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Abstract

We shall review some historical results on the problem of almost
everywhere convergence of Fourier series and present some re-
cent developments on this topic using the so called Kalton lattice
constants.
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N. Kalton

Introduced his lattice constants in order to study when a space
contains uniformly complemented `n2.
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Kalton’s constant

Quasi-Banach constant
Let (X , ‖ · ‖X ) be a quasi-Banach function space. Then:

∥∥∥ n∑
i=1

fi
∥∥∥

X
≤ cn(X )

n∑
i=1

‖fi‖X .

Examples
1 If 1 < p ≤ ∞, cn(Lp) = 1, for every n.

2 If p ≤ 1, cn(Lp) = n
1
p−1

3 If

L1,∞ =
{

f : ‖f‖L1,∞ = sup
y>0

y |{x : |f (x)| > y | <∞
}
,

then cn(L1,∞) = 1 + log n.
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Kalton’s constant

Lattice constants
In 1993, N. Kalton defined en(X ) to be the least constant such
that, ∥∥∥ n∑

i=1

fi
∥∥∥

X
≤ en(X ) max

1≤i≤n
‖fi‖X ,

and dn(X ) the least constant so that

n∑
i=1

∥∥∥fi
∥∥∥

X
≤ dn(X )

∥∥∥ n∑
i=1

fi
∥∥∥

X

for every collection of pairwise disjoint functions.

N.J. Kalton, Lattice Structures on Banach Spaces, Memoirs Amer. Math. Soc.
Vol. 103, No 493, 1993.
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Properties of Kalton’s constant

Under certain conditions on X ,

1 dn(X ) = en(X ∗).
2 dn(X ∗) = en(X ).
3

lim
dn

nα
= 0 =⇒ X is

1
1− α concave.

4 If lim dn√
log n

= 0, then X does not contain uniformly

complemented copies of `2n.
5 etc.
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Some similar constants

On many interesting examples, en(X ) coincide with the least
constant satysfying

∥∥∥ n∑
i=1

fi
∥∥∥

X
≤ en(X ),

for every collection of pairwise disjoint functions so that ‖fi‖X =
1, and in fact, if we define fn(x) as the least constant satisfying

∥∥∥ n∑
i=1

χAi

‖χAi‖X

∥∥∥
X
≤ fn(X ),

we also have that en(X ) = fn(X ).

Mastylo, Mieczysaw, Lattice structures on some Banach spaces. Proc. Amer.
Math. Soc. 140 (2012), no. 4, 1413–1422.
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Embedding of spaces

A very easy and useful remark

By definition of fn(X ), given n, there exists {An
1,A

n
2, · · · ,An

n} a
collection of pairwise disjoint sets so that

fn(X )

2
≤
∥∥∥ n∑

i=1

χAn
i

‖χAn
i
‖X

∥∥∥
X
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Embedding of spaces

Theorem
Let Y be a Banach space. Then

Y ⊂ X =⇒ fn(X )

n
. sup

i

‖χAn
i
‖Y

‖χAn
i
‖X
, ∀n.

Proof

fn(X )

2
≤

∥∥∥ n∑
i=1

χAn
i

‖χAn
i
‖X

∥∥∥
X
.
∥∥∥ n∑

i=1

χAn
i

‖χAn
i
‖X

∥∥∥
Y

. n sup
i

‖χAn
i
‖Y

‖χAn
i
‖X
.
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Connection with Fourier series

Jean Baptiste Joseph Fourier (1768–1830).

Fourier introduced this series for the purpose of solving the
heat equation on a metal plate and his initial results were
published in 1807.
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The almost everywhere convergence of the Fourier
series

Let T ≡ [0,1) and let f ∈ L1(T). Then, the Fourier coefficients
are defined as

f̂ (k) =
∫ 1

0
f (x)e−2πikx dx , k ∈ Z,

and the Fourier series of f at x ∈ T is given by

S[f ](x) =
∞∑

k=−∞
f̂ (k)e2πikx .
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The problem of the almost everywhere convergence of the Fourier
series consists in studying when:

lim
n→∞

Snf (x) = f (x), a.e. x ∈ T

where
Snf (x) =

∑
|k |≤n

f̂ (k)e2πikx .
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Paul du Bois-Reymond (1831–1889).

A Negative Result

In 1873, du Bois-Reymond constructed a continuous function
whose Fourier series is not convergent at a point.
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Andrey Kolmogorov (1903 –1987).

Another Negative Result

In 1922, Andrey Kolmogorov gave an example of a function
f ∈ L1(T) whose Fourier series diverges almost everywhere.
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Lennart Carleson (1928– ).

The Positive Result

In 1966, L. Carleson proved that if f ∈ L2(T), then

lim
n→∞

Snf (x) = f (x), a.e. x ∈ T.
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In fact:

Carleson-Hunt, 1967

If f ∈ Lp(T), for some p > 1, then

lim
n→∞

Snf (x) = f (x), a.e. x ∈ T.

Open question today:

To characterize the space of all integrable functions for which
the almost everywhere convergence of the Fourier series holds.
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Carleson maximal operator

Let S be the Carleson maximal operator,

Sf (x) = sup
n∈N
|Snf (x)|.

Essentially, to solve the problem of the almost everywhere con-
vergence in a space X , we have to prove that

S : X −→ L0

is bounded, where L0 is the set of measurable functions with the
convergence in measure topology.
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Carleson-Hunt main estimate

For every measurable set E ⊂ T and every y > 0,

∣∣∣{x ∈ [0,1] : |SχE(x)| > y}
∣∣∣1/p
≤ C

y(p − 1)
|E |1/p, p > 1,

Consecuencia:

For every p > 1,

S : Lp −→ Lp,
C

p − 1
.
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The situation up to now

For every 1 < p < 2 < q,

Lq(T) ⊂ L2(T) ⊂ Lp(T) ⊂ ?????? ⊂ L1(T)

All the above spaces are of the same form:

∫ 1

0
|f (x)|D(|f (x)|)dx <∞.
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Open question:

Find the best D such that the almost everywhere convergence
of the Fourier series holds true for every f satisfying:

∫ 1

0
|f (x)|D(|f (x)|)dx <∞.

D(s) = 1, D(s) = sε, ε > 0.

Notation:

log(1) y = log y , log(n) y = log(n−1) log y , y >> 1.

Observe that
log(n) y ≤ log(n−1) y .
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Possible and non possible functions D

State of the art:

1 ≤
√

log y
log(2) y

≤ log y ≤ log y log(3) y

≤ log y log(2) y ≤ (log y)2 ≤ yε
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Possible and non possible functions D

Credits go to...

S. Yano, 1951:

D(y) = (log y)2

P. Sjolin, 1969:

D(y) = log y log(2) y

Y. Antonov, 1996:

D(y) = log y log(3) y

S. V. Konyagin, 2004:

D(y) =

√
log y

log(2) y
.
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Yano’s contribution, 1951

L(log L)2

If T is a sublinear operator such that

T : Lp −→ Lp,
C

(p − 1)m ,

then
T : L(log L)m −→ L1.

Corollary

S : L(log L)2 −→ L1.

Yano, Shigeki Notes on Fourier analysis. An extrapolation theorem. J. Math.
Soc. Japan 3, (1951). 296–305.
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Antonov’s contribution

Carleson-Hunt’s estimate, 1967

For every measurable set E ⊂ T and every y > 0,

‖SχE‖L1,∞ . |E |
(

1 + log
1
|E |

)
:= D(|E |)

1996

For every bounded function by 1 and every y > 0,

‖Sf‖L1,∞ . D(‖f‖1)
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Antonov’s contribution

For every measurable function f ,

f =
∑
n∈Z

22n+1
fn(x)

where

fn(x) =
f (x)χ{22n≤|f |<22n+1}(x)

22n+1

Corollary

S : L log L log3 L −→ L1,∞.

Antonov, N. Yu. Convergence of Fourier series. East J. Approx. 2 (1996), no.
2, 187–196
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Arias de Reyna’s contribution, 2004

Let f ∈ L1(T) and let us write

f =
∑

n

fn, fn ∈ L∞.

Then:
|Sf | ≤

∑
n

|Sfn| =
∑

n

‖fn‖∞
∣∣∣S( fn
‖fn‖∞

)∣∣∣

Using Stein-Weiss Lemma

||Sf ||1,∞ =
∑

n

(1 + log n)||fn||∞
∥∥∥∥S
(

fn
||fn||∞

)∥∥∥∥
1,∞

.
∑

n

(1 + log n)||fn||∞D
( ||fn||1
||fn||∞

)
.
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Arias de Reyna’s space

Definition

A measurable function f ∈ L0 belongs to QA if there exists a se-
quence (fn)∞n=1, with fn ∈ L∞, such that

f =
∞∑

n=1

fn, a.e.

and
∞∑

n=1

(1 + log n)‖fn‖∞D
( ‖fn‖1
‖fn‖∞

)
<∞.

We endow this space with the quasi-norm

‖f‖QA = inf
{ ∞∑

n=1

(1 + log n)‖fn‖∞D
( ‖fn‖1
‖fn‖∞

)}
.
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The best result nowadays:

Theorem
For every function f ∈ QA,

lim
n→∞

Snf (x) = f (x),

almost everywhere.

Recovering Antonov’s result:

L log L log(3) L(T) ⊂ QA

Arias-de-Reyna, J. Pointwise convergence of Fourier series. J. London Math.
Soc. (2) 65 (2002), no. 1, 139–153.
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Questions in the air:

First one:

L log L log(4) L(T) ⊂ QA?

Conjecture:

L log L log(3) L(T)

is the best Lorentz space embedded in QA.

General question
Find the best Lorentz space contained in QA.
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Kalton’s constants

Functional properties of QA

QA is a quasi-Banach r.i. space.

QA ↪→ L log L(T) .

The Banach envelope of QA is L log L(T).

QA is logconvex in the sense of Kalton; that is:

‖x1 + ...+ xn‖ ≤ C
n∑

j=1

(1 + log j)‖xj‖ .

C., M.J.; Mastylo, M.; Rodrı́guez-Piazza, L. Almost everywhere convergent
Fourier series. J. Fourier Anal. Appl. 18 (2012), no. 2, 266–286.
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Kalton’s constants

Theorem

For each positive integer n,

c n(1 + log n) ≤ en(QA) ≈ fn(QA) ≤ n(1 + log n) .

Moreover:

For each positive integer n,

c n(1 + log n) ≤
∥∥∥ n∑

i=1

χAn
i

‖χAn
i
‖X

∥∥∥
QA

with An
i as follows:
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Kalton’s constants
Brief Article

The Author

January 29, 2016

1

· · ·

A1 A2 A3 · · · Am

1

where, if µj = |Aj |, then

µj+1 =
(µj

e

)n3(1+log n)
, j = 1, · · · ,n.
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L log L log(4) L(T) ⊂ QA?

Theorem
Let Y be a Banach space. Then

Y ⊂ X =⇒ fn(X )

n
. sup

i

‖χAn
i
‖Y

‖χAn
i
‖X
, ∀n.

Is it true that?

(1 + log n) . sup
i

‖χAn
i
‖Y

‖χAn
i
‖X
, ∀n.
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Answers on the earth:

First one:

L log L log(4) L(T) * QA.

The conjecture is false:

L log L log(3) L(T)

is not the best Lorentz space embedded in QA.

In fact, more can be said:

Answer to the general question:

There is not the best Lorentz space contained in QA.
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Carleson maximal operator

Let S be the Carleson maximal operator,

Sf (x) = sup
n∈N
|Snf (x)|.

Essentially, to solve the problem of the almost everywhere con-
vergence in a space X , we have to prove that

S : X −→ L0

is bounded, where L0 is the set of measurable functions with the
convergence in measure topology.
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Carleson maximal operator

Let S be the Carleson maximal operator,

Sf (x) = sup
n∈N
|Snf (x)|.

Essentially, to solve the problem of the almost everywhere con-
vergence in a space X⊂ L1, we have to prove that

S : X −→ L1,∞

is bounded.
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A bigger space

Let
S(L1,∞) = {f : Sf ∈ L1,∞}

with the norm
‖f‖S(L1,∞) = ‖Sf‖L1,∞ .

Corollary

i) If f ∈ S(L1,∞),

lim
n

Snf (x) = f (x),a.e.x

ii)
QA ⊂ S(L1,∞)
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Our next goal: to study the space S(L1,∞)

Properties

i) It is a quasi-Banach space.
ii)

fn(S(L1,∞)) ≤ en(S(L1,∞)) . n(1 + log n)

Open questions

i) n(1 + log n) . fn(S(L1,∞))?

ii) How to construct An
i ?
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The end

THANKS FOR YOUR ATTENTION
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