Acotación de operadores de Cesáro generalizados en espacios de diferencias fraccionarias

L. Abadias, P.J. Miana and M.P. Velasco
Preprint, (Under construction) Marzo - Abril 2016

2-4 de marzo de 2016
XII Encuentro de la Red de Análisis Funcional, Cáceres pjmiana@unizar.es

Index

1. Introduction
2. Weyl fractional finite differences
3. Convolution Banach modules τ_{p}^{α}
4. Semigroups of composition on τ_{p}^{α}
5. Generalized Cesáro operators \mathcal{C}_{β} and \mathcal{C}_{β}^{*} on τ_{p}^{α}
6. Spetrum sets of \mathcal{C}_{β} and \mathcal{C}_{β}^{*}

Bibliography

1. Introduction

1. Introduction

Let $\ell^{p}, 1 \leq p<\infty$, the usual Lebesgue space of sequences

$$
\ell^{p}:=\left\{f=(f(n))_{n \geq 0} \subset \mathbb{C}:\|f\|_{p}^{p}:=\sum_{n=0}^{\infty}|f(n)|^{p}<\infty\right\}
$$

1. Introduction

Let $\ell^{p}, 1 \leq p<\infty$, the usual Lebesgue space of sequences

$$
\ell^{p}:=\left\{f=(f(n))_{n \geq 0} \subset \mathbb{C}:\|f\|_{p}^{p}:=\sum_{n=0}^{\infty}|f(n)|^{p}<\infty\right\},
$$

and ℓ^{∞}, the set of bounded sequences with the norm

$$
\ell^{\infty}:=\left\{f=(f(n))_{n \geq 0} \subset \mathbb{C}:\|f\|_{\infty}:=\sup _{n \geq 0}|f(n)|<\infty\right\}
$$

The continuous embedding $\ell^{1} \hookrightarrow \ell^{p} \hookrightarrow \ell^{\infty}$ holds.

A Banach algebra \mathcal{A} is a Banach space with an associative and distributive product such that $\lambda(x y)=(\lambda x) y=x(\lambda y)$ and $\|x y\| \leq\|x\|\|y\|$ for all $\lambda \in \mathbb{C}$ and $x, y \in \mathcal{A}$.

A Banach algebra \mathcal{A} is a Banach space with an associative and distributive product such that $\lambda(x y)=(\lambda x) y=x(\lambda y)$ and $\|x y\| \leq\|x\|\|y\|$ for all $\lambda \in \mathbb{C}$ and $x, y \in \mathcal{A}$.

Note that ℓ^{1} is a commutative Banach algebra endowed with their natural convolution product

$$
(f * g)(n)=\sum_{j=0}^{n} f(n-j) g(j), \quad n \geq 0 ; \quad f, g \in \ell^{1}
$$

A Banach algebra \mathcal{A} is a Banach space with an associative and distributive product such that $\lambda(x y)=(\lambda x) y=x(\lambda y)$ and $\|x y\| \leq\|x\|\|y\|$ for all $\lambda \in \mathbb{C}$ and $x, y \in \mathcal{A}$.

Note that ℓ^{1} is a commutative Banach algebra endowed with their natural convolution product

$$
(f * g)(n)=\sum_{j=0}^{n} f(n-j) g(j), \quad n \geq 0 ; \quad f, g \in \ell^{1}
$$

Moreover $\ell^{p} * \ell^{1} \hookrightarrow \ell^{p}(1 \leq p \leq \infty)$ and

$$
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}, \quad f \in \ell^{1}, g \in \ell^{p} .
$$

The space ℓ^{p} is a module over the algebra ℓ^{1}.

The Cesàro operator $\mathcal{C}: \mathbb{C}^{\mathbb{N}_{0}} \rightarrow \mathbb{C}^{\mathbb{N}_{0}}, f \mapsto \mathcal{C} f$, is defined by

$$
\mathcal{C} f(n)=\frac{1}{n+1} \sum_{j=0}^{n} f(j), \quad n \in \mathbb{N}_{0}
$$

The Cesàro operator $\mathcal{C}: \mathbb{C}^{\mathbb{N}_{0}} \rightarrow \mathbb{C}^{\mathbb{N}_{0}}, f \mapsto \mathcal{C} f$, is defined by

$$
\mathcal{C} f(n)=\frac{1}{n+1} \sum_{j=0}^{n} f(j), \quad n \in \mathbb{N}_{0}
$$

Note that $\mathcal{C}: \ell^{1} \nrightarrow \ell^{1}, \mathcal{C}: \ell^{p} \rightarrow \ell^{p}$, with $1<p \leq \infty$ due to

$$
\sum_{n=0}^{\infty}\left|\frac{1}{n+1} \sum_{j=0}^{n} f(n)\right|^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=0}^{\infty}|f(n)|^{p}
$$

(Hardy inequality, 1930)

For $\beta>0$, the β-Cesàro operator $\mathcal{C}^{\beta}: \mathbb{C}^{\mathbb{N}_{0}} \rightarrow \mathbb{C}^{\mathbb{N}_{0}}$, is defined by

$$
\mathcal{C}^{\beta} f(n)=\frac{1}{k^{\beta+1}(n)} \sum_{j=0}^{n} k^{\beta}(n-j) f(j)=\frac{1}{k^{\beta+1}(n)}\left(k^{\beta} * f\right)(n), n \in \mathbb{N}_{0}
$$

For $\beta>0$, the β-Cesàro operator $\mathcal{C}^{\beta}: \mathbb{C}^{\mathbb{N}_{0}} \rightarrow \mathbb{C}^{\mathbb{N}_{0}}$, is defined by
$\mathcal{C}^{\beta} f(n)=\frac{1}{k^{\beta+1}(n)} \sum_{j=0}^{n} k^{\beta}(n-j) f(j)=\frac{1}{k^{\beta+1}(n)}\left(k^{\beta} * f\right)(n), n \in \mathbb{N}_{0}$,
where $k^{\beta}(n)=\frac{\Gamma(\beta+n)}{\Gamma(\beta) \Gamma(n+1)}$. (Stempak (1994), Zygmund (1959))

For $\beta>0$, the β-Cesàro operator $\mathcal{C}^{\beta}: \mathbb{C}^{\mathbb{N}_{0}} \rightarrow \mathbb{C}^{\mathbb{N}_{0}}$, is defined by
$\mathcal{C}^{\beta} f(n)=\frac{1}{k^{\beta+1}(n)} \sum_{j=0}^{n} k^{\beta}(n-j) f(j)=\frac{1}{k^{\beta+1}(n)}\left(k^{\beta} * f\right)(n), n \in \mathbb{N}_{0}$,
where $k^{\beta}(n)=\frac{\Gamma(\beta+n)}{\Gamma(\beta) \Gamma(n+1)}$. (Stempak (1994), Zygmund (1959))
Note that $\mathcal{C}^{\beta}: \ell^{1} \nrightarrow \ell^{1}, \mathcal{C}^{\beta}: \ell^{p} \rightarrow \ell^{p}$, with $1<p \leq \infty$.
(Stempak(1994), Andersen (1996), Xiao (1997))

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0} .
$$

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0} .
$$

The kernel k^{α} satisfies that:

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0}
$$

The kernel k^{α} satisfies that:
(i) $\sum_{n=0}^{\infty} k^{\alpha}(n) z^{n}=\frac{1}{(1-z)^{\alpha}}, \quad|z|<1, \quad \alpha>0$.

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0}
$$

The kernel k^{α} satisfies that:
(i) $\sum_{n=0}^{\infty} k^{\alpha}(n) z^{n}=\frac{1}{(1-z)^{\alpha}}, \quad|z|<1, \quad \alpha>0$.
(ii) $k^{\alpha} * k^{\beta}=k^{\alpha+\beta}$.

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0}
$$

The kernel k^{α} satisfies that:
(i) $\sum_{n=0}^{\infty} k^{\alpha}(n) z^{n}=\frac{1}{(1-z)^{\alpha}}, \quad|z|<1, \quad \alpha>0$.
(ii) $k^{\alpha} * k^{\beta}=k^{\alpha+\beta}$.
(iii) $k^{\alpha}(n) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}$ for large n.

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0} .
$$

The kernel k^{α} satisfies that:
(i) $\sum_{n=0}^{\infty} k^{\alpha}(n) z^{n}=\frac{1}{(1-z)^{\alpha}}, \quad|z|<1, \quad \alpha>0$.
(ii) $k^{\alpha} * k^{\beta}=k^{\alpha+\beta}$.
(iii) $k^{\alpha}(n) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}$ for large n.
(iv) k^{α} is increasing for $\alpha>1$, decreasing for $0<\alpha<1$, $k^{1}(n)=1$ and $k^{0}=\lim _{\alpha \rightarrow 0^{+}} k^{\alpha}=e_{0}=(1,0,0, \ldots)$, where $e_{j}(n)=\delta_{j, n}$ is the Kronecker delta.

$$
k^{\alpha}(n)=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(n+1)}=\binom{\alpha-1+n}{\alpha-1}, \quad n \in \mathbb{N}_{0} .
$$

The kernel k^{α} satisfies that:
(i) $\sum_{n=0}^{\infty} k^{\alpha}(n) z^{n}=\frac{1}{(1-z)^{\alpha}}, \quad|z|<1, \quad \alpha>0$.
(ii) $k^{\alpha} * k^{\beta}=k^{\alpha+\beta}$.
(iii) $k^{\alpha}(n) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}$ for large n.
(iv) k^{α} is increasing for $\alpha>1$, decreasing for $0<\alpha<1$, $k^{1}(n)=1$ and $k^{0}=\lim _{\alpha \rightarrow 0^{+}} k^{\alpha}=e_{0}=(1,0,0, \ldots)$, where $e_{j}(n)=\delta_{j, n}$ is the Kronecker delta.
(v) $k^{\alpha+1}(n)\binom{n}{j}=k^{\alpha+1}(j)\binom{n+\alpha}{j+\alpha}$.

Motivation: Césaro sums and Cesáro means [ALMV]

Motivation: Césaro sums and Cesáro means [ALMV]

Let X be a complex Banach space, $T \in \mathcal{B}(X)$ and denote by \mathcal{T} the discrete semigroup given by $\mathcal{T}(n):=T^{n}$ for $n \in \mathbb{N}_{0}$.

Motivation: Césaro sums and Cesáro means [ALMV]

Let X be a complex Banach space, $T \in \mathcal{B}(X)$ and denote by \mathcal{T} the discrete semigroup given by $\mathcal{T}(n):=T^{n}$ for $n \in \mathbb{N}_{0}$.

The Cesàro sum of order $\alpha>0$ of $T,\left\{S_{\alpha} \mathcal{T}(n)\right\}_{n \in \mathbb{N}_{0}} \subset \mathcal{B}(X)$, is defined by

$$
S_{\alpha} \mathcal{T}(n) x=\left(k^{\alpha} * \mathcal{T}\right)(n) x=\sum_{j=0}^{n} k^{\alpha}(n-j) T^{j} x, \quad x \in X, \quad n \in \mathbb{N}_{0}
$$

Motivation: Césaro sums and Cesáro means [ALMV]

Let X be a complex Banach space, $T \in \mathcal{B}(X)$ and denote by \mathcal{T} the discrete semigroup given by $\mathcal{T}(n):=T^{n}$ for $n \in \mathbb{N}_{0}$.

The Cesàro sum of order $\alpha>0$ of $T,\left\{S_{\alpha} \mathcal{T}(n)\right\}_{n \in \mathbb{N}_{0}} \subset \mathcal{B}(X)$, is defined by
$S_{\alpha} \mathcal{T}(n) x=\left(k^{\alpha} * \mathcal{T}\right)(n) x=\sum_{j=0}^{n} k^{\alpha}(n-j) T^{j} x, \quad x \in X, \quad n \in \mathbb{N}_{0}$.
For example $S_{0} \mathcal{T}(n)=T^{n}$ and $S_{1} \mathcal{T}(n)=\sum_{j=0}^{n} T^{j}$.

Motivation: Césaro sums and Cesáro means [ALMV]

Let X be a complex Banach space, $T \in \mathcal{B}(X)$ and denote by \mathcal{T} the discrete semigroup given by $\mathcal{T}(n):=T^{n}$ for $n \in \mathbb{N}_{0}$.

The Cesàro sum of order $\alpha>0$ of $T,\left\{S_{\alpha} \mathcal{T}(n)\right\}_{n \in \mathbb{N}_{0}} \subset \mathcal{B}(X)$, is defined by
$S_{\alpha} \mathcal{T}(n) x=\left(k^{\alpha} * \mathcal{T}\right)(n) x=\sum_{j=0}^{n} k^{\alpha}(n-j) T^{j} x, \quad x \in X, \quad n \in \mathbb{N}_{0}$.
For example $S_{0} \mathcal{T}(n)=T^{n}$ and $S_{1} \mathcal{T}(n)=\sum_{j=0}^{n} T^{j}$.
The Cesàro means of order $\alpha>0$ of $T,\left\{M_{\alpha} \mathcal{T}(n)\right\}_{n \in \mathbb{N}_{0}} \subset \mathcal{B}(X)$, is defined by

$$
M_{\alpha} \mathcal{T}(n) x=\frac{1}{k^{\alpha+1}(n)}\left(k^{\alpha} * \mathcal{T}\right)(n) x, \quad x \in X, \quad n \in \mathbb{N}_{0}
$$

In the case that $\left\|S_{\alpha} \mathcal{T}(n)\right\| \leq C k^{\alpha+1}(n)$, (i.e., Cesaro means are uniformly bounded), the operator T is called (C, α)-bounded.

In the case that $\left\|S_{\alpha} \mathcal{T}(n)\right\| \leq C k^{\alpha+1}(n)$, (i.e., Cesaro means are uniformly bounded), the operator T is called (C, α)-bounded.

If T is $(C, 0)$-bounded means that T is power bounded, and if T is (C, α)-bounded then is (C, β)-bounded for $\beta>\alpha$.

In the case that $\left\|S_{\alpha} \mathcal{T}(n)\right\| \leq C k^{\alpha+1}(n)$, (i.e., Cesaro means are uniformly bounded), the operator T is called (C, α)-bounded.

If T is $(C, 0)$-bounded means that T is power bounded, and if T is (C, α)-bounded then is $(C, \beta$)-bounded for $\beta>\alpha$.

However the inverse result is not true. For example, the matrix

$$
T=\left(\begin{array}{rr}
-1 & -1 \\
0 & -1
\end{array}\right)
$$

defines a $(C, 1)$-bounded operator, that is,

$$
\left\|S_{1} \mathcal{T}(n)\right\|=\left\|\sum_{j=0}^{n} T^{j}\right\| \leq C(n+1), \quad n \in \mathbb{N}_{0}
$$

but T does not satisfy the power-boundedness condition.

Aims of the talk

Aims of the talk

The main aim of this talk is to study the boundedness of Cesáro operator \mathcal{C}^{β} (and its adjoint $\left.\left(\mathcal{C}^{\beta}\right)^{*}\right)$ in some fractional finite difference spaces, τ_{p}^{α}. We estimate their norms and describe their spectrum sets.

Aims of the talk

The main aim of this talk is to study the boundedness of Cesáro operator \mathcal{C}^{β} (and its adjoint $\left.\left(\mathcal{C}^{\beta}\right)^{*}\right)$ in some fractional finite difference spaces, τ_{p}^{α}. We estimate their norms and describe their spectrum sets.
(i) We introduce some fractional finite difference in the sense of Weyl and a scale of Banach modules, τ_{p}^{α}, contained in ℓ^{p}.
(ii) We define some C_{0}-semigroups of contractions in τ_{p}^{α}.
(iii) We express the operators \mathcal{C}^{β} and its adjoint, $\left(\mathcal{C}^{\beta}\right)^{*}$, in terms of the C_{0}-semigroups.
(iv) These representations allow us to estimate $\left\|\mathcal{C}^{\beta}\right\|$ and $\left\|\left(\mathcal{C}^{\beta}\right)^{*}\right\|$ and to describe their spectrum sets via a spectral mapping theorem for C_{0}-semigroups and we draw them.

2. Weyl fractional finite differences

2. Weyl fractional finite differences

We denote by c_{00} the Banach space of complex sequences of finite support with the supremum norm.

2. Weyl fractional finite differences

We denote by c_{00} the Banach space of complex sequences of finite support with the supremum norm.

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$, we denote the usual differences by

$$
\begin{gathered}
\nabla(n)=f(n)-f(n-1) \\
W_{+} f(n)=W_{+}^{1} f(n)=f(n)-f(n+1)=-\Delta f(n)
\end{gathered}
$$

2. Weyl fractional finite differences

We denote by c_{00} the Banach space of complex sequences of finite support with the supremum norm.

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$, we denote the usual differences by

$$
\begin{gathered}
\nabla(n)=f(n)-f(n-1) \\
W_{+} f(n)=W_{+}^{1} f(n)=f(n)-f(n+1)=-\Delta f(n), \\
W_{+}^{2} f(n)=f(n)-2 f(n+1)+f(n+2)
\end{gathered}
$$

2. Weyl fractional finite differences

We denote by c_{00} the Banach space of complex sequences of finite support with the supremum norm.

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$, we denote the usual differences by

$$
\begin{gathered}
\nabla(n)=f(n)-f(n-1), \\
W_{+} f(n)=W_{+}^{1} f(n)=f(n)-f(n+1)=-\Delta f(n), \\
W_{+}^{2} f(n)=f(n)-2 f(n+1)+f(n+2),
\end{gathered}
$$

and for $m \in \mathbb{N}$,

$$
W_{+}^{m} f(n)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} f(n+j)
$$

The operator W_{+}has inverse in $c_{0,0}, W_{+}^{-1} f(n)=\sum_{j=n}^{\infty} f(j)$

The operator W_{+}has inverse in $c_{0,0}, W_{+}^{-1} f(n)=\sum_{j=n}^{\infty} f(j)$ and its iterations are given by the sum

$$
W_{+}^{-m} f(n)=\sum_{j=m}^{\infty} \frac{\Gamma(j-n+m)}{\Gamma(j-n+1) \Gamma(m)} f(j)=\sum_{j=n}^{\infty} k^{m}(j-n) f(j), \quad n \in \mathbb{N}_{0}
$$

The operator W_{+}has inverse in $c_{0,0}, W_{+}^{-1} f(n)=\sum_{j=n}^{\infty} f(j)$ and its iterations are given by the sum

$$
W_{+}^{-m} f(n)=\sum_{j=m}^{\infty} \frac{\Gamma(j-n+m)}{\Gamma(j-n+1) \Gamma(m)} f(j)=\sum_{j=n}^{\infty} k^{m}(j-n) f(j), \quad n \in \mathbb{N}_{0}
$$

Definition.

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\alpha>0$ be given. The Weyl sum of order α of $f, W_{+}^{-\alpha} f$, is defined by

$$
W_{+}^{-\alpha} f(n):=\sum_{j=n}^{\infty} k^{\alpha}(j-n) f(j), \quad n \in \mathbb{N}_{0}
$$

Definition.

The Weyl difference of order α of $f, W_{+}^{\alpha} f$, is defined by

$$
W_{+}^{\alpha} f(n):=W_{+}^{m} W_{+}^{-(m-\alpha)} f(n), \quad n \in \mathbb{N}_{0},
$$

for $m=[\alpha]+1$, whenever the right hand sides make sense.

Definition.

The Weyl difference of order α of $f, W_{+}^{\alpha} f$, is defined by

$$
W_{+}^{\alpha} f(n):=W_{+}^{m} W_{+}^{-(m-\alpha)} f(n), \quad n \in \mathbb{N}_{0},
$$

for $m=[\alpha]+1$, whenever the right hand sides make sense.
In particular
(i) $W_{+}^{\alpha}: c_{0,0} \rightarrow c_{0,0}$ for $\alpha \in \mathbb{R}$.
(ii) $W_{+}^{\alpha} W_{+}^{\beta} f=W_{+}^{\alpha+\beta} f=W_{+}^{\beta} W_{+}^{\alpha} f$ for $\alpha, \beta \in \mathbb{R}$ and $f \in c_{00}$.

Example.

Example.

(i) Let $\lambda \in \mathbb{C} \backslash\{0\}$, and $p_{\lambda}(n):=\lambda^{-(n+1)}$ for $n \in \mathbb{N}_{0}$.

Example.

(i) Let $\lambda \in \mathbb{C} \backslash\{0\}$, and $p_{\lambda}(n):=\lambda^{-(n+1)}$ for $n \in \mathbb{N}_{0}$. The sequences p_{λ} are eigenfunctions for the operator W_{+}^{α} for $\alpha \in \mathbb{R}$ if $|\lambda|>1$:

$$
W_{+}^{\alpha} p_{\lambda}=\frac{(\lambda-1)^{\alpha}}{\lambda^{\alpha}} p_{\lambda}, \quad|\lambda|>1 .
$$

Example.

(i) Let $\lambda \in \mathbb{C} \backslash\{0\}$, and $p_{\lambda}(n):=\lambda^{-(n+1)}$ for $n \in \mathbb{N}_{0}$. The sequences p_{λ} are eigenfunctions for the operator W_{+}^{α} for $\alpha \in \mathbb{R}$ if $|\lambda|>1$:

$$
W_{+}^{\alpha} p_{\lambda}=\frac{(\lambda-1)^{\alpha}}{\lambda^{\alpha}} p_{\lambda}, \quad|\lambda|>1 .
$$

(ii) Let $\alpha \geq 0$ be given. We define

$$
h_{n}^{\alpha}(j):= \begin{cases}k^{\alpha}(n-j), & 0 \leq j \leq n \\ 0, & j>n,\end{cases}
$$

for $n \in \mathbb{N}_{0}$.

Example.

(i) Let $\lambda \in \mathbb{C} \backslash\{0\}$, and $p_{\lambda}(n):=\lambda^{-(n+1)}$ for $n \in \mathbb{N}_{0}$. The sequences p_{λ} are eigenfunctions for the operator W_{+}^{α} for $\alpha \in \mathbb{R}$ if $|\lambda|>1$:

$$
W_{+}^{\alpha} p_{\lambda}=\frac{(\lambda-1)^{\alpha}}{\lambda^{\alpha}} p_{\lambda}, \quad|\lambda|>1 .
$$

(ii) Let $\alpha \geq 0$ be given. We define

$$
h_{n}^{\alpha}(j):= \begin{cases}k^{\alpha}(n-j), & 0 \leq j \leq n \\ 0, & j>n,\end{cases}
$$

for $n \in \mathbb{N}_{0}$. Then

$$
W_{+}^{\beta} h_{n}^{\alpha}=h_{n}^{\alpha-\beta}
$$

for $\beta \leq \alpha$ and $n \in \mathbb{N}_{0}$.

3. Convolution Banach modules τ_{p}^{α}

3. Convolution Banach modules τ_{p}^{α}

For $\alpha>0$, we define $q_{\alpha, p}: c_{0,0} \rightarrow[0, \infty)$ by

$$
q_{\alpha, p}(f):=\left(\sum_{n=0}^{\infty}\left(k^{\alpha+1}(n)\left|W_{+}^{\alpha} f(n)\right|\right)^{p}\right)^{\frac{1}{p}}, \quad f \in c_{0,0}
$$

Note that for $\alpha=0, q_{0, p}=\|\quad\|_{p}$.

3. Convolution Banach modules τ_{p}^{α}

For $\alpha>0$, we define $q_{\alpha, p}: c_{0,0} \rightarrow[0, \infty)$ by

$$
q_{\alpha, p}(f):=\left(\sum_{n=0}^{\infty}\left(k^{\alpha+1}(n)\left|W_{+}^{\alpha} f(n)\right|\right)^{p}\right)^{\frac{1}{p}}, \quad f \in c_{0,0}
$$

Note that for $\alpha=0, q_{0, p}=\|\quad\|_{p}$.
Theorem.
Let $\alpha>0$. Then $q_{\alpha, p}$ defines a norm in $c_{0,0}$ and

$$
q_{\alpha, p}(f * g) \leq C_{\alpha} q_{\alpha, p}(f) q_{\alpha, 1}(g), \quad f, g \in c_{0,0}\left(\mathbb{N}_{0}\right)
$$

3. Convolution Banach modules τ_{p}^{α}

For $\alpha>0$, we define $q_{\alpha, p}: c_{0,0} \rightarrow[0, \infty)$ by

$$
q_{\alpha, p}(f):=\left(\sum_{n=0}^{\infty}\left(k^{\alpha+1}(n)\left|W_{+}^{\alpha} f(n)\right|\right)^{p}\right)^{\frac{1}{p}}, \quad f \in c_{0,0} .
$$

Note that for $\alpha=0, q_{0, p}=\|\quad\|_{p}$.
Theorem.
Let $\alpha>0$. Then $q_{\alpha, p}$ defines a norm in $c_{0,0}$ and

$$
q_{\alpha, p}(f * g) \leq C_{\alpha} q_{\alpha, p}(f) q_{\alpha, 1}(g), \quad f, g \in c_{0,0}\left(\mathbb{N}_{0}\right)
$$

Denote by τ_{p}^{α} the completion of $c_{0,0}$ in the norm $q_{\alpha, p}$. Then
$\tau_{p}^{\beta} \hookrightarrow \tau_{p}^{\alpha} \hookrightarrow \ell^{p}, \quad \tau_{1}^{\alpha} \hookrightarrow \tau_{p}^{\alpha} \hookrightarrow \tau_{\infty}^{\alpha}, \quad\left(\tau_{p}^{\alpha}\right)^{\prime}=\tau_{p^{\prime}}^{\alpha}, 1<p<\infty$,
for $0<\alpha<\beta$ and $\lim _{\alpha \rightarrow 0^{+}} q_{\alpha, p}(f)=\|f\|_{p}$.

Example.
Let $p_{\lambda}(n)=\lambda^{-(n+1)}$. For $1 \leq p \leq \infty$ and $|\lambda|>1$, the function $p_{\lambda} \in \tau_{p}^{\alpha}$ and

$$
q_{\alpha, p}\left(p_{\lambda}\right) \leq C_{\alpha, p}\left(\frac{\left|\lambda^{p}-\lambda^{p-1}\right|}{|\lambda|^{p}-1}\right)^{\alpha} \frac{1}{\left(|\lambda|^{p}-1\right)^{\frac{1}{p}}}
$$

for $1 \leq p<\infty$ and $|\lambda|>1$.

4. Semigroups of composition on τ_{p}^{α}

Theorem.
Take $1 \leq p \leq \infty$ and $\alpha \geq 0$. The one-parameter operator families $\left(T_{p}(t)\right)_{t \geq 0}$ and $\left(S_{p}(t)\right)_{t \geq 0}$ defined by

$$
\begin{gathered}
T_{p}(t) f(n):=e^{-\frac{t}{\rho}} \sum_{j=0}^{n}\binom{n}{j} e^{-t j}\left(1-e^{-t}\right)^{n-j} f(j), \\
S_{p}(t) f(n):=e^{-t\left(n+1-\frac{1}{p}\right)} \sum_{j=n}^{\infty}\binom{j}{n}\left(1-e^{-t}\right)^{j-n} f(j)
\end{gathered}
$$

are contraction adjoint C_{0}-semigroups on τ_{p}^{α} whose generators A and B are given by

$$
\begin{aligned}
& \operatorname{Af}(0):=-\frac{1}{p} f(0), A f(n):=-n \nabla f(n)-\frac{1}{p} f(n), \quad n \in \mathbb{N}, \\
& B f(n):=(n+1) \Delta f(n)+\frac{1}{p} f(n), \quad n \in \mathbb{N}_{0} .
\end{aligned}
$$

Lemma

Let $\alpha \geq 0$ and $f \in c_{0,0}$ Then

Lemma

Let $\alpha \geq 0$ and $f \in c_{0,0}$ Then
(i) $W_{+}^{\alpha}\left(T_{p}(t) f\right)(n)=e^{-t \alpha} T_{\alpha}(t)\left(W_{+}^{\alpha} f\right)(n)$.

Lemma

Let $\alpha \geq 0$ and $f \in c_{0,0}$ Then
(i) $W_{+}^{\alpha}\left(T_{p}(t) f\right)(n)=e^{-t \alpha} T_{\alpha}(t)\left(W_{+}^{\alpha} f\right)(n)$.
(ii)

$$
W_{+}^{\alpha}\left(S_{p}(t) f\right)(n)=e^{-t\left(n+1-\frac{1}{p}\right)} \sum_{j=n}^{\infty}\binom{j+\alpha}{n+\alpha}\left(1-e^{-t}\right)^{j-n} W_{+}^{\alpha} f(j)
$$

Lemma

Let $\alpha \geq 0$ and $f \in c_{0,0}$ Then
(i) $W_{+}^{\alpha}\left(T_{p}(t) f\right)(n)=e^{-t \alpha} T_{\alpha}(t)\left(W_{+}^{\alpha} f\right)(n)$.
(ii)

$$
W_{+}^{\alpha}\left(S_{p}(t) f\right)(n)=e^{-t\left(n+1-\frac{1}{p}\right)} \sum_{j=n}^{\infty}\binom{j+\alpha}{n+\alpha}\left(1-e^{-t}\right)^{j-n} W_{+}^{\alpha} f(j)
$$

Theorem
Let A and B the generators of $\left(T_{p}(t)\right)_{t \geq 0}$ and $\left(S_{p}(t)\right)_{t \geq 0}$ on τ_{p}^{α}
$(1 \leq p<\infty)$.
(i) The point spectra are $\sigma_{p}(A)=\emptyset$ and $\sigma_{p}(B)=\mathbb{C}_{-}$.
(ii) The spectrum of B is $\sigma(B)=\mathbb{C}_{-} \cup i \mathbb{R}$.

5. Generalized Cesáro operators \mathcal{C}_{β} and \mathcal{C}_{β}^{*} on τ_{p}^{α}

Let $\beta>0$, we consider the Cesàro operator of order β given by

$$
\mathcal{C}_{\beta} f(n):=\frac{1}{k^{\beta+1}(n)} \sum_{j=0}^{n} k^{\beta}(n-j) f(j) \quad n \in \mathbb{N}_{0}
$$

and the adjoint Cesàro operator of order β given by

$$
\mathcal{C}_{\beta}^{*} f(n):=\sum_{j=n}^{\infty} \frac{1}{k^{\beta+1}(j)} k^{\beta}(j-n) f(j) \quad n \in \mathbb{N}_{0}
$$

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then
(i) The operator \mathcal{C}_{β} is a bounded operator on τ_{p}^{α}, for $1<p \leq \infty$,

$$
\begin{aligned}
& \left\|\mathcal{C}_{\beta}\right\| \leq \frac{\Gamma(\beta+1) \Gamma\left(1-\frac{1}{p}\right)}{\Gamma\left(\beta+1-\frac{1}{p}\right)} \text { and } \\
& \mathcal{C}_{\beta} f(n)=\beta \int_{0}^{\infty}\left(1-e^{-t}\right)^{\beta-1} e^{-t\left(1-\frac{1}{p}\right)} T_{p}(t) f(n) d t, \quad f \in \tau_{p}^{\alpha} .
\end{aligned}
$$

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then
(i) The operator \mathcal{C}_{β} is a bounded operator on τ_{p}^{α}, for $1<p \leq \infty$,

$$
\begin{aligned}
& \left\|\mathcal{C}_{\beta}\right\| \leq \frac{\Gamma(\beta+1) \Gamma\left(1-\frac{1}{p}\right)}{\Gamma\left(\beta+1-\frac{1}{p}\right)} \text { and } \\
& \mathcal{C}_{\beta} f(n)=\beta \int_{0}^{\infty}\left(1-e^{-t}\right)^{\beta-1} e^{-t\left(1-\frac{1}{p}\right)} T_{p}(t) f(n) d t, \quad f \in \tau_{p}^{\alpha} .
\end{aligned}
$$

(ii) The operator \mathcal{C}_{β}^{*} is a bounded operator on τ_{p}^{α}, for $1 \leq p<\infty$,

$$
\begin{aligned}
& \left\|\mathcal{C}_{\beta}^{*}\right\| \leq \frac{\Gamma(\beta+1) \Gamma\left(\frac{1}{p}\right)}{\Gamma\left(\beta+\frac{1}{p}\right)} \text { and } \\
& \quad \mathcal{C}_{\beta}^{*} f(n)=\beta \int_{0}^{\infty}\left(1-e^{-t}\right)^{\beta-1} e^{-\frac{t}{p}} S_{p}(t) f(n) d t, \quad f \in \tau_{p}^{\alpha} .
\end{aligned}
$$

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then
(i) The operator $\mathcal{C}_{\beta}{ }^{*}: \tau_{p}^{\alpha} \rightarrow \tau_{p}^{\alpha}$ satisfies

$$
\sigma\left(\mathcal{C}_{\beta}^{*}\right)=\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+\frac{1}{p}\right)}{\Gamma\left(\beta+z+\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}}, \quad 1 \leq p<\infty
$$

Theorem.
Let $\alpha \geq 0$ and $\beta>0$. Then
(i) The operator $\mathcal{C}_{\beta}{ }^{*}: \tau_{p}^{\alpha} \rightarrow \tau_{p}^{\alpha}$ satisfies

$$
\sigma\left(\mathcal{C}_{\beta}{ }^{*}\right)=\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+\frac{1}{p}\right)}{\Gamma\left(\beta+z+\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}}, \quad 1 \leq p<\infty .
$$

(ii) The operator $\mathcal{C}_{\beta}: \tau_{p}^{\alpha} \rightarrow \tau_{p}^{\alpha}$ satisfies

$$
\sigma\left(\mathcal{C}_{\beta}\right)=\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+1-\frac{1}{p}\right)}{\Gamma\left(\beta+z+1-\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}}, \quad 1<p \leq \infty
$$

6. Spetrum sets of \mathcal{C}_{β} and \mathcal{C}_{β}^{*}

$$
\begin{aligned}
\sigma\left(\mathcal{C}_{\beta}{ }^{*}\right) & =\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+\frac{1}{p}\right)}{\Gamma\left(\beta+z+\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}}, \\
\sigma\left(\mathcal{C}_{\beta}\right) & =\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+1-\frac{1}{p}\right)}{\Gamma\left(\beta+z+1-\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}
\end{aligned} .
$$

6. Spetrum sets of \mathcal{C}_{β} and \mathcal{C}_{β}^{*}

$$
\begin{aligned}
\sigma\left(\mathcal{C}_{\beta}{ }^{*}\right) & =\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+\frac{1}{p}\right)}{\Gamma\left(\beta+z+\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}}, \\
\sigma\left(\mathcal{C}_{\beta}\right) & =\overline{\left\{\frac{\Gamma(\beta+1) \Gamma\left(z+1-\frac{1}{p}\right)}{\Gamma\left(\beta+z+1-\frac{1}{p}\right)}: z \in \mathbb{C}_{+} \cup i \mathbb{R}\right\}} .
\end{aligned}
$$

For $p=1$ and $\beta=n \in \mathbb{N}$, we draw the sets

$$
\left\{\frac{n!}{(n+i t)(n-1+i t) \cdots(1+i t)}: t \in \mathbb{R}\right\} .
$$

Spectra for $p=1, \beta=1$

Spectra for $p=1, \beta=2$

Spectra for $p=1, \beta=4$

Spectra for $p=1, \beta=5$

$\sigma\left(\mathcal{C}_{\beta}^{*}\right), 1 \leq \beta \leq 6$

Bibliography

[ALMV] L. Abadias, et al. Cesàro sums and algebra homomorphisms of bounded operators. Accepted Israel J. Math. [AMV] L. Abadias, et al. Generalized Cesáro operators on fractional finite difference spaces. Preprint (2016).
[A] K. Andersen. Cesáro averaging operators on Hardy spaces.
Proc. of the Royal Soc. of Edin., 126 (1996).
[HLP] G.H. Hardy, J.E. Littlewood and G. Polya. Inequalities, 1934.
[S] K. Stempak. Cesáro averaging operators, Proc. of the Royal Soc. of Edin., 124 (1994).
[X] J. Xiao. Cesáro-type operators on Hardy, BMOA and Bloch spaces Arch. Math., 68 (1997).
[Z] A. Zygmund. Trigonometric Series, 1959.

