Problemas abiertos en dinámica de operadores

Alfred Peris

XIII Encuentro de la red de Análisis Funcional y Aplicaciones Cáceres, 6-11 de Marzo de 2017

Wikipedia

Old version: In mathematics and physics, **chaos theory** describes the behavior of certain nonlinear dynamical systems ...

Wikipedia

Old version: In mathematics and physics, **chaos theory** describes the behavior of certain nonlinear dynamical systems ... New version: Perhaps surprisingly, chaos may occur also in linear systems, provided they are infinite-dimensional. A theory of linear chaos is being developed in a branch of mathematical analysis known as functional analysis.

Wikipedia

Old version: In mathematics and physics, **chaos theory** describes the behavior of certain nonlinear dynamical systems ... New version: Perhaps surprisingly, chaos may occur also in linear systems, provided they are infinite-dimensional. A theory of linear chaos is being developed in a branch of mathematical analysis known as functional analysis.

Theorem (G. D. Birkhoff, 1929)

There is an entire function $f : \mathbb{C} \to \mathbb{C}$ such that, for any entire function $g : \mathbb{C} \to \mathbb{C}$ and for every $a \in \mathbb{C} \setminus \{0\}$, there is a sequence $(n_k)_k$ in \mathbb{N} such that

 $\lim_{k} f(z + an_k) = g(z) \text{ uniformly on compact sets of } \mathbb{C}.$

Birkhoff's result, in terms of dynamics

- $\mathcal{H}(\mathbb{C}) := \{f : \mathbb{C} \to \mathbb{C} ; f \text{ is entire}\}.$
- Endow H(C) with the compact-open topology τ₀ (topology of uniform convergence on compact sets of C).
- Consider the (continuous and linear!) map

 $T_a: \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C}), \ f(z) \mapsto f(z+a).$

• Then there are $f \in \mathcal{H}(\mathbb{C})$ so that the orbit under T_1 :

$$Orb(T_a, f) := \{f, T_a f, T_a^2 f, \dots\}$$

is dense in $\mathcal{H}(\mathbb{C})$.

In this talk we will focus on some of the open problems arising in linear dynamics that concern

- Existence of orbits with some density properties (frequent hypercyclicity and related).
- Dynamical recurrence of operators.
- Existence of invariant measures with respect to an operator, with certain ergodic properties.
- Entropy in the dynamics of operators.
- Dynamics of *C*₀-semigroups of operators and applications to linear PDEs and infinite systems of linear ODEs.
- Different chaotic properties in linear dynamics.

An operator *T* : *X* → *X* is topologically transitive if, for any *U*, *V* ⊂ *X* non-empty open sets there exists *n* ∈ N such that *Tⁿ(U)* ∩ *V* ≠ Ø. Within our context, this is equivalent to hypercyclicity, that is, the existence of vectors *x* ∈ *X* whose orbit under *T* is dense in *X*.

イベト イモト イモト

- An operator *T* : *X* → *X* is topologically transitive if, for any *U*, *V* ⊂ *X* non-empty open sets there exists *n* ∈ N such that *Tⁿ(U)* ∩ *V* ≠ Ø. Within our context, this is equivalent to hypercyclicity, that is, the existence of vectors *x* ∈ *X* whose orbit under *T* is dense in *X*.
- *T* is Devaney chaotic if it is topologically transitive, and the following set is dense in *X*: $Per(T) := \{periodic points of T\} = \{x \in x; T^n x = x \text{ for some } n\}.$

イベト イモト イモト

- An operator *T* : *X* → *X* is topologically transitive if, for any *U*, *V* ⊂ *X* non-empty open sets there exists *n* ∈ N such that *Tⁿ(U)* ∩ *V* ≠ Ø. Within our context, this is equivalent to hypercyclicity, that is, the existence of vectors *x* ∈ *X* whose orbit under *T* is dense in *X*.
- *T* is Devaney chaotic if it is topologically transitive, and the following set is dense in *X*: $Per(T) := \{periodic points of T\} = \{x \in x ; T^n x = x \text{ for some } n\}.$
- (Li-Yorke) An uncountable subset $S \subset X$ of a metric space (X, d) is called a scrambled set for a dynamical system $f : X \to X$ if for any $x, y \in S$ with $x \neq y$ we have $\liminf_n d(f^n(x), f^n(y)) = 0$ and $\limsup_n d(f^n(x), f^n(y)) > 0$. *f* is called Li-Yorke chaotic if it admits an scrambled set.

A D N A B N A B N A B

- An operator $T : X \to X$ is topologically transitive if, for any $U, V \subset X$ non-empty open sets there exists $n \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$. Within our context, this is equivalent to hypercyclicity, that is, the existence of vectors $x \in X$ whose orbit under T is dense in X.
- *T* is Devaney chaotic if it is topologically transitive, and the following set is dense in *X*: $Per(T) := \{periodic points of T\} = \{x \in x; T^n x = x \text{ for some } n\}.$
- (Li-Yorke) An uncountable subset $S \subset X$ of a metric space (X, d) is called a scrambled set for a dynamical system $f : X \to X$ if for any $x, y \in S$ with $x \neq y$ we have $\liminf_n d(f^n(x), f^n(y)) = 0$ and $\limsup_n d(f^n(x), f^n(y)) > 0$. *f* is called Li-Yorke chaotic if it admits an scrambled set.
- (Bayart, Grivaux) *T* is frequently hypercyclic if there is *x* ∈ *X* such that, for each nonempty open set *U* ⊂ *X*,

$$\underline{\text{dens}}N(x,U) := \liminf_n \frac{\left|\{k \le n \ ; \ T^k x \in U\}\right|}{n} > 0.$$

A D N A B N A B N A B

Problem 1 [Bayart and Grivaux]

If an operator $T \in L(X)$ is invertible and frequently hypercyclic, is T^{-1} frequently hypercyclic?

Problem 2 [Bayart and Grivaux]

If $T_1, T_2 \in L(X)$ are frequently hypercyclic, is $T_1 \oplus T_2$ frequently hypercyclic?

Problem 3 [Bernardes, Bonilla, Müller, P.]

Does every infinite-dimensional separable Fréchet (or Banach) space support a Li–Yorke chaotic operator with a co-meager scrambled set?

Problem 3 [Bernardes, Bonilla, Müller, P.]

Does every infinite-dimensional separable Fréchet (or Banach) space support a Li–Yorke chaotic operator with a co-meager scrambled set?

(Beauzamy): A vector *x* is said to be irregular for an operator $T \in L(X)$ on a Banach space *X* if $\sup_n ||T^n x|| = \infty$ and $\inf_n ||T^n x|| = 0$. (Bermúdez, Bonilla, Martínez-Giménez, P.): $T \in L(X)$ is Li-Yorke chaotic if, and only if, *T* admits irregular vectors. It is known (Ansari) that any hypercyclic operator admits a dense manifold consisting of (except 0) hypercyclic vectors.

Problem 4 [Bernardes, Bonilla, Müller, P.]

Does dense Li–Yorke chaos imply the existence of a dense irregular manifold for operators?

Definitions

The support of a Borel probability measure μ , denoted by (μ) , is the smallest closed subset *F* of *X* such that $\mu(F) = 1$. *T* is ergodic if $T^{-1}(A) = A$ for $A \in \mathfrak{B}$ implies $\mu(A)(1 - \mu(A)) = 0$. *T* is strongly mixing with respect to μ if

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\qquad (A,B\in\mathfrak{B}),$$

b 4 To b

Definitions

The support of a Borel probability measure μ , denoted by (μ), is the smallest closed subset *F* of *X* such that $\mu(F) = 1$. *T* is ergodic if $T^{-1}(A) = A$ for $A \in \mathfrak{B}$ implies $\mu(A)(1 - \mu(A)) = 0$. *T* is strongly mixing with respect to μ if

$$\lim_{n\to\infty}\mu(A\cap T^{-n}(B))=\mu(A)\mu(B)\qquad (A,B\in\mathfrak{B}),$$

Several recent studies (Bayart, Grivaux, Matheron) show that there exist ergodic (strongly mixing) T-invariant measures with full support provided that T admits a "good source" of unimodular eigenvalues and eigenvectors.

Problem 5 [Grivaux, Matheron, Menet]

Do there exist ergodic operators on the Hilbert space without eigenvalues?

• • • • • • • • • • • • • •

Let *X* be an infinite-dimensional Banach space. A family $\{T_t\}_{t\geq 0}$ of linear and continuous operators on *X* is said to be a C_0 -semigroup if $T_0 = Id$, $T_tT_s = T_{t+s}$ for all $t, s \geq 0$, and $\lim_{t\to s} T_tx = T_sx$ for all $x \in X$ and $s \geq 0$.

イロト 不得 トイヨト イヨト

Let *X* be an infinite-dimensional Banach space. A family $\{T_t\}_{t\geq 0}$ of linear and continuous operators on *X* is said to be a C_0 -semigroup if $T_0 = Id$, $T_tT_s = T_{t+s}$ for all $t, s \geq 0$, and $\lim_{t\to s} T_tx = T_sx$ for all $x \in X$ and $s \geq 0$. Given a C_0 -semigroup $\{T_t\}_{t\geq 0}$ on *X*, it can be shown that an operator defined by

$$Ax := \lim_{t \to 0^+} \frac{T_t x - x}{t},\tag{1}$$

exists on a dense subspace of *X*; denoted by D(A). Then (A, D(A)) is called the (infinitesimal) generator of the C_0 -semigroup $\{T_t\}_{t\geq 0}$. If D(A) = X, then the C_0 -semigroup can be rewritten as $\{e^{tA}\}_{t\geq 0}$. Such a semigroup is the corresponding solution C_0 -semigroup of the abstract Cauchy problem

$$\left\{\begin{array}{ll}
u'(t,x) &= Au(t,x) \\
u(0,x) &= \varphi(x),
\end{array}\right\}.$$
(2)

ト イポト イラト イラト

The solutions to this problem can be expressed as $u(t, x) = e^{tA}\varphi(x)$, where $\varphi(x) \in X$.

A C_0 -semigroup $\{T_t\}_{t\geq 0}$ on a Banach space X is hypercyclic if there are $x \in X$ such that the orbit $\{T_tx ; t \geq 0\}$ is dense in X. It is well-known that if x is a hypercyclic vector for T, then its orbit $\{x, Tx, T^2x, \ldots\}$ is a linearly independent set. A C_0 -semigroup $\{T_t\}_{t\geq 0}$ on a Banach space X is hypercyclic if there are $x \in X$ such that the orbit $\{T_tx ; t \geq 0\}$ is dense in X. It is well-known that if x is a hypercyclic vector for T, then its orbit $\{x, Tx, T^2x, \ldots\}$ is a linearly independent set.

Problem 6 [Conejero, P.]

Is the orbit of a hypercyclic vector for a C_0 -semigroup $\{T_t\}_{t\geq 0}$ always a linearly independent set?

Let $T \in L(X)$ on a Banach space X. Let $K \subset X$ be a compact subset and $n \in \mathbb{N}$. For $x, y \in X$ define

$$d^{n}(x,y) = \max\{\|T^{i}x - T^{i}y\| : i = 0, 1, \dots, n-1\}.$$

Let $\varepsilon > 0$. A finite subset $F \subset X$ is (n, ε) -separated if $d^n(x, y) \ge \varepsilon$ for all $x, y \in F, x \ne y$. Let $s(n, \varepsilon, K)$ be the maximal cardinality of a (n, ε) -separated subset of K. Let

$$h(T,\varepsilon,K) = \limsup_{n\to\infty} \frac{\log s(n,\varepsilon,K)}{n}$$

and

$$h(T,K) = \lim_{\varepsilon \to 0_+} h(T,\varepsilon,K).$$

The Bowen entropy of *T* is defined by

$$h(T) = \sup\{h(T, K) : K \subset X \text{ compact}\}.$$

(Bayart, Müller, P.): Let dim $X < \infty$ and $T \in B(X)$. Then

$$h(T) = \sum_{\substack{\lambda \in \sigma(T) \ |\lambda| > 1}} 2 \log |\lambda|,$$

where each $\lambda \in \sigma(T)$ is counted according to its algebraic multiplicity.

If *K* is compact, let D(K) be the diameter of *K* and $D_i(K)$ the diameter of $T^i(K)$. For $n \ge 1, x, y \in K$, let

$$d^{n}(x, y, K) = \max \left\{ \frac{\|T^{i}x - T^{i}y\|}{\max(1, D_{i}(K))}; i = 0, ..., n-1 \right\}.$$

A subset $F \subset K$ is (n, ε) -separated if

$$\forall x \neq y \in F, d^n(x, y, K) \geq \varepsilon.$$

$$s(n,\varepsilon,K) = \sup\{\operatorname{card} F; F \subset K \text{ is } (n,\varepsilon) \text{-separated}\}$$

$$h(T,\varepsilon,K) = \limsup_{n \to +\infty} \sup_{n \to +\infty} \frac{\log s(n,\varepsilon,K)}{n}$$

$$h(T) = \sup_{\varepsilon > 0} \sup_{K} h(T,\varepsilon,K).$$

h(T) is called the operator entropy of T.

If *K* is compact, let D(K) be the diameter of *K* and $D_i(K)$ the diameter of $T^i(K)$. For $n \ge 1$, $x, y \in K$, let

$$d^{n}(x, y, K) = \max \left\{ \frac{\|T^{i}x - T^{i}y\|}{\max(1, D_{i}(K))}; i = 0, ..., n-1 \right\}.$$

A subset $F \subset K$ is (n, ε) -separated if

$$\forall x \neq y \in F, d^n(x, y, K) \geq \varepsilon.$$

$$s(n,\varepsilon,K) = \sup\{\operatorname{card} F; F \subset K \text{ is } (n,\varepsilon) \text{-separated}\}$$

$$h(T,\varepsilon,K) = \limsup_{n \to +\infty} \sup_{n \to +\infty} \frac{\log s(n,\varepsilon,K)}{n}$$

$$h(T) = \sup_{\varepsilon > 0} \sup_{K} h(T,\varepsilon,K).$$

h(T) is called the operator entropy of T.

Problem 8 [Bayart, Müller, P.]

Do there exist operators with positive and finite operator entropy?

(Read): There exist operators T on ℓ^1 such that **every** $x \in \ell^1$, $x \neq 0$, is a hypercyclic vector for T. In other words, T admits no invariant closed subset, except the trivial ones ({0} and ℓ^1).

(Read): There exist operators T on ℓ^1 such that **every** $x \in \ell^1$, $x \neq 0$, is a hypercyclic vector for T. In other words, T admits no invariant closed subset, except the trivial ones ({0} and ℓ^1).

Invariant Subset (Subspace) Problem

Do there exist operators on the Hilbert space without non-trivial invariant closed subsets (subspaces)?