Encompassing weakly compact sets of C[0, 1]

Pedro Tradacete (UC3M)

Joint work with J. López-Abad

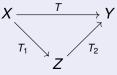
XII Encuentro de la Red de Análisis Funcional y Aplicaciones

Cáceres, 02-04 March 2016

- 4 E b

Theorem (Davies-Figiel-Johnson-Pelczynski 1974)

Given Banach spaces X, Y and a weakly compact operator $T: X \to Y$, there is a reflexive Banach space Z and operators T_1, T_2 such that



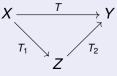
Question: If *X*, *Y* are Banach lattices, can we make *Z* a (reflexive) Banach lattice? **Answers:**

- Yes, under some conditions (Aliprantis-Burkinshaw 1984).
- In general, NO (Talagrand 1986).

< ロ > < 同 > < 回 > < 回 >

Theorem (Davies-Figiel-Johnson-Pelczynski 1974)

Given Banach spaces X, Y and a weakly compact operator $T: X \to Y$, there is a reflexive Banach space Z and operators T_1, T_2 such that



Question: If X, Y are Banach lattices, can we make Z a (reflexive) Banach lattice?

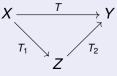
Answers:

Yes, under some conditions (Aliprantis-Burkinshaw 1984).

• In general, NO (Talagrand 1986).

Theorem (Davies-Figiel-Johnson-Pelczynski 1974)

Given Banach spaces X, Y and a weakly compact operator $T: X \to Y$, there is a reflexive Banach space Z and operators T_1, T_2 such that



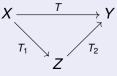
Question: If X, Y are Banach lattices, can we make Z a (reflexive) Banach lattice?

Answers:

- Yes, under some conditions (Aliprantis-Burkinshaw 1984).
- In general, NO (Talagrand 1986).

Theorem (Davies-Figiel-Johnson-Pelczynski 1974)

Given Banach spaces X, Y and a weakly compact operator $T: X \to Y$, there is a reflexive Banach space Z and operators T_1, T_2 such that



Question: If X, Y are Banach lattices, can we make Z a (reflexive) Banach lattice?

Answers:

- Yes, under some conditions (Aliprantis-Burkinshaw 1984).
- In general, NO (Talagrand 1986).

Encompassable sets

Theorem (Davies-Figiel-Johnson-Pelczynski)

Let X be a Banach space, $K \subset X$ weakly compact. There is a reflexive Banach space Z and an operator $T : Z \to X$ such that $K \subseteq T(B_Z)$.

Definition

Let X be a Banach space. A weakly compact set $K \subset X$ is encompassable by a reflexive Banach lattice if there is a reflexive Banach lattice E and an operator $T : E \to X$ such that $K \subset T(B_E)$.

Theorem (Aliprantis-Burkinhaw)

Under any of the following assumptions

- X is a space with an unconditional basis, or
- *X* is a Banach lattice which does not contain c_0 ,

every weakly compact set $K \subseteq X$ is encompassable by a reflexive Banach lattice.

Encompassable sets

Theorem (Davies-Figiel-Johnson-Pelczynski)

Let X be a Banach space, $K \subset X$ weakly compact. There is a reflexive Banach space Z and an operator $T : Z \to X$ such that $K \subseteq T(B_Z)$.

Definition

Let X be a Banach space. A weakly compact set $K \subset X$ is encompassable by a reflexive Banach lattice if there is a reflexive Banach lattice E and an operator $T : E \to X$ such that $K \subset T(B_E)$.

Theorem (Aliprantis-Burkinhaw)

Under any of the following assumptions

- X is a space with an unconditional basis, or
- X is a Banach lattice which does not contain c_0 ,

every weakly compact set $K \subseteq X$ is encompassable by a reflexive Banach lattice.

Encompassable sets

Theorem (Davies-Figiel-Johnson-Pelczynski)

Let X be a Banach space, $K \subset X$ weakly compact. There is a reflexive Banach space Z and an operator $T : Z \to X$ such that $K \subseteq T(B_Z)$.

Definition

Let X be a Banach space. A weakly compact set $K \subset X$ is encompassable by a reflexive Banach lattice if there is a reflexive Banach lattice E and an operator $T : E \to X$ such that $K \subset T(B_E)$.

Theorem (Aliprantis-Burkinhaw)

Under any of the following assumptions

- X is a space with an unconditional basis, or
- X is a Banach lattice which does not contain c_0 ,

every weakly compact set $K \subseteq X$ is encompassable by a reflexive Banach lattice.

Talagrand's question

Theorem (Talagrand)

There is a (countable) weakly compact set $K_T \subseteq C[0, 1]$ which is unencompassable by any reflexive Banach lattice.

 $K_{\mathcal{T}}$ is homeomorphic to ω^{ω^2} .

Question: What is the smallest ordinal α such that there exists a weakly compact set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any reflexive Banach lattice?

A (10) A (10) A (10)

Talagrand's question

Theorem (Talagrand)

There is a (countable) weakly compact set $K_T \subseteq C[0, 1]$ which is unencompassable by any reflexive Banach lattice.

$K_{\mathcal{T}}$ is homeomorphic to ω^{ω^2} .

Question: What is the smallest ordinal α such that there exists a weakly compact set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any reflexive Banach lattice?

< 回 > < 三 > < 三 >

Talagrand's question

Theorem (Talagrand)

There is a (countable) weakly compact set $K_T \subseteq C[0, 1]$ which is unencompassable by any reflexive Banach lattice.

 $K_{\mathcal{T}}$ is homeomorphic to ω^{ω^2} .

Question: What is the smallest ordinal α such that there exists a weakly compact set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any reflexive Banach lattice?

A D A D A D A

Theorem

Let $K \subseteq C[0, 1]$ be a weakly compact set homeomorphic to $\alpha < \omega^{\omega}$. Then K is encompassable by a reflexive Banach lattice.

Sketch of proof:

- Let $\phi : C[0,1]^* \to C(K)$ be given by $\phi(\mu)(k) = \int k d\mu$.
- Or C(K) is isomorphic to c_0 .
- There is a reflexive lattice E such that

Theorem

Let $K \subseteq C[0, 1]$ be a weakly compact set homeomorphic to $\alpha < \omega^{\omega}$. Then K is encompassable by a reflexive Banach lattice.

Sketch of proof:

- Let $\phi : C[0,1]^* \to C(K)$ be given by $\phi(\mu)(k) = \int k d\mu$.
- 2 C(K) is isomorphic to c_0 .

There is a reflexive lattice E such that

$T^*(``\delta_k") = k \text{ for every } k \in K.$

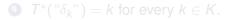
Theorem

Let $K \subseteq C[0, 1]$ be a weakly compact set homeomorphic to $\alpha < \omega^{\omega}$. Then K is encompassable by a reflexive Banach lattice.

Sketch of proof:

- Let $\phi : C[0,1]^* \to C(K)$ be given by $\phi(\mu)(k) = \int k d\mu$.
- 2 C(K) is isomorphic to c_0 .

There is a reflexive lattice E such that

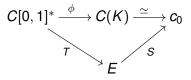


Theorem

Let $K \subseteq C[0, 1]$ be a weakly compact set homeomorphic to $\alpha < \omega^{\omega}$. Then K is encompassable by a reflexive Banach lattice.

Sketch of proof:

- Let $\phi : C[0,1]^* \to C(K)$ be given by $\phi(\mu)(k) = \int k d\mu$.
- 2 C(K) is isomorphic to c_0 .
- There is a reflexive lattice E such that

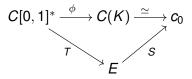


Theorem

Let $K \subseteq C[0, 1]$ be a weakly compact set homeomorphic to $\alpha < \omega^{\omega}$. Then K is encompassable by a reflexive Banach lattice.

Sketch of proof:

- Let $\phi : C[0,1]^* \to C(K)$ be given by $\phi(\mu)(k) = \int k d\mu$.
- 2 C(K) is isomorphic to c_0 .
- There is a reflexive lattice E such that



•
$$T^*(``\delta_k") = k$$
 for every $k \in K$.

Consider the Schreier family and its "square"

$$\mathcal{S} = \{ s \subset \mathbb{N} : \sharp s \leq \min s \},$$
$$\mathcal{S}_2 = \mathcal{S} \otimes \mathcal{S} = \{ \bigcup_{i=1}^n s_i : n \leq s_1 < \ldots < s_n, s_i \in \mathcal{S} \text{ for } 1 \leq i \leq n \}.$$

 $S, S_2 \subset \mathcal{P}^{<\infty}(\mathbb{N})$ are compact and homeomorphic to ω^{ω} and ω^{ω^2} respectively.

Each element $s \in S_2$ has a unique decomposition

$$s = s[0] \cup s[1] \cdots \cup s[n],$$

where $s[0] < s[1] < \cdots < s[n]$, {min s[i]} $_{i \le n} \in S$, $s[n] \in S$ and min s[i] = # s[i] for $0 \le i < n$.

Consider the Schreier family and its "square"

$$\mathcal{S} = \{ s \subset \mathbb{N} : \sharp s \leq \min s \},\$$
$$\mathcal{S}_2 = \mathcal{S} \otimes \mathcal{S} = \{ \bigcup_{i=1}^n s_i : n \leq s_1 < \ldots < s_n, s_i \in \mathcal{S} \text{ for } 1 \leq i \leq n \}.$$

 $S, S_2 \subset \mathcal{P}^{<\infty}(\mathbb{N})$ are compact and homeomorphic to ω^{ω} and ω^{ω^2} respectively.

Each element $s \in S_2$ has a unique decomposition

$$s = s[0] \cup s[1] \cdots \cup s[n],$$

where $s[0] < s[1] < \cdots < s[n]$, {min s[i]} $_{i \le n} \in S$, $s[n] \in S$ and min s[i] = # s[i] for $0 \le i < n$.

< ロ > < 同 > < 回 > < 回 >

Consider the Schreier family and its "square"

$$\mathcal{S} = \{ \boldsymbol{s} \subset \mathbb{N} : \sharp \boldsymbol{s} \leq \min \boldsymbol{s} \},$$

$$S_2 = S \otimes S = \{\bigcup_{i=1}^n s_i : n \leq s_1 < \ldots < s_n, s_i \in S \text{ for } 1 \leq i \leq n\}.$$

 $S, S_2 \subset \mathcal{P}^{<\infty}(\mathbb{N})$ are compact and homeomorphic to ω^{ω} and ω^{ω^2} respectively.

Each element $s \in S_2$ has a unique decomposition

$$\boldsymbol{s} = \boldsymbol{s}[\boldsymbol{0}] \cup \boldsymbol{s}[\boldsymbol{1}] \cdots \cup \boldsymbol{s}[\boldsymbol{n}],$$

where $s[0] < s[1] < \cdots < s[n]$, $\{\min s[i]\}_{i \le n} \in S$, $s[n] \in S$ and $\min s[i] = \sharp s[i]$ for $0 \le i < n$.

イロト 不得 トイヨト イヨト 二日

Let Θ : $S \to C(S_2)$ be the mapping that for $s = \{m_0 < \cdots < m_k\} \in S$ for every $t = t[0] \cup \cdots \cup t[l] \in S_2$,

$$\Theta(s)(t) := \frac{1}{2} \Big((-1)^{\#(\{0 \le i \le \min\{k, l\} : m_i \in t[i]\})} + 1 \Big).$$

 Θ : $S \to C(S_2)$ is well-defined and continuous. Let $K_{\omega} := \Theta(S) \subseteq C(S_2)$ is weakly compact and homeomorphic to ω^{ω} (and extending its elements by zero we get $K_{\omega} \subset C[0, 1]$).

Theorem

 $K_{\omega} \subset C(S_2)$ is unencompassable by any reflexive Banach lattice.

Let Θ : $S \to C(S_2)$ be the mapping that for $s = \{m_0 < \cdots < m_k\} \in S$ for every $t = t[0] \cup \cdots \cup t[l] \in S_2$,

$$\Theta(s)(t) := \frac{1}{2} \Big((-1)^{\#(\{0 \le i \le \min\{k, l\} : m_i \in t[i]\})} + 1 \Big).$$

$\Theta: S \to C(S_2)$ is well-defined and continuous.

Let $K_{\omega} := \Theta(S) \subseteq C(S_2)$ is weakly compact and homeomorphic to ω^{ω} (and extending its elements by zero we get $K_{\omega} \subset C[0, 1]$).

Theorem

 $K_{\omega} \subset C(S_2)$ is unencompassable by any reflexive Banach lattice.

< ロ > < 同 > < 回 > < 回 >

Let Θ : $S \to C(S_2)$ be the mapping that for $s = \{m_0 < \cdots < m_k\} \in S$ for every $t = t[0] \cup \cdots \cup t[l] \in S_2$,

$$\Theta(s)(t) := \frac{1}{2} \Big((-1)^{\#(\{0 \le i \le \min\{k,l\} : m_i \in t[i]\})} + 1 \Big).$$

 $\Theta : S \to C(S_2)$ is well-defined and continuous. Let $K_{\omega} := \Theta(S) \subseteq C(S_2)$ is weakly compact and homeomorphic to ω^{ω} (and extending its elements by zero we get $K_{\omega} \subset C[0, 1]$).

Theorem

 $K_{\omega} \subset C(S_2)$ is unencompassable by any reflexive Banach lattice.

< ロ > < 同 > < 回 > < 回 >

Let Θ : $S \to C(S_2)$ be the mapping that for $s = \{m_0 < \cdots < m_k\} \in S$ for every $t = t[0] \cup \cdots \cup t[l] \in S_2$,

$$\Theta(s)(t) := \frac{1}{2} \Big((-1)^{\#(\{0 \le i \le \min\{k, l\} : m_i \in t[i]\})} + 1 \Big).$$

 $\Theta : S \to C(S_2)$ is well-defined and continuous. Let $K_{\omega} := \Theta(S) \subseteq C(S_2)$ is weakly compact and homeomorphic to ω^{ω} (and extending its elements by zero we get $K_{\omega} \subset C[0, 1]$).

Theorem

 $K_{\omega} \subset C(\mathcal{S}_2)$ is unencompassable by any reflexive Banach lattice.

$A \subset X$ is a Banach-Saks set if every $(x_n) \subset A$ has a Cesaro convergent subsequence.

Proposition (Flores-T. 2008)

Talagrand's weakly compact K_T is a Banach-Saks set.

Corollary

 K_{T} is unencompassable by any Banach lattice with the Banach-Saks property.

It can be seen that the compact K_{ω} constructed before fails the Banach-Saks property.

Question: What is the smallest ordinal α such that there exists a Banach-Saks set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any Banach lattice with the Banach-Saks property?

Answer: ω [LópezAbad-Ruiz-T. 2014]

 $A \subset X$ is a Banach-Saks set if every $(x_n) \subset A$ has a Cesaro convergent subsequence.

Proposition (Flores-T. 2008)

Talagrand's weakly compact K_T is a Banach-Saks set.

Corollary

 $K_{\mathcal{T}}$ is unencompassable by any Banach lattice with the Banach-Saks property.

It can be seen that the compact K_{ω} constructed before fails the Banach-Saks property.

Question: What is the smallest ordinal α such that there exists a Banach-Saks set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any Banach lattice with the Banach-Saks property?

Answer: ω [LópezAbad-Ruiz-T. 2014]

イロト イヨト イヨト イヨト

 $A \subset X$ is a Banach-Saks set if every $(x_n) \subset A$ has a Cesaro convergent subsequence.

Proposition (Flores-T. 2008)

Talagrand's weakly compact K_T is a Banach-Saks set.

Corollary

 $K_{\mathcal{T}}$ is unencompassable by any Banach lattice with the Banach-Saks property.

It can be seen that the compact K_{ω} constructed before fails the Banach-Saks property.

Question: What is the smallest ordinal α such that there exists a Banach-Saks set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any Banach lattice with the Banach-Saks property?

Answer: ω [LópezAbad-Ruiz-T. 2014]

 $A \subset X$ is a Banach-Saks set if every $(x_n) \subset A$ has a Cesaro convergent subsequence.

Proposition (Flores-T. 2008)

Talagrand's weakly compact K_T is a Banach-Saks set.

Corollary

 K_T is unencompassable by any Banach lattice with the Banach-Saks property.

It can be seen that the compact K_{ω} constructed before fails the Banach-Saks property.

Question: What is the smallest ordinal α such that there exists a Banach-Saks set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any Banach lattice with the Banach-Saks property?

Answer: ω [LópezAbad-Ruiz-T. 2014]

イロン イロン イヨン イヨン

 $A \subset X$ is a Banach-Saks set if every $(x_n) \subset A$ has a Cesaro convergent subsequence.

Proposition (Flores-T. 2008)

Talagrand's weakly compact K_T is a Banach-Saks set.

Corollary

 K_T is unencompassable by any Banach lattice with the Banach-Saks property.

It can be seen that the compact K_{ω} constructed before fails the Banach-Saks property.

Question: What is the smallest ordinal α such that there exists a Banach-Saks set $K \subseteq C[0, 1]$ homeomorphic to α which is unencompassable by any Banach lattice with the Banach-Saks property?

Answer: *ω* [LópezAbad-Ruiz-T. 2014]

・ロト ・ 四ト ・ ヨト ・ ヨト

Thank you for your attention.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A