\right)=T(a)^{-1}$ for every $a \in A^{-1}$ if, and only if, $T(1) T$ is a Jordan homomorphism and $T(1)$ commutes with $T(A)$.

Further examples: maps strongly preserving Drazin invertibility, group invertibility, Moore-Penrose invertibility...

- (V) Approximate preservers: characterization of linear maps that "almost" preserve a function, subset or property.

Example (Alaminos, Extremera, Villena)

Let $K, \varepsilon>0$.

Then there is $\delta>0$ such that for every linear map $T: B(X) \rightarrow B(Y)$ with $\|T\|<K$ and $q(T)>K^{-1}$, the condition

$$
\operatorname{dist}_{H}(\sigma(\phi(a)), \sigma(a))<\delta
$$

implies

$$
\operatorname{dist}(T, \text { Jlsom })<\varepsilon
$$

Our work mainly contains contributions to the lines:

- (II) Subset preservers
- (III) Relation preservers
- (IV) Strongly preservers
- (V) Approximate preservers

Some definitions

Definition (Generalized inverse)

b is a generalized inverse of a

$$
a b a=a \quad \text { and } \quad b a b=b .
$$

It is not unique in general.
A^{\wedge} denotes the set of all elements with generalized inverse in A.
Definition (Group inverse)
b is the group inverse of a if

$$
a b a=a, \quad b a b=b \quad \text { and } \quad a b=b a .
$$

Notation:

- $b=a^{\sharp}$,
- $A \sharp$ denotes the set of all group invertible elements in A.

Definitions

- Prime algebra: $a A b=\{0\}$ implies $a=0$ or $b=0$.
- Socle of an algebra:

$$
\begin{aligned}
\operatorname{soc}(A) & =\{x \in A: x A x \text { is finite-dimensional }\}= \\
& =\operatorname{span}\left\{p=p^{2}: p A p \text { is one-dimensional }\right\}
\end{aligned}
$$

The socle is essential if it has non-trivial intersection with any other non zero ideal.

- Real rank zero C*-algebra: every selfadjoint element can be approximated by real linear combination of orthogonal projections.

Let A, B be Banach algebras and $T: A \rightarrow B$ a linear map.

Definition (Homomorphism)

$$
T(a b)=T(a) T(b)
$$

Definition (Anti-homomorphism)

$$
T(a b)=T(b) T(a)
$$

Definition (Jordan homomorphism)

$$
T\left(a^{2}\right)=T(a)^{2}
$$

Let A, B be C^{*}-algebras and $T: A \rightarrow B$ a linear map.

Definition (Homomorphism)

$$
T(a b)=T(a) T(b)
$$

Definition (Jordan homomorphism)

$$
T\left(a^{2}\right)=T(a)^{2}
$$

Definition (Anti-homomorphism)

$$
T(a b)=T(b) T(a)
$$

Definition (Selfadjoint)

$$
T\left(a^{*}\right)=T(a)^{*}
$$

Linear preservers of partial orders

Preservers of the sharp partial order

Definition (Mitra '87)

$$
M \leq_{\sharp} N \quad \Leftrightarrow \quad M M^{\sharp}=N M^{\sharp}=M^{\sharp} N \quad \text { for } \quad M, N \in M_{n}(\mathbb{C})
$$

Definition (Sharp partial order)

$$
a \leq_{\sharp} b \quad \Leftrightarrow \quad a a^{\sharp}=b a^{\sharp}=a^{\sharp} b
$$

Definitions
T preserves the sharp partial order if $a \leq_{\sharp} b \Rightarrow T(a) \leq_{\sharp} T(b)$, T preserves the sharp partial order in both directions if $a \leq_{\sharp} b \Leftrightarrow T(a) \leq_{\sharp} T(b)$.

Theorem (Burgos, Márquez, Patricio '15)

Let A be a unital real rank zero C^{*}-algebra, B a Banach algebra and $T: A \rightarrow B$ a bounded linear map.

Then T preserves " \leq_{\sharp} " if, and only if, $T=T(1) S$ where S is a Jordan homomorphism and $T(1) \in A^{\sharp}$ commutes with $S(A)$.

Remark: the previous result does not hold in general unital C*-algebras.

Theorem (Burgos, Márquez, Patricio '15)

Let A, B be unital Banach algebras, soc (A) essential andT : $A \rightarrow B$ a bijective linear map.

Then T preserves " \leq_{\sharp} " if, and only if, T is a Jordan isomorphism multiplied by a central invertible element.

Preservers of the star partial order

Definition (Drazin '78)

$$
M \leq_{*} N \quad \Leftrightarrow \quad M M^{*}=N M^{*} \quad \text { and } \quad M^{*} M=M^{*} N \text { for } M, N \in M_{n}(\mathbb{C})
$$

Definition (Star partial order)

$$
a \leq_{*} b \quad \Leftrightarrow \quad a a^{*}=b a^{*} \quad \text { and } \quad a^{*} a=a^{*} b
$$

Definitions

T preserves the star partial order if $a \leq_{*} b \Rightarrow T(a) \leq_{*} T(b)$, T preserves the star partial order in both directions if $a \leq_{*} b \Leftrightarrow T(a) \leq_{*} T(b)$.

Theorem (Guterman '01)

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and $T: M_{n}(\mathbb{K}) \rightarrow M_{n}(\mathbb{K})$ a bijective linear map such that $A \leq_{*} B \Rightarrow T(A) \leq_{*} T(B)$.

Then $T(A)=\alpha U A V$ for every $A \in M_{n}(\mathbb{K})$ or $T(A)=\alpha U A^{t} V$ for every $A \in M_{n}(\mathbb{K})$, where $\alpha \in \mathbb{K}$ and U, V are unitary matrices.

(Star partial order vs. Orthogonality)

$$
a \perp b \Leftrightarrow a \leq_{*}(a+b)
$$

Consequence: if T is linear, then T preserves the star partial order \Leftrightarrow T preserves orthogonality.

Definition (Restriction of the star partial order)

$$
a \leq b \quad \Leftrightarrow \quad a=p b=b q \quad \text { for some } \quad p, q \in \operatorname{Proj}(A)
$$

- $a \leq b \Rightarrow a \leq_{*} b$,
- $a \leq_{*} b \Rightarrow a \leq b$ whenever $a \in A^{\wedge}$.

Let A, B be C^{*}-algebras with A unital and $T: A \rightarrow B$ a linear map preserving " \leq ".
Theorem (Burgos, Márquez, Patricio '15)
If A linearly spanned by its projections then T preserves orthogonality.
Theorem (Burgos, Márquez, Patricio '15)
If A is of real rank zero and T is bounded then T preserves orthogonality.

Theorem (Burgos, Márquez, Patricio '15)

If A has essential socle and T is bijective then T is a Jordan *-homomorphism multiplied by an invertible element.

Preservers of the minus partial order

Definition (Hartwig '80)

$$
A \leq^{-} B \quad \Leftrightarrow \quad A A^{-}=B A^{-} \quad \text { and } \quad A^{-} A=A^{-} B
$$

for $A, B \in M_{n}(\mathbb{C})$ and $A A^{-} A=A$.

Definition (Šemrl '10)

$$
A \leq^{-} B \quad \Leftrightarrow \quad R(P)=\overline{R(A)}, \quad N(A)=N(Q), \quad P A=P B \quad \text { and } \quad A Q=B Q
$$

for $A, B \in B(H)$ and $P, Q \in B(H)^{\bullet}$.
Theorem (Šemrl '10)
Let H be an infinite dimensional Hilbert space and $T: B(H) \rightarrow B(H)$ a bijective map with $a \leq^{-} b \Leftrightarrow T(a) \leq^{-} T(b)$.

Then $T(A)=$ RAS for every $A \in B(H)$ or $T(A)=R A^{*} S$ for every $A \in B(H)$, where R, S are bounded bijective both linear or both conjugate linear maps on H.

Definition (Minus partial order, Djordjevic, Rakic, Marovt '13)

$$
a \leq^{-} b \quad \Leftrightarrow \quad a=p b=b q
$$

for some $p, q \in A^{\bullet}$ with $a n n_{l}(p)=a n n_{l}(a)$ and $a n n_{r}(q)=a n n_{r}(a)$.
Let A, B be unital semisimple Banach algebras with essential socle and $T: A \rightarrow B$ a surjective linear map with $a \leq^{-} b \Leftrightarrow T(a) \leq^{-} T(b)$.

Theorem (Burgos, Márquez, Morales '15)
If $T\left(A^{\wedge}\right)=B^{\wedge}$ then T is Jordan isomorphism multiplied by an invertible element.

Theorem (Burgos, Márquez, Morales '15)

If $B=B(X)$ or B is a prime C^{*}-algebra then T is an isomorphism or an anti-isomorphism multiplied by an invertible element.

Preservers of the diamond partial order

Definition (Baksalary, Hauke '90)

$$
M \leq_{\diamond} N \Leftrightarrow R(M) \subset R(N), \quad R\left(M^{*}\right) \subset R\left(N^{*}\right) \quad \text { and } \quad M M^{*} M=M N^{*} M
$$

Definition (Diamond partial order)

$$
a \leq_{\diamond} b \quad \Leftrightarrow \quad a A \subset b A, \quad A a \subset A b \quad \text { and } \quad a a^{*} a=a b^{*} a
$$

Theorem (Burgos, Márquez, Morales)
Let A, B be unital C^{*}-algebras with essential socle, with B prime, and $T: A \rightarrow B$ a surjective linear map.

Then preserves " \leq_{\diamond} " in both directions if and only if $T(1) T(1)^{*}=T(1)^{*} T(1) \in \mathbb{C} 1$ and $T=T(1) S$ where S is a *-homomorphism or a *-anti-homomorphism.
M. Burgos, A. C. Márquez-García and P. Patrício, On mappings preserving the sharp and star orders, Lin. Alg. Appl. 483 (2015), 268-292.
8
M. Burgos, A. C. Márquez-García, A. Morales-Campoy, Minus partial order and linear preservers, To appear in Lin. Mult. Alg.
M. Burgos, A. C. Márquez-García, A. Morales-Campoy, Maps preserving the diamond partial order, submitted.

Thanks for your attention!

