▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Aplicaciones lineales que preservan órdenes parciales

Antonio Carlos Márquez García Trabajo conjunto con M. Burgos, A. Morales y P. Patrício

Universidad de Almería

XII Encuentro de la Red de Análisis Funcional 3 de marzo de 2016, Cáceres

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三 つ 0,0
2/24

Introduction

- ロ ト 4 目 ト 4 三 ト 4 三 ト 3 分の

Introduction

Linear preserver problems: the study of linear maps between Banach algebras that leave invariant certain function, subset o property.

Let $T : A \rightarrow B$ be a linear map between Banach algebras.

(I) Function preservers: T(F(a)) = F(T(a)) for a scalar, set or vector valued function F.

Example (Frobenius '1897)

Every linear map $T : M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$ with det(T(R)) = det(R) for all $R \in M_n(\mathbb{C})$ has the form

T(R) = MRN, for every $R \in M_n(\mathbb{C})$ or $T(R) = MR^t N$, for every $R \in M_n(\mathbb{C})$ with det(MN) = 1.

Further examples: spectrum, spectral radius, norm, reduced minimum modulus...

<

• (II) Subset preservers: $T(S_A) \subset S_B$ or $T(S_A) = S_B$.

Example (Kaplansky's problem)

Let A, B be unital semisimple Banach algebras and $T : A \longrightarrow B$ a linear unital surjective map such that $T(A^{-1}) = B^{-1}$.

Then T is a Jordan homomorphism.

- Many positive partial results.
- Still unsolved in general C*-algebras!

Further examples: idempotent elements, regular elements, **extreme points of the unit ball**...

< 日 > < 圖 > < 三 > < 三 > < 三 > < らのの

• (III) Relation preservers: $a \sim b \Longrightarrow T(a) \sim T(b)$.

Example (Burgos, Fernández-Polo, Garcés, Martínez, Peralta '08)

Let A, B be C*-algebras, $T : A \to B$ a bounded linear map, $h = T^{**}(1)$ and r = r(h).

Then *T* preserves orthogonality if, and only if, there exists a triple homomorphism $S : A \to B^{**}$ such that $h^*S(z) = S(z^*)^*h$, $S(z)h^* = hS(z^*)^*$ and

$$T(z) = \frac{hr^*S(z) + S(z)r^*h}{2} = hr^*S(z) = S(z)r^*h$$

for all $z \in A$.

Further examples: commutativity, zero product, partial order relations...

• (IV) Strongly preservers: T(F(a)) = F(T(a)), for a map F defined from the algebra into itself.

Example (Boudi, Mbekhta '10)

Let A, B be Banach algebras with A unital and $T : A \rightarrow B$ an additive map.

Then $T(a^{-1}) = T(a)^{-1}$ for every $a \in A^{-1}$ if, and only if, T(1)T is a Jordan homomorphism and T(1) commutes with T(A).

Further examples: maps strongly preserving **Drazin invertibility**, **group invertibility**, **Moore–Penrose invertibility**...

 (V) Approximate preservers: characterization of linear maps that "almost" preserve a function, subset or property.

Example (Alaminos, Extremera, Villena)

Let $K, \varepsilon > 0$.

Then there is $\delta > 0$ such that for every linear map $T : B(X) \to B(Y)$ with ||T|| < K and $q(T) > K^{-1}$, the condition

 $\operatorname{dist}_{H}(\sigma(\phi(a)), \sigma(a)) < \delta$

implies

 $dist(T, Jlsom) < \epsilon$.

4 ロ ト 4 伊 ト 4 三 ト 4 三 ト 三 つのの 8/24

Our work mainly contains contributions to the lines:

- (II) Subset preservers
- (III) Relation preservers
- (IV) Strongly preservers
- (V) Approximate preservers

<ロト 4 個 ト 4 差 ト 4 差 ト 差 りので 9/24

Some definitions

< 마 < 쿱 > < 들 > < 들 > < 들 > < 들 > 10/24

Definition (Generalized inverse)

b is a generalized inverse of a

aba = a and bab = b.

It is **not unique** in general.

 A^{\wedge} denotes the set of all elements with generalized inverse in A.

Definition (Group inverse)

b is the group inverse of a if

aba = a, bab = b and ab = ba.

Notation:

- $b = a^{\sharp}$,
- A[#] denotes the set of all group invertible elements in A.

Definitions

- **Prime algebra**: $aAb = \{0\}$ implies a = 0 or b = 0.
- Socle of an algebra:

 $soc(A) = \{x \in A : xAx \text{ is finite-dimensional}\} =$ = $span\{p = p^2 : pAp \text{ is one-dimensional}\}.$

The socle is **essential** if it has non-trivial intersection with any other non zero ideal.

• **Real rank zero C*-algebra**: every selfadjoint element can be approximated by real linear combination of orthogonal projections.

Let A, B be Banach algebras and $T : A \rightarrow B$ a linear map.

Definition (Homomorphism)	Definition (Anti-homomorphism)	
T(ab) = T(a)T(b)	T(ab) = T(b)T(a)	
Definition (Jordan homomorphism)		
$T(a^2) = T(a)^2$		

Let A, B be C*-algebras and $T : A \rightarrow B$ a linear map.

Definition (Homomorphism)	Definition (Anti-homomorphism)
T(ab) = T(a)T(b)	T(ab) = T(b)T(a)
Definition (Jordan homomorphism)	Definition (Selfadjoint)
$T(a^2) = T(a)^2$	$T(a^{*}) = T(a)^{*}$

Linear preservers of partial orders

Preservers of the sharp partial order

Definition (Mitra '87)

$$M \leq_{\sharp} N \iff MM^{\sharp} = NM^{\sharp} = M^{\sharp}N$$
 for $M, N \in M_n(\mathbb{C})$

Definition (Sharp partial order)

$$a \leq_{\sharp} b \quad \Leftrightarrow \quad aa^{\sharp} = ba^{\sharp} = a^{\sharp}b$$

Definitions

T preserves the sharp partial order if $a \leq_{\sharp} b \Rightarrow T(a) \leq_{\sharp} T(b)$, *T* preserves the sharp partial order in both directions if $a \leq_{\sharp} b \Leftrightarrow T(a) \leq_{\sharp} T(b)$.

<ロト</p>

Theorem (Burgos, Márquez, Patricio '15)

Let A be a unital real rank zero C*-algebra, B a Banach algebra and T : A \rightarrow B a bounded linear map.

Then T preserves " \leq_{\sharp} " if, and only if, T = T(1)S where S is a Jordan homomorphism and $T(1) \in A^{\sharp}$ commutes with S(A).

Remark: the previous result **does not hold** in general unital C*-algebras.

Theorem (Burgos, Márquez, Patricio '15)

Let A, B be unital Banach algebras, soc(A) essential and $T : A \rightarrow B$ a bijective linear map.

Then T preserves " \leq_{\sharp} " if, and only if, T is a Jordan isomorphism multiplied by a central invertible element.

Preservers of the star partial order

Definition (Drazin '78)

 $M \leq_* N \iff MM^* = NM^*$ and $M^*M = M^*N$ for $M, N \in M_n(\mathbb{C})$

Definition (Star partial order)

$$a \leq_* b \Leftrightarrow aa^* = ba^*$$
 and $a^*a = a^*b$

Definitions

T preserves the star partial order if $a \leq_* b \Rightarrow T(a) \leq_* T(b)$, T preserves the star partial order in both directions if $a \leq_* b \Leftrightarrow T(a) \leq_* T(b)$.

<ロト < 団 ト < 三 ト < 三 ト 三 ????4

Theorem (Guterman '01)

Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and $T : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ a bijective linear map such that $A \leq_* B \Rightarrow T(A) \leq_* T(B)$.

Then $T(A) = \alpha UAV$ for every $A \in M_n(\mathbb{K})$ or $T(A) = \alpha UA^t V$ for every $A \in M_n(\mathbb{K})$, where $\alpha \in \mathbb{K}$ and U, V are unitary matrices.

<ロト<</th>日日

(Star partial order vs. Orthogonality)

$$a \perp b \quad \Leftrightarrow \quad a \leq_* (a+b)$$

Consequence: if T is linear, then T preserves the star partial order \Leftrightarrow T preserves orthogonality.

Definition (Restriction of the star partial order)

 $a \leq b \Leftrightarrow a = pb = bq$ for some $p, q \in Proj(A)$

- $a \leq b \Rightarrow a \leq_* b$,
- $a \leq_* b \Rightarrow a \leq b$ whenever $a \in A^{\wedge}$.

Let A, B be C*-algebras with A unital and $T : A \rightarrow B$ a linear map preserving " \leq ".

Theorem (Burgos, Márquez, Patricio '15)

If A linearly spanned by its projections then T preserves orthogonality.

Theorem (Burgos, Márquez, Patricio '15)

If A is of real rank zero and T is bounded then T preserves orthogonality.

Theorem (Burgos, Márquez, Patricio '15)

If A has essential socle and T is bijective then T is a Jordan *-homomorphism multiplied by an invertible element.

< ロ > < 母 > < 主 > < 主 > 三 /2000

Preservers of the minus partial order

Definition (Hartwig '80)

$$A \leq B \Leftrightarrow AA^- = BA^-$$
 and $A^-A = A^-B$

for $A, B \in M_n(\mathbb{C})$ and $AA^-A = A$.

Definition (Šemrl '10)

 $A \leq B \Leftrightarrow R(P) = \overline{R(A)}, N(A) = N(Q), PA = PB \text{ and } AQ = BQ$

for $A, B \in B(H)$ and $P, Q \in B(H)^{\bullet}$.

Theorem (Šemrl '10)

Let H be an infinite dimensional Hilbert space and $T : B(H) \rightarrow B(H)$ a bijective map with $a \leq^{-} b \Leftrightarrow T(a) \leq^{-} T(b)$.

Then T(A) = RAS for every $A \in B(H)$ or $T(A) = RA^*S$ for every $A \in B(H)$, where R, S are bounded bijective both linear or both conjugate linear maps on H.

<ロト < 母 ト < ミト < ミト ミ ?????

Definition (Minus partial order, Djordjevic, Rakic, Marovt '13)

 $a \leq b \Leftrightarrow a = pb = bq$

for some $p, q \in A^{\bullet}$ with $ann_l(p) = ann_l(a)$ and $ann_r(q) = ann_r(a)$.

Let *A*, *B* be unital semisimple Banach algebras with essential socle and $T: A \rightarrow B$ a surjective linear map with $a \leq^{-} b \Leftrightarrow T(a) \leq^{-} T(b)$.

Theorem (Burgos, Márquez, Morales '15)

If $T(A^{\wedge}) = B^{\wedge}$ then T is Jordan isomorphism multiplied by an invertible element.

Theorem (Burgos, Márquez, Morales '15)

If B = B(X) or B is a prime C*-algebra then T is an isomorphism or an anti-isomorphism multiplied by an invertible element.

4 ロ ト 4 伊 ト 4 差 ト 4 差 ト 差 つ 0,0
23/24
23/24

Preservers of the diamond partial order

Definition (Baksalary, Hauke '90)

 $M \leq_{\diamond} N \quad \Leftrightarrow \quad R(M) \subset R(N), \quad R(M^*) \subset R(N^*) \quad \text{and} \quad MM^*M = MN^*M$

Definition (Diamond partial order)

 $a \leq_{\diamond} b \Leftrightarrow aA \subset bA$, $Aa \subset Ab$ and $aa^*a = ab^*a$

Theorem (Burgos, Márquez, Morales)

Let A, B be unital C*-algebras with essential socle, with B prime, and T : A \rightarrow B a surjective linear map.

Then preserves " \leq_{\diamond} " in both directions if and only if $T(1)T(1)^* = T(1)^*T(1) \in \mathbb{C}1$ and T = T(1)S where S is a *-homomorphism or a *-anti-homomorphism.

- M. Burgos, A. C. Márquez-García and P. Patrício, On mappings preserving the sharp and star orders, Lin. Alg. Appl. 483 (2015), 268-292.
- Ē. M. Burgos, A. C. Márquez-García, A. Morales-Campoy, Minus partial order and linear preservers, To appear in Lin. Mult. Alg.

M. Burgos, A. C. Márquez-García, A. Morales-Campoy, Maps preserving the diamond partial order, submitted.

Thanks for your attention!