Topological groups and C(X) spaces with ordered bases

Manuel López Pellicer (IUMPA, UPV)

with J.C. Ferrando, J. Kakol and S. López Alfonso

March 2-4, 2016 XII Encuentro Red Análisis Funcional y Aplicaciones

Project Prometeo I/2013/058

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer

Topological groups and C(X) spaces with ordered bases

イロト イポト イヨト イヨ

- 2 Boundedly complete sets and long Σ-bases
- 3 Existence of proper long Σ-bases on $C_c([0, \omega_1))$

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer Topological groups and C(X) spaces with ordered bases

イロト 不得 とくほ とくほとう

-

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_{c}([0, \omega_{1}))$

Outline

^β-bases and quasi- \mathfrak{G} -bases E-bases and $C_c(X)$ with Σ-base

イロト イポト イヨト イヨト

1) Σ -bases in topological groups

- &-bases and quasi-&-bases
- Σ -bases and $C_c(X)$ with Σ -base

Σ-bases in topological groups

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_c([0, \omega_1))$

&-bases

Definition

A topological group *G* is said to have a \mathfrak{G} -base if there is a base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of neighborhoods of the identity *e* in *G* such that $U_{\beta} \subseteq U_{\alpha}$ whenever $\alpha \leq \beta$.

க-bases and quasi-க-bases

- Metrizable topological group $\Longrightarrow \mathfrak{G}$ -base.
- Fréchet-Urysohn topological group with a &-base ⇒ metrizable (Grabriyelyan ..., Fundamenta Math. 2015).

Definition

A compact resolution on a topological space *X* is a compact covering $\mathcal{K} = \{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of *X* such that $K_{\alpha} \subseteq K_{\beta}$ whenever $\alpha \leq \beta$. If for each compact subset *K* of *X* there exists K_{α} such that $K \subset K_{\alpha}$, then \mathcal{K} is a compact resolution swallowing compact subsets.

200

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_{\mathcal{C}}([0, \omega_1))$

\mathfrak{G} -bases in $C_c(X)$

 \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ-bases and $C_c(X)$ with Σ-base

イロト イポト イヨト イヨト 一日

Theorem

A space $C_c(X)$ has a \mathfrak{G} -base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of (absolutely convex) neighborhoods of the origin if and only if X has a compact resolution $\mathcal{K} = \{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ swallowing compact subsets

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on C_{c} ([0, ω_{1})) \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ-bases and $C_c(X)$ with Σ-base

\mathfrak{G} -bases in $C_{c}(X)$

Proof.

We may suppose that there exists a compact K

$$U_lpha \subset W(K, [-1, 1]) := \{f \in C_c(X) : f(K) \subset [-1, 1]\},$$
 hence

$$K \subset K_{\alpha} := \cap_{f \in U_{\alpha}} f^{-1}([-1,1]) \text{ and } U_{\alpha} \subset W(K_{\alpha},[-1,1]), \alpha \in \mathbb{N}^{\mathbb{N}}$$

There exists a compact $K_{U_{\alpha}}$ and $\varepsilon_{\alpha} > 0$ such that $W(K_{U_{\alpha}}, (-\varepsilon, \varepsilon)) \subset U_{\alpha}$. Then

$$W(K_{U_{\alpha}},(-\varepsilon,\varepsilon)) \subset W(K_{\alpha},[-1,1]) \implies K_{\alpha} \subset K_{U_{\alpha}}.$$

 $\{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ is a compact resolution swallowing compact sets The converse follows from

$$W(K_{\alpha=(a_1,\ldots)},[-a_1^{-1},a_1^{-1}]) \subset W(K,[-\varepsilon,\varepsilon]) \quad \text{if} \quad K \subset K_{\alpha}, \ a_1^{-1} < \varepsilon.$$

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer

Topological groups and C(X) spaces with ordered bases

 $\label{eq:states} \begin{array}{l} \Sigma\mbox{-bases in topological groups} \\ \mbox{Boundedly complete sets and long Σ-bases} \\ \mbox{Existence of proper long Σ-bases on $\mathcal{C}_c\left([0,\,\omega_1)\right)$} \end{array}$

 \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ-bases and $C_c(X)$ with Σ-base

\mathfrak{G} -bases in non-metrizable $C_c(X)$

Corollary

If X is a Polish space the $C_c(X)$ has a \mathfrak{G} -base. Whence $C_c(\mathbb{R}^{\mathbb{N}})$ is a non-metrizable locally convex space with a \mathfrak{G} -base.

Proof.

Let $\{x_n : n \in \mathbb{N}^{\mathbb{N}}\}$ be a dense subset of X, d a complete metric compatible and $B(x_{a_m}, n^{-1})$ the closed ball of center x_{a_m} and radius n^{-1} . If $\alpha := (a_n)_n \in \mathbb{N}^{\mathbb{N}}$ and

$$K_{\alpha} := \cap_{n \in \mathbb{N}^{\mathbb{N}}} [\cup_{1 \le m \le n} B(x_{a_m}, n^{-1})]$$

we get that $\{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution of X swallowing compact sets. Finally, $\mathbb{R}^{\mathbb{N}}$ is Polish but not hemicompact.

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer

Topological groups and C(X) spaces with ordered bases

Σ-bases in topological groups Boundedly complete sets and long Σ-bases Existence of proper long Σ-bases on C_c ([0, $ω_1$))

 \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ-bases and $C_c(X)$ with Σ-base

ヘロト 人間 ト ヘヨト ヘヨト

Strong Pytkeev property and quasi-&-bases

Definition (Tsaban and Zdomskyy, 2009)

A topological group *G* has the strong Pytkeev property if there exists a sequence \mathcal{D} of subsets of *G* satisfying the property: for each neighborhood *U* of the unit *e* and each $A \subseteq G$ with $e \in \overline{A} \setminus A$, there is $D \in \mathcal{D}$ such that $D \subseteq U$ and $D \cap A$ is infinite.

Proposition (Gabriyelyan, Kakol and Leiderman, 2014)

Any topological group G with the strong Pytkeev property admits a quasi- \mathfrak{G} -base { $U_{\alpha} : \alpha \in \Sigma$ } of the identity, i.e., an ordered base of neighborhoods { $U_{\alpha} : \alpha \in \Sigma$ } of e over some $\Sigma \subseteq \mathbb{N}^{\mathbb{N}}$. Σ-bases in topological groups Boundedly complete sets and long Σ-bases Existence of proper long Σ-bases on $C_c([0, ω_1))$

 \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ-bases and $C_c(X)$ with Σ-base

イロト イポト イヨト イヨト

3

Strong Pytkeev property and quasi-&-bases

Proposition (Banakh, 2015)

For every separable metrizable space X the space $C_c(X)$ has the strong Pytkeev property; therefore such $C_c(X)$ admits a quasi- \mathfrak{G} -base.

Remark

Let X be a separable metric space which is not a Polish space. Then $C_c(X)$ has a quasi- \mathfrak{G} -base but $C_c(X)$ does not admit a \mathfrak{G} -base.

 \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ -bases and $C_c(X)$ with Σ -base

$C_{c}(X)$ with Σ -base

The following is a is more practical concept than quasi-&base.

Definition

If $\Sigma \subseteq \mathbb{N}^{\mathbb{N}}$ is an unbounded (i.e., $\sup\{\alpha(k) : \alpha \in \Sigma\} = \infty$ for some $k \in \mathbb{N}$) and directed subset of $\mathbb{N}^{\mathbb{N}}$, a base $\{U_{\alpha} : \alpha \in \Sigma\}$ of neighborhoods of the neutral element of a topological group *G* is a Σ -base if $U_{\beta} \subseteq U_{\alpha}$ whenever $\alpha \leq \beta$ with $\alpha, \beta \in \Sigma$.

Theorem (For a completely regular space X are equivalent:)

- The locally convex space $C_c(X)$ has a Σ -base of absolutely convex neighborhoods of the origin.
- 2 There is a compact covering {K_α : α ∈ Σ} of X that swallows the compact sets of X, with Σ unbounded, directed and such that K_α ⊆ K_β whenever α ≤ β in Σ.

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_c([0, \omega_1))$

$C_{c}(X)$ with Σ -base

Proof.

If U_{α} is a neighborhood of the origin in $C_{c}(X)$ and K is a compact subset of X such that

$$U_{lpha} \subset W(K, [-1, 1]) := \{f \in C_{\mathcal{C}}(X) : f(K) \subset [-1, 1]\},$$

then

$$K \subset K_{\alpha} := \cap_{f \in U_{\alpha}} f^{-1}([-1,1])$$
 and $U_{\alpha} \subset W(K_{\alpha},[-1,1]).$

Let $K_{U_{\alpha}}$ be a compact set such that $W(K_{U_{\alpha}}, (-\varepsilon, \varepsilon)) \subset U_{\alpha}$. Then

$$W(K_{U_{\alpha}},(-\varepsilon,\varepsilon))\subset W(K_{\alpha},[-1,1]) \implies K_{\alpha}\subset K_{U_{\alpha}}.$$

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_c([0, \omega_1))$ イロト イ理ト イヨト イヨト

$C_{c}(X)$ with Σ -base

continued proof.

If $C_c(X)$ has a Σ -base there exists a compact subset K of Xand a Σ -base $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ such that $U_{\alpha} \subset W(K, [-1, 1])$, for each $\alpha \in \mathbb{N}^{\mathbb{N}}$. Whence $\{K_{\alpha} : \alpha \in \Sigma\}$ is a compact covering of X, with Σ unbounded and directed, such that $K_{\alpha} \subseteq K_{\beta}$ whenever $\alpha \leq \beta$ in Σ , that swallows the compact sets. To proof the converse we must to take into account that given a compact subset K of X and a positive real number $\varepsilon > 0$ there exists $\alpha \in \Sigma$ such that $K \subset K_{\alpha}$ and $a_n^{-1} < \varepsilon$, whence

$$W(K_{\alpha=(a_1,..)},[-a_n^{-1},a_n^{-1}])\subset W(K,[-\varepsilon,\varepsilon]).$$

Boundedly complete sets and long Σ -bases Existence of proper long Σ -bases on $C_c([0, \omega_1))$ \mathfrak{G} -bases and quasi- \mathfrak{G} -bases Σ -bases and $C_c(X)$ with Σ -base

Σ -base $\neq \Rightarrow \mathfrak{G}$ -base

Theorem

If (X, d) is a separable and not Polish, then $C_c(X)$ admits Σ -base and it does not admit any \mathfrak{G} -base.

Proof (only the non trivial part).

Let $D := \{x_m : m \in \mathbb{N}\}$ dense subset in $X, \{y_n : n \in \mathbb{N}\}$ dense in K (compact), $x_{n(p)} \in D$ with

$$\lim_{p} x_{np} = y_n \quad \text{and} \quad d(x_{np}, y_n) < n^{-1}, \text{ for each } p \in \mathbb{N},$$

then $K \subset \overline{\{x_{np} : (n, p) \in \mathbb{N}^2\}}$ (compact). The Σ -base follows from the set Σ of $\alpha := (a_n)_n \in \bigcup_{m \in \mathbb{N} \setminus \{1\}} \{1, m\}^{\mathbb{N}}$ with compact

$$K_{\alpha} := \overline{\{x_n : n \in \mathbb{N}, a_n \neq 1\}}$$

Σ-bases in topological groups Boundedly complete sets and long Σ-bases Existence of proper long Σ-bases on $C_c([0, ω_1))$

Outline

Boundedly complete subsets of $\mathbb{N}^{\mathbb{N}}$ _ong Σ -bases

イロト イポト イヨト イヨト

2 Boundedly complete sets and long Σ -bases

- Boundedly complete subsets of $\mathbb{N}^{\mathbb{N}}$
- Long Σ-bases

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

Boundedly complete sets in $\mathbb{N}^{\mathbb{N}}$

In this section we are going to consider a special class of Σ -bases, which we denominate long Σ -bases, and study some properties of them quite close to those of \mathfrak{G} -bases.

Definition

A subset Σ of $\mathbb{N}^{\mathbb{N}}$ will be called boundedly complete if each bounded set Δ of Σ has a bound at Σ .

- Σ boundedly complete $\Longrightarrow \Sigma$ is directed.
- If {U_α : α ∈ Σ} is an infinite base of neighborhoods of a (Hausdorff) locally convex space and Σ is a boundedly complete subset of N^N then Σ must be unbounded. (Otherwise sup {α (k) : α ∈ Σ} < ∞ for every k ∈ N ⇒ there exists γ ∈ Σ with α ≤ γ for every α ∈ Σ. Hence

 $U_{\gamma} \subseteq \cap_{\alpha \in \Sigma} U_{\alpha}$, a contradiction)

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-}bases$

Compact coverings and strong domination

Example

Every cofinal subset Σ of $\mathbb{N}^{\mathbb{N}}$ with respect to the partial order ' \leq ' is boundedly complete.

Proof.

If $\beta(k) := \sup \{ \alpha(k) : \alpha \in \Delta \} < \infty$ for every $k \in N$, then $\beta := (\beta(k))_k \in N^{\mathbb{N}}$, hence there is $\gamma \in \Sigma$ such that $\beta \leq \gamma$.

Proposition

If X is a topological space with a compact covering $\{A_{\alpha} : \alpha \in \Sigma\}$ that swallows the compact sets indexed by a boundedly complete subset Σ of $\mathbb{N}^{\mathbb{N}}$ and such that $A_{\alpha} \subseteq A_{\beta}$ whenever $\alpha \leq \beta$ in Σ , then X is strongly dominated by a second countable space.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-}bases$

イロト イポト イヨト イヨト

Compact coverings and strong domination

Proof.

Let $T : \Sigma \to \mathcal{K}(X)$ defined by $T(\alpha) = A_{\alpha}$ and let K be a compact set in Σ .

$$\sup \left\{ \alpha \left(\textit{\textit{k}} \right) : \alpha \in \textit{\textit{K}} \right\} < \infty, \forall \textit{\textit{k}} \in \mathbb{N} \Longrightarrow \exists \gamma \in \Sigma \text{ , } \alpha \leq \gamma, \forall \alpha \in \textit{\textit{K}}.$$

$$T(\mathcal{K}) = \cup_{\alpha \in \mathcal{K}} T(\alpha) \subseteq \mathcal{A}_{\gamma} \Longrightarrow \mathcal{B}_{\mathcal{K}} := \overline{T(\mathcal{K})}$$
 is compact

 $\mathcal{B} := \{B_{\mathcal{K}} : \mathcal{K} \in \mathcal{K}(\Sigma)\}$ is an increasing compact covering of X that swallows the compact sets, because

if *P* is compact $\exists \delta \in \Sigma$ with $P \subseteq T(\delta) = B_{\{\delta\}}$.

Hence X is strongly Σ -dominated (Σ separable metric).

Long Σ -bases

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

イロト イポト イヨト イヨト

э

Definition

A Σ -base of neighborhoods of the unit element of a topological group *G* indexed by a boundedly complete subspace Σ of $\mathbb{N}^{\mathbb{N}}$ will be referred to as a long Σ -base.

Of course, every \mathfrak{G} -base of neighborhoods of the origin of a locally convex space E is a long Σ -base, with $\Sigma = \mathbb{N}^{\mathbb{N}}$. The proof of the next theorem uses the following

Proposition (Cascales, Orihuela, Tkachuk, 2011)

A compact topological space K is metrizable if and only if the space $(K \times K) \setminus \Delta$ is strongly dominated by a second countable space, where here $\Delta := \{(x, x) : x \in K\}$.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

イロト イポト イヨト イヨト

Long Σ -bases and metrizability

Theorem

If a topological group G has a long Σ -base $\{U_{\alpha} : \alpha \in \Sigma\}$ then every compact subset K in G is metrizable. Consequently, G is strictly angelic.

Proof.

It is enough to show that $W := (K \times K) \setminus \Delta$ has a compact covering $\mathcal{W} := \{W_{\alpha} : \alpha \in \Sigma\}$ that swallows the compact sets indexed by a boundedly complete subset $\Sigma \subseteq \mathbb{N}^{\mathbb{N}}$ and such that $W_{\alpha} \subseteq W_{\beta}$ whenever $\alpha \leq \beta$ in Σ . We may assume that all sets U_{α} are symmetric and open. Then

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

Long Σ -bases and metrizability

continued proof.

$$W_{\alpha} := \{(x, y) \in W : xy^{-1} \notin U_{\alpha}\}$$

is closed in K × K, hence W_α compact. If Q ⊆ W is a compact set. Then

$$e \notin T(Q) := \{xy^{-1} : (x, y) \in Q\}$$
 (compact),

implies there exists U_{α} such that

$$U_{\alpha} \cap T(Q) = \emptyset \Longrightarrow Q \subseteq W_{\alpha}.$$

• $\mathcal{W} := \{ W_{\alpha} : \alpha \in \Sigma \}$ verifies the conditions.

Angelicity $C_c(X)$

Corollary

If there exists a family $\{A_{\alpha} : \alpha \in \Sigma\}$ made up of compact sets, indexed by a boundedly complete set Σ such that $A_{\alpha} \subseteq A_{\beta}$ whenever $\alpha \leq \beta$ and satisfying that $\overline{\cup \{A_{\alpha} : \alpha \in \Sigma\}} = X$, then $C_{c}(X)$ is strictly angelic.

Long **Σ**-bases

Proof.

X is web-compact, so $C_p(X)$ is angelic (Orihuela 1987), whence $C_c(X)$ is angelic (by angelic lemma). To prove "strict" let $Y = \bigcup \{A_\alpha : \alpha \in \Sigma\}$ and τ_p and τ_c pointwise and the compact-open topology on C(Y).

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer Topological groups and C(X) spaces with ordered bases

ヘロン 人間 とくほ とくほ とう

э

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

ヘロト ヘアト ヘビト ヘビト

ъ

Angelicity $C_c(X)$

continued proof.

(Σ boundedly complete \Longrightarrow unbounded in $\mathbb{N}^{\mathbb{N}} \Longrightarrow$) there exists $k \in \mathbb{N}$ such that sup { $\alpha(k) : \alpha \in \Sigma$ } = ∞ . Then

 $\{U_{\alpha}: \alpha \in \Sigma\}$, with $U_{\alpha}:=\{f \in C(Y): \sup_{y \in A_{\alpha}} |f(y)| \le \alpha (k)^{-1}\}$

is a long Σ -base of a lc topology τ on C(Y) such that $\tau_p \leq \tau \leq \tau_c$. By preceding Theorem every τ -compact set in C(Y) is metrizable. Whence each compact subset K of $C_c(X)$ is metrizable since the restriction map $S : C_c(X) \to (C(Y), \tau)$ is continuous and S restricts itself to an homeomorphism on each compact subset K of $C_c(X)$.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

$C_c(X)$ with a long Σ -base

Theorem

If $C_c(X)$ has a long Σ -base of neighborhoods of the origin, then X is a C–Suslin space. Consequently $C_c(X)$ is angelic.

Proof.

X has a compact covering $\{K_{\alpha} : \alpha \in \Sigma\}$ swallowing compacts such that $K_{\alpha} \subseteq K_{\beta}$ whenever $\alpha \leq \beta$. Let $T : \Sigma \to \mathcal{K}(X)$ defined by $T(\alpha) = A_{\alpha}$. If $\alpha_n \in \Sigma$ and $\lim_n \alpha_n = \alpha \in \mathbb{N}^{\mathbb{N}}$, then there is $\gamma \in \Sigma$ with $\alpha_n \leq \gamma$ for every $n \in \mathbb{N}$. Consequently, $\{T(\alpha_n) : n \in \mathbb{N}\} \subset A_{\gamma}$. Hence $x_n \in T(\alpha_n)$, $\forall n \in \mathbb{N}, \Longrightarrow \{x_n\}_{n=1}^{\infty}$ has a cluster point *x* in *X* (contained in A_{γ}). Therefore *X* is web-compact.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

イロト イポト イヨト イヨト

A limit property in Fréchet-Urysohn topological groups

Let $\{U_{\alpha} : \alpha \in \Sigma\}$ be a long Σ -base in a topological group G. For every $\alpha = (a_i)_{i \in \mathbb{N}} \in \Sigma$ and each $k \in \mathbb{N}$, set

$$\alpha(k) := (a_1, a_2, \dots, a_k)$$

$$D_k(\alpha) := \cap \{U_\beta : \beta \in \Sigma, \ \beta(k) = \alpha(k)\}.$$

Clearly, $\{D_k(\alpha)\}_{k\in\mathbb{N}}$ is an increasing and $e \in D_k(\alpha)$.

Proposition (Chasco, Martín-Peinador and Tarieladze, 2007)

Let $\{x_{n,k} : (n,k) \in \mathbb{N} \times \mathbb{N}\}\$ a subset of a Fréchet-Urysohn topological group G such that $\lim_{n} x_{n,k} = x \in G, \ k = 1, 2, \dots$. There exists two increasing sequences of natural numbers $(n_i)_{i \in \mathbb{N}}$ and $(k_i)_{i \in \mathbb{N}}$, such that $\lim_{i} x_{n_i,k_i} = x$.

Metrizability in Fréchet-Urysohn topological groups

Theorem

Each Fréchet-Urysohn topological group G with a long Σ -base $\{U_{\alpha} : \alpha \in \Sigma\}$ is metrizable.

Proof.

Assume $\exists \alpha \in \Sigma$ such that $D_k(\alpha)$ is not a neighborhood of the unit *e* for every $k \in \mathbb{N}$. $e \in \overline{G \setminus D_k(\alpha)} \Longrightarrow \exists \{x_{n,k}\}_{n \in \mathbb{N}}$ in $G \setminus D_k(\alpha)$ converging to *e*. Hence exists $(n_i)_{i \in \mathbb{N}} \uparrow$ and $(k_i)_{i \in \mathbb{N}} \uparrow$ such that $\lim_i x_{n_i,k_i} = e$. $x_{n_i,k_i} \notin D_{k_i}(\alpha) \Longrightarrow \exists \beta_{k_i} \in \Sigma, \ \beta_{k_i}(k_i) = \alpha(k_i), \ x_{n_i,k_i} \notin U_{\beta_{k_i}}.$ $x_{n_i,k_i} \notin U_{\gamma}$ for every $i \in \mathbb{N}$, if $\beta_{k_i} \leq \gamma$, $i \in \mathcal{N}$. Contradiction. For every $\alpha \in \Sigma$ choose the minimal $k_\alpha \in \mathbb{N}$ such that $D_{k_\alpha}(\alpha)$ is a neighborhood of *e*. $\{int(D_{k_\alpha}(\alpha))\}_{\alpha \in \Sigma}$ is base of neigh. of *e*, so *G* is metrizable.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

イロト イポト イヨト イヨト

Long Σ -bases in products

Corollary

Let $\{G_t\}_{t \in T}$ be a family of metrizable topological groups. Then the product $G := \prod_{t \in T} G_t$ has a long Σ -base if and only if T is countable, i.e., when G is metrizable.

Proof.

Let e_t be the unit vector in G_t for $t \in T$. The Σ -product $G_0 := \{x = (x_t) \in G : |t \in T : x_t \neq e_t| \leq \aleph_0\}$ is a dense Fréchet-Urysohn subgroup of G (Noble, 1970). If G has a long Σ -base, then G_0 enjoys also this property. Whence G_0 is metrizable, so G is metrizable, too. The converse is clear.

Boundedly complete subsets of $\mathbb{N}^\mathbb{N}$ Long $\Sigma\text{-bases}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Long Σ -bases in $C_{\rho}(X)$

Corollary

The space $C_p(X)$ has a long Σ -base if and only if X is countable.

Proof.

Apply preceding Corollary to $\mathbb{R}^X = \overline{C_p(X)}$

Σ-bases in topological groups Boundedly complete sets and long Σ-bases Existence of proper long Σ-bases on C_c ([0, $ω_1$))

3 Existence of proper long Σ-bases on $C_c([0, \omega_1))$

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer Topological groups and C(X) spaces with ordered bases

イロト イポト イヨト イヨト

æ

The dominating cardinal

 $\ln\left(\mathbb{N}^{\mathbb{N}},\leq^{*}\right)$

- α ≤* β stands for the *eventual dominance preorder* defined so that α (n) ≤ β (n) for almost all n ∈ N, i.e., for all but finitely many values of n.
- $\alpha <^* \beta$ means that there exists $m \in \mathbb{N}$ such that $\alpha(n) < \beta(n)$ for every $n \ge m$.

 ω_1 is the first ordinal of uncountable cardinal, whose cardinality we denote by \aleph_1 .

ZFC model means Zermelo-Fraenkel model + axiom of choice.

Definition

The *dominating cardinal* \mathfrak{d} is the least cardinality for cofinal subsets of the preordered space $(\mathbb{N}^{\mathbb{N}}, \leq^*)$.

One has $\aleph_1 \leq \mathfrak{d} \leq \mathfrak{c}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

The main lemma

Lemma

If $\aleph_1 = \mathfrak{d}$ there exists a cofinal ω_1 -sequence $\Gamma := \{\beta_\kappa : \kappa < \omega_1\}$ in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$ such that

1
$$\kappa_1 < \kappa_2$$
 implies that $\beta_{\kappa_1} <^* \beta_{\kappa_2}$

2 for each $\alpha \in \mathbb{N}^{\mathbb{N}}$ the subset

$$\Delta_{\alpha} := \{ \kappa < \omega_{\mathsf{1}} : \beta_{\kappa} \leq^* \alpha \}$$

of $[0, \omega_1)$ is countable,

- **3** if $\alpha \leq^* \gamma$ then $\Delta_{\alpha} \subseteq \Delta_{\gamma}$, and
- every countable subset of $[0, \omega_1)$ is contained in some Δ_{γ} ; in particular, $\bigcup_{\alpha \in \mathbb{N}^{\mathbb{N}}} \Delta_{\alpha} = [0, \omega_1)$.

Example

In any ZFC model for which $\aleph_1 = \mathfrak{d} < \mathfrak{c}$ there exists a completely regular space *X* and a compact covering $\{A_{\alpha} : \alpha \in \Sigma\}$ of *X*, with $A_{\alpha} \subseteq A_{\beta}$ whenever $\alpha \leq \beta$ and indexed by an unbounded, directed and boundedly complete proper subset Σ of $\mathbb{N}^{\mathbb{N}}$ that swallows the compact sets of *X*.

Corollary

In any ZFC model for which $\aleph_1 = \mathfrak{d} < \mathfrak{c}$ there exists a long Σ -base of absolutely convex neighborhoods of the origin of the space $C_c([0, \omega_1))$ which is not a \mathfrak{G} -base.

ヘロト 人間 ト ヘヨト ヘヨト

Open question

Problem

Let X be a separable metric space admitting a compact ordered covering of X indexed by an unbounded and boundedly complete proper subset of $\mathbb{N}^{\mathbb{N}}$ that swallows the compact sets of X. Is then X a Polish space?

J.C. Ferrando, J. Kakol, S. López Alfonso and M. López Pellicer Topological groups and C(X) spaces with ordered bases

イロト イ理ト イヨト イヨト

References I

- Banakh, T., ℵ₀*-spaces*, Topology Appl. **195** (2015), 151-173.
- Cascales, B., Orihuela, J. and Tkachuk, V., Domination by second countable spaces and Lindelöf Σ-property, Topology Appl. 158 (2011), 204-214.
- Chasco, M. J., Martin-Peinador, E. and Tarieladze, V., A class of angelic sequential non-Fréchet-Urysohn topological groups, Topology Appl. 154 (2007), 741–748.
- Ferrando, J. C., Kąkol, J., López-Pellicer, M. and Saxon, S., *Tightness and distinguished Fréchet spaces*, J. Math. Anal. Appl. **324** (2006), 862-881.

イロト 不得 とくほと くほとう

1

References II

- Ferrando, J. C. and López-Pellicer, M. (Eds.), *Descriptive Topology and Functional Analysis*, Springer Proceedings in Mathematics & Statistics 80, Springer, Heidelberg New York, 2014.
- Gabriyelyan, S., Kąkol, J. and Leiderman, A., *The strong Pytkeev property for topological groups and topological vector spaces*, Monatsch. Math. **175** (2014), 519–542.
- Grabriyelyan, S., Kąkol, J. and Leiderman, A., *On topological groups with a small base and metrizability*, Fundamenta Math. **229** (2015), 129-158.

イロト イポト イヨト イヨト

References III

- Kąkol, J., Kubiś, W. and López-Pellicer, M., Descriptive Topology in Selected Topics of Functional Analysis, Springer, Developments in Math. 24, New York Dordrecht Heidelberg, 2011.
- Noble, N., The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187–198.
- Orihuela, J., Pointwise compactness in spaces of continuous functions, J. London Math. Soc. 36 (1987), 143-152.
- Tsaban, B. and Zdomskyy, L., On the Pytkeev property in spaces of continuous functions (II), Houston J. of Math. 35 (2009), 563–571.

イロト イポト イヨト イヨト