
Functional Inequalities and convergence
of diffusion processes. From the classical heat

equation to nonlinear and fractional equations

JUAN LUIS VÁZQUEZ
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Energy estimates

We are going to use energy functions of different types to study the evolution of
diffusion equations. This will show a fruitful application of Functional Analysis in
the theory of Partial Differential Equations that has been happening for a century
and is very active now in new directions.

The basic equation is the classical heat equation, but the scope is quite general.
Our aim is not to establish the convergence of general solutions to the
fundamental solution (which in the heat equation can be done by other methods),
and a bit more: to find the speed of convergence. This is what the functional
analysis does well.

After change of variables (renormalization) this speed reads as the rate of
convergence to equilibrium, and relies on important functional inequalities for
typical variable-coefficient equations, like the Ornstein-Uhlenbeck equation.

The methods will apply to more general linear parabolic equations that generate
(linear or nonlinear) semigroups, St : X → X , where X is the base space (a
space of functions or measures), and St is the evolution mapping, t > 0.
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Other Equations. Nonlinear, nonlocal, geometric

Since 2000 we have been studying these functional methods for nonlinear
diffusion equations.

Nonlinear models: porous medium equation, fast diffusion equation,
p-Laplacian evolution equation, chemotaxis system, thin films, ...

plus

Since 2007: fractional heat equation and fractional porous medium equations, ...

The method works for equations evolving on manifolds. This is a challenging
connection with differential geometry.

It has been an intense effort. The work related to our research is reported in the
survey paper

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in
Mathematics, To appear.

Many important problems have been solved for the main models, many important
problems are still open. We will mention some open problems having a functional
flavor.

J. L. Vazquez () Nonlinear Diffusion 4 / 35



Other Equations. Nonlinear, nonlocal, geometric

Since 2000 we have been studying these functional methods for nonlinear
diffusion equations.

Nonlinear models: porous medium equation, fast diffusion equation,
p-Laplacian evolution equation, chemotaxis system, thin films, ...

plus

Since 2007: fractional heat equation and fractional porous medium equations, ...

The method works for equations evolving on manifolds. This is a challenging
connection with differential geometry.

It has been an intense effort. The work related to our research is reported in the
survey paper

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in
Mathematics, To appear.

Many important problems have been solved for the main models, many important
problems are still open. We will mention some open problems having a functional
flavor.

J. L. Vazquez () Nonlinear Diffusion 4 / 35



Other Equations. Nonlinear, nonlocal, geometric

Since 2000 we have been studying these functional methods for nonlinear
diffusion equations.

Nonlinear models: porous medium equation, fast diffusion equation,
p-Laplacian evolution equation, chemotaxis system, thin films, ...

plus

Since 2007: fractional heat equation and fractional porous medium equations, ...

The method works for equations evolving on manifolds. This is a challenging
connection with differential geometry.

It has been an intense effort. The work related to our research is reported in the
survey paper

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in
Mathematics, To appear.

Many important problems have been solved for the main models, many important
problems are still open. We will mention some open problems having a functional
flavor.

J. L. Vazquez () Nonlinear Diffusion 4 / 35



Other Equations. Nonlinear, nonlocal, geometric

Since 2000 we have been studying these functional methods for nonlinear
diffusion equations.

Nonlinear models: porous medium equation, fast diffusion equation,
p-Laplacian evolution equation, chemotaxis system, thin films, ...

plus

Since 2007: fractional heat equation and fractional porous medium equations, ...

The method works for equations evolving on manifolds. This is a challenging
connection with differential geometry.

It has been an intense effort. The work related to our research is reported in the
survey paper

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in
Mathematics, To appear.

Many important problems have been solved for the main models, many important
problems are still open. We will mention some open problems having a functional
flavor.

J. L. Vazquez () Nonlinear Diffusion 4 / 35



Other Equations. Nonlinear, nonlocal, geometric

Since 2000 we have been studying these functional methods for nonlinear
diffusion equations.

Nonlinear models: porous medium equation, fast diffusion equation,
p-Laplacian evolution equation, chemotaxis system, thin films, ...

plus

Since 2007: fractional heat equation and fractional porous medium equations, ...

The method works for equations evolving on manifolds. This is a challenging
connection with differential geometry.

It has been an intense effort. The work related to our research is reported in the
survey paper

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in
Mathematics, To appear.

Many important problems have been solved for the main models, many important
problems are still open. We will mention some open problems having a functional
flavor.

J. L. Vazquez () Nonlinear Diffusion 4 / 35



Energy estimates for the Heat Equation
recordando la charla del grupo T4 en la Escuela Taller

Take the classical Heat Equation posed in the whole space RN for τ > 0:

uτ =
1
2

∆y u

with notation u = u(y , τ) that is useful as we will see. We know the (self-similar)
fundamental solution, that is an attractor of its basin

U(y , τ) = C τ−N/2e−y2/2τ .

First step: the logarithmic time-space rescaling

u(y , τ) = v(x , t) (1 + τ)−N/2, y = x(1 + τ)1/2, t = log(1 + τ),

that leads to the well-known Fokker-Plank equation for v(x , t):

vt =
1
2

∆x v +
1
2
∇ · (x v)

If we now pass to the quotient w = v/G, where G = c e−x2/2 is the stationary
state (Gaussiann kernel), to get the Ornstein-Uhlenbeck version

wt =
1
2

G−1∇ ·
(

G∇w
)

=
1
2

∆w − 1
2

x · ∇w ,

a symmetrically weighted heat equation. The equivalence of these three
equations is a main tool in Linear Diffusion and Semigroup Theory.
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Energy estimates for the Heat Equation II
We may assume without lack of generality that

∫
w dµ =

∫
v dx =

∫
u dy = 1.

We now make a crucial estimate on the time decay of the energy for the OUE:

F(w(t)) =

∫
RN
|w − 1|2 G dx ,

dF(w(t))

dt
= −

∫
RN
|∇w |2 G dx = −D(w(t)).

We can now use a result from abstract functional analysis: the Gaussian Poincaré
inequality with measure dµ = G(x) dx :∫

RN
w2dµ−

(∫
RN

w dµ)2
)
≤ Cg

∫
RN
|∇w |2 dµ, Cg = 1.

Then, the left-hand side is just F and the inequality implies after the ODE
integration −dF/dt ≥ F , that:∫

RN
|w − 1|2 dµ ≤ e−t

∫
Rd
|w0 − 1|2 dµ ∀ t ≥ 0

In other words, ‖w(t)− 1‖L2(Gdx) ≤ ‖w0)− 1‖L2(Gdx)e
−t/2

These are the convergence estimates of solutions to the HE. The rate of
convergence is given by the constant Cg of the GPI. Here Cg/2 = 1/2.
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Entropy estimates for the Heat Equation III
There is another approach that starts the analysis from Boltzmann’s ideas on
entropy dissipation. We start from the Fokker-Planck equation vt = ∆v +∇ · (xv)
and consider the functional called entropy

E(v) =

∫
RN

v log(v/G) dx =

∫
RN

v log(v)dx +
1
2

∫
RN

x2v dx + C .

Differentiating along the flow (i.e., for a solution) leads to

dE(v)

dt
= −I(v), I(v) =

∫
RN

v |∇v
v

+ x |2 dx =

∫
RN

v |∇ log(v/G)|2 dx .

Put now v = Gf 2 to find that

E(v) = 2
∫
RN

f 2 log(f ) dµ, I(v) = 4
∫
RN
|∇f |2 dµ.

The famous logarithmic Sobolev inequality [Gross 75] says than that (for all
functions, not only solutions)

E ≤ 1
2
I

and we obtain the decay E(t) ≤ E(0) e−2t . Translate that into a good norm.
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About entropy in physics

Physics books say that entropy was introduced as a state function in
Thermodynamics by R. Clausius in 1865, in the framework of the second law of
thermodynamics, in order to interpret the results of S. Carnot.

A statistical physics approach: Boltzmann’s formula (1877) defines the entropy of
a system in terms of a counting of the micro-states of a physical system.
The Boltzmann’s equation is ∂t f + v · ∇x f = Q(f , f ). It describes the evolution of a
gas of particles having binary collisions at the kinetic level; f (t , x , v) is a time
dependent distribution function (probability density) defined on the phase space
RN × RN .

The Boltzmann entropy: H[f ] :=
∫∫

f log(f )dxdv measures irreversibility:
The famous H-Theorem (1872) says that

d
dt

H[f ] =

∫∫
Q(f , f )log(f )dxdv ≤ 0 .

Other notions of entropy: The Shannon entropy in information theory, entropy in
probability theory (with reference to an arbitrary measure).
Other approaches: Carathéodory (1908), Lieb-Yngvason (1997).
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Porous Medium / Fast Diffusion Equations
The simplest model of nonlinear diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion. The equation is called
Porous Medium Equation, PME.

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion, FDE.

A more general model of nonlinear diffusion takes the divergence form

∂tH(u) = ∇ · ~A(x , u,Du) + B(x , t , u,Du)

with monotonicity conditions on H and ∇p ~A(x , t , u, p) and structural conditions on
~A and B. This generality includes Stefan Problems, p-Laplacian flows (including
p =∞ and total variation flow p = 1) and many others.
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Barenblatt profiles and Asymptotics

These profiles are the alternative to the Gaussian profiles that have such a star
role for the HE. The Barenblatt profiles are the model behaviour for the PME.

They are source solutions. Source means that u(x , t)→ M δ(x) as t → 0.
They have explicit formulas (1950, 52), they are self-similar:

B(x , t ;M) = t−αF(x/tβ), F(ξ) =
(

C − kξ2
)1/(m−1)

+

α = n
2+n(m−1)

β = 1
2+n(m−1) < 1/2

Height u = Ct−α

Free boundary at distance |x | = ctβ

Scaling law; anomalous diffusion versus Brownian motion (where β = 1/2).
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Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: RN . Choice of data: u0(x) ∈ L1(RN). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Friedman-Kamin, 1980; V. 2001] Let B(x , t ; M) be the
Barenblatt with the asymptotic mass M; u converges to B after renormalization

tα|u(x , t)− B(x , t)| → 0

Let f = 0 (or small at infinity in Lp). For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′), p′ = p/(p − 1).

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as in
B(x , t).

Starting result by FK takes u0 ≥ 0, compact support and f = 0. Proof is done by
rescaling method. Needs a good uniqueness theorem.
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Calculations of the entropy rates
This is next step of information after proving plain convergence. We go back to
the ideas of the second proof of convergence for the heat equation, and use
rescaling and entropies.
We rescale the function as u(x , t) = r(t)n v(y r(t), s) where r(t) is the
Barenblatt radius at t + 1, and “new time” is s = log(1 + t). The equation becomes

vs = div (v(∇vm−1 +
c
2
∇y2)).

Then define a new entropy (not Boltzmann entropy, but a new type called Rényi
entropy)

E(u)(t) =

∫
(

1
m

vm +
c
2

vy2) dy

The minimum of entropy is precisely the Barenblatt profile.
Calculate

dE
ds

= −
∫

v |∇vm−1 + cy |2 dy = −D

Moreover, a difficult calculation known as Bakry-Emery method gives
dD
ds

= −R, R ∼ λD.

We conclude exponential decay of D in new time s, i.e., a power rate in real time
t. It follows that E decays to a minimum E∞ > 0 and we then prove that this is the
level of the Barenblatt solution, which attains the functional minimum.
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Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Rates through entropies for Fast Diffusion

Large effort has been invested in making the entropy machinery work for fast diffusion,
−∞ < m < 1.

The nice properties of the entropies from the view of transport theory (cf. Villani’s book)
are lost soon, when m = (N − 1)/N.

Finite entropy is lost when the second moment is infinite, i.e. for m = (N − 1)/(N + 1).

Finite-mass, stable states (Barenblatt solutions) are lost for m = (N − 2)/N.

Functional inequalities play a crucial role in the asymptotic analysis, there are so to say
“equivalent”.

There is work by many authors: Blanchet, Bonforte, Carrillo, Dolbeault, Del Pino, Den-
zler, Grillo, McCann, Markowich, Otto, Slepcev, Vazquez, ...

J. L. Vazquez () Nonlinear Diffusion 13 / 35



Fractional diffusion
Replacing Laplacians by fractional Laplacians is motivated by the need to
represent anomalous diffusion. In probabilistic terms it replaces next-neighbour
interaction and Brownian motion by long-distance interaction and what they call
Lévy processes. The solutions do not have exponential decay in space like the
Gaussian, but larger, power-like tails. The main mathematical models are the
Fractional Laplacians that have special symmetry and invariance properties that
makes analysis easier. In practice, other nonlocal integral operators are also
used, but I will not mention them below.

Basic evolution equation

∂tu + (−∆)su = 0

Intense work in Stochastic Processes for some decades, but not in Analysis of
PDEs until 10 years ago, initiated around Prof. Caffarelli in Texas.

A basic theory and survey for PDE people: M. Bonforte, Y. Sire, J. L. Vázquez.
“Optimal Existence and Uniqueness Theory for the Fractional Heat Equation”,
Nonlinear Analysis, 2017. Arxiv:1606.00873v1.
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The fractional Laplacian operator

Different formulas for fractional Laplacian operator.
We assume that the space variable x ∈ RN , and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ)

Singular integral operator:

(−∆)su(x) = Cn,s

∫
RN

u(x)− u(y)

|x − y |n+2s dy

With this definition, it is the inverse of the Riesz integral operator I2s = (−∆)−su.
This one has kernel C1|x − y |n−2s, which is not integrable, this time at infinity.
Take the random walk for Lévy processes:

un+1
j =

∑
k

Pjk un
k

where Pik denotes the transition function which has a . tail (i.e, power decay with
the distance |i − k |). In the limit you get an operator A as the infinitesimal
generator of a Lévy process: if Xt is the isotropic α-stable Lévy process we have

Au(x) = lim
h→0

E(u(x)− u(x + Xh)) .
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Au(x) = lim
h→0

E(u(x)− u(x + Xh)) .

J. L. Vazquez () Nonlinear Diffusion 15 / 35



The fractional Laplacian operator

Different formulas for fractional Laplacian operator.
We assume that the space variable x ∈ RN , and the fractional exponent
is 0 < s < 1. First, pseudo differential operator given by the Fourier transform:

̂(−∆)su(ξ) = |ξ|2sû(ξ)
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The fractional Laplacian operator II
The α-harmonic extension: Find first the solution of the (n + 1) problem

∇ · (y1−α∇v) = 0 (x , y) ∈ RN × R+; v(x , 0) = u(x), x ∈ RN .

Then, putting α = 2s we have

(−∆)su(x) = −Cα lim
y→0

y1−α ∂v
∂y

When s = 1/2 i.e. α = 1, the extended function v is harmonic (in n + 1 variables)
and the operator is the Dirichlet-to-Neumann map on the base space x ∈ RN . It
was proposed in PDEs by Caffarelli and Silvestre.

Remark. In RN all these versions are equivalent. In a bounded domain we have
to re-examine all of them. Three main alternatives are studied in probability and
PDEs, corresponding to different options about what happens to particles at the
boundary or what is the domain of the functionals.

References. Books by Landkof (1966-72), Stein (1970), Davies (1996). Papers by
Caffarelli-Silvestre (2007), Stinga-Torrea (2010), Valdinoci (2009),... See more
information in my CIME survey (2017).
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Nonlocal diffusion model. The problem
The nonlinear diffusion model with nonlocal effects proposed in 2007 with Luis
Caffarelli uses the derivation of the PME but with a closure relation between
pressure and density of the form p = K(u), where K is a linear integral operator,
which we assume in practice to be the inverse of a fractional Laplacian. Hence, p
es related to u through a fractional potential operator, K = (−∆)−s, 0 < s < 1,
with kernel k(x , y) = c|x − y |−(n−2s), (i.e., a Riesz operator). We have
(−∆)sp = u.

The diffusion model with nonlocal effects is thus given by the system

(1) ut = ∇ · (u∇p), p = K(u).

where u is a function of the variables (x , t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is related
to u via a linear operator K: ut = ∇ · (u∇(−∆)−su)

The problem is posed for x ∈ RN , n ≥ 1, and t > 0, and we give initial conditions

(2) u(x , 0) = u0(x), x ∈ RN ,

where u0 is a nonnegative, bounded and integrable function in RN .

J. L. Vazquez () Nonlinear Diffusion 17 / 35



Nonlocal diffusion model. The problem
The nonlinear diffusion model with nonlocal effects proposed in 2007 with Luis
Caffarelli uses the derivation of the PME but with a closure relation between
pressure and density of the form p = K(u), where K is a linear integral operator,
which we assume in practice to be the inverse of a fractional Laplacian. Hence, p
es related to u through a fractional potential operator, K = (−∆)−s, 0 < s < 1,
with kernel k(x , y) = c|x − y |−(n−2s), (i.e., a Riesz operator). We have
(−∆)sp = u.

The diffusion model with nonlocal effects is thus given by the system

(1) ut = ∇ · (u∇p), p = K(u).

where u is a function of the variables (x , t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is related
to u via a linear operator K: ut = ∇ · (u∇(−∆)−su)

The problem is posed for x ∈ RN , n ≥ 1, and t > 0, and we give initial conditions

(2) u(x , 0) = u0(x), x ∈ RN ,

where u0 is a nonnegative, bounded and integrable function in RN .

J. L. Vazquez () Nonlinear Diffusion 17 / 35



Nonlocal diffusion model. The problem
The nonlinear diffusion model with nonlocal effects proposed in 2007 with Luis
Caffarelli uses the derivation of the PME but with a closure relation between
pressure and density of the form p = K(u), where K is a linear integral operator,
which we assume in practice to be the inverse of a fractional Laplacian. Hence, p
es related to u through a fractional potential operator, K = (−∆)−s, 0 < s < 1,
with kernel k(x , y) = c|x − y |−(n−2s), (i.e., a Riesz operator). We have
(−∆)sp = u.

The diffusion model with nonlocal effects is thus given by the system

(1) ut = ∇ · (u∇p), p = K(u).

where u is a function of the variables (x , t) to be thought of as a density or
concentration, and therefore nonnegative, while p is the pressure, which is related
to u via a linear operator K: ut = ∇ · (u∇(−∆)−su)

The problem is posed for x ∈ RN , n ≥ 1, and t > 0, and we give initial conditions

(2) u(x , 0) = u0(x), x ∈ RN ,

where u0 is a nonnegative, bounded and integrable function in RN .

J. L. Vazquez () Nonlinear Diffusion 17 / 35



Nonlocal diffusion Model. Applications
Modeling dislocation dynamics as a continuum. This has been studied by P. Biler,
G. Karch, and R. Monneau (2008), and then other collaborators, following old
modeling by A. K. Head on Dislocation group dynamics II. Similarity solutions of
the continuum approximation. (1972).
This is a one-dimensional model. By integration in x they introduce viscosity
solutions a la Crandall-Evans-Lions. Uniqueness holds.

Equations of the more general form ut = ∇ · (σ(u)∇Lu) have appeared recently
in a number of applications in particle physics. Thus, Giacomin and Lebowitz (J.
Stat. Phys. (1997)) consider a lattice gas with general short-range interactions
and a Kac potential, and passing to the limit, the macroscopic density profile
ρ(r , t) satisfies the equation

∂ρ

∂t
= ∇ ·

[
σs(ρ)∇δF (ρ)

δρ

]
See also (GL2) and the review paper (GLP). The model is used to study phase
segregation in (GLM, 2000).

More generally, it could be assumed that K is an operator of integral type defined
by convolution on all of Rn, with the assumptions that is positive and symmetric.
The fact the K is a homogeneous operator of degree 2s, 0 < s < 1, will be
important in the proofs. An interesting variant would be the Bessel kernel
K = (−∆ + cI)−s. We are not exploring such extensions.
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Our project. Main results

Existence of weak energy solutions and property of finite propagation
L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional
potential pressure, Arch. Rational Mech. Anal. 2011; arXiv 2010.

Existence of self-similar profiles, renormalized Fokker-Planck equation and
entropy-based proof of stabilization
L. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous medium
equation with fractional diffusion, appeared in Discrete Cont. Dynam. Systems,
2011; arXiv 2010.

Regularity in three levels: L1 → L2, L2 → L∞, and bounded implies Cα

L. Caffarelli, F. Soria, and J. L. Vázquez, Regularity of porous medium equation
with fractional diffusion, J. Eur. Math. Soc. (JEMS) 15 5 (2013), 1701–1746.
The very subtle case s = 1/2 is solved in a new paper L. Caffarelli, and J. L.
Vázquez, appeared in St. Petersburg Math. Journal, 2015. (see ArXiv and
Newton Institute Preprints, 2014).
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Asymptotic behavior
for the nonlocal PME

♥ Asymptotic behavior of a porous medium equation with fractional diffusion,

Luis Caffarelli, Juan Luis Vázquez, Discrete Cont. Dynam. Systems, 2011.
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La respuesta es inesperada

Sorry, esto es de otra charla.
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Rescaling for the NL-PME
We now begin the study of the large time behavior.
Inspired by the asymptotics of the standard porous medium equation, we define
the renormalized flow through the transformation

(3) u(x , t) = t−αv(x/tβ , τ)

with new time τ = log(1 + t). We also put y = x/tβ as rescaled space variable.
In order to cancel the factors including t explicitly, we get the condition on the
exponents

(4) α + (2− 2s)β = 1

We use the homogeneity of K = (−∆)−s in the form

(5) (Ku)(x , t) = t−α+2sβ(Kv)(y , τ).

If we also want conservation of (finite) mass, then we must put α = nβ, and we
arrive at the the precise value of the exponents:

β = 1/(n + 2− 2s), α = n/(n + 2− 2s).
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Renormalized flow

We thus arrive at the nonlinear, nonlocal Fokker-Plank equation

(6) vτ = ∇y · (v (∇y K (v) + βy))

Stationary renormalized solutions. They are the solutions U(y) of

(7) ∇y · (U∇y (P + a|y |2)) = 0, P = K (U).

where a = β/2, and β defined just above. Since we are looking for asymptotic
profiles of the standard solutions of the NL-PME we also want U ≥ 0 and
integrable. The simplest possibility is integrating once and getting the radial
version

(8) U∇y (P + a|y |2)) = 0, P = K (U), U ≥ 0.

The first equation gives an alternative choice that reminds of the complementary
formulation of the obstacle problems.
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Obstacle problem
Indeed, if we solve the obstacle problem with fractional Laplacian we will obtain a
unique solution P(y) of the problem:

(9) P ≥ Φ, U = (−∆)sP ≥ 0;
either P = Φ or U = 0.

with 0 < s < 1. Here we have to choose as obstacle

Φ = C − a |y |2,

where C is any positive constant and a = β/2. For uniqueness we also need the
condition P → 0 as |y | → ∞.

The obstacle problem theory by Caffarelli and collaborators says that the solution
is unique and belongs to the space H−s with pressure in Hs. The solutions have
P ∈ C1,s and U ∈ C1−s.

Note that for C ≤ 0 the solution is trivial, P = 0, U = 0, hence we choose C > 0.
We also note the pressure is defined but for a constant, so that we may take
without loss of generality C = 0 and take as pressure P̂ = P − C instead of P.
But then P → 0 implies that P̂ → −C as |y | → ∞, so we get a one parameter
family of stationary profiles that we denote UC(y).
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The solution of the obstacle problem with parabolic obstacle

The variable is the pressure P and U = (−∆)sU has compact support
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Estimates for the renormalized problem.
Entropy dissipation.

Our main problem is now to prove that these profiles are attractors for the
renormalized flow.

We review the estimates of Main Estimates of Section above in order to adapt
them to the renormalized problem.

There is no problem is reproving mass conservation or positivity.

First energy estimate becomes (recall that H = K 1/2)

(10)

d
dτ

∫
v(y , τ) log v(y , τ) dy

= −
∫
|∇Hv |2 dy − β

∫
∇v · y

= −
∫
|∇Hv |2 dy + α

∫
v .

It does not offer any progress.
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Estimates for the renormalized problem. Entropy
dissipation.

However, the second energy estimate has an essential change. We need to
define the entropy of the renormalized flow as

(11) E(v(τ)) :=
1
2

∫
Rn

(v K (v) + βy2v) dy

The entropy contains two terms. The first is

E1(v(τ)) :=

∫
Rn

v K (v) dy =

∫
Rn
|Hv |2 dy , H = K 1/2

which is a Riesz integeral operator, hence positive. The second is the moment
E2(v(τ)) = M2(v(τ)) :=

∫
y2v dy , also positive. By differentiation we get

(12)
d

dτ
E(v) = −I(v), I(v) :=

∫ ∣∣∣∣∇(Kv +
β

2
y2)

∣∣∣∣2 vdy .

This means that whenever the initial entropy is finite, then E(v(τ)) is uniformly
bounded for all τ > 0, I(v) is integrable in (0,∞) and

E(v(τ)) +

∫∫ ∣∣∣∣∇(Kv +
β

2
y2)

∣∣∣∣2 vdy dt ≤ E(v0).
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Convergence.

The standard idea is to let t →∞ in the renormalized flow. Since the entropy
goes down there is a limit

E∗ = lim
t→∞
E(t) ≥ 0.

Since u is bounded in L1
x unif. in t , and also ux2 is bounded in L1

x unif. in t , and
moreover |∇H(u)| ∈ L2

x unif in t , we have that u(t) is a compact family that there
is a subsequence tj →∞ that converges in L1

x and almost everywhere to a limit
u∗ ≥ 0. The mass of u∗ is the same mass of u. One consequence is that the lim
inf of the component E2(u(tj )) is equal or larger that M2(u∗).

The rest of the convergence depends on Fractional Sobolev spaces and compact
embedding theorems.
Thus, we also have H(u) ∈ L2

x uniformly in t . The boundedness of ∇H(u) in L2
x

implies the compactness of H(u) in space, so that it converges along a
subsequence to v∗ . This allows to pass to the limit in E1(u(tj )) and obtain a
correct limit. We have v∗ = H(u∗).

See whole details in paper [Caff-Vaz 2011].
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Convergence

Now we get the consequence that for every h > 0 fixed∫ tj+h

tj

∫ ∣∣∣∣∇(Ku +
β

2
x2)

∣∣∣∣2 udx dt → 0.

This implies that if w(x , t) = Ku + β
2 x2 and wh(x , t) = w(x , t + h), then uh|∇wh|2

converges to zero as h→∞ in L1(Rn × (0,T ). Then wh converges to a constant
in space wherever u is not zero, and that constant must be Ku∗ + β

2 x2 along the
said subsequence, hence constant also in time

This means that the limit is a solution of the Barenblatt obstacle problem.

J. L. Vazquez () Nonlinear Diffusion 29 / 35



Convergence

Now we get the consequence that for every h > 0 fixed∫ tj+h

tj

∫ ∣∣∣∣∇(Ku +
β

2
x2)

∣∣∣∣2 udx dt → 0.

This implies that if w(x , t) = Ku + β
2 x2 and wh(x , t) = w(x , t + h), then uh|∇wh|2

converges to zero as h→∞ in L1(Rn × (0,T ). Then wh converges to a constant
in space wherever u is not zero, and that constant must be Ku∗ + β

2 x2 along the
said subsequence, hence constant also in time

This means that the limit is a solution of the Barenblatt obstacle problem.

J. L. Vazquez () Nonlinear Diffusion 29 / 35



Recent work

Biler, Imbert and Karch. In a note in CRAS (Barenblatt profiles for a nonlocal
porous medium equation) the authors study the more general equation

ut = ∇ · (uΛα−1um), 0 < α < 2

and obtain our type of Barenblatt solutions for every m > 1 with a very nice added
information, they happen to be explicit of the form

u(x , t) = Ct−µ(R2 − x2t−2ν))
α/2(m−1)
+

it uses an important identity by Getoor, (−∆)α/2(1− y2)
α/2
+ = K , valid inside the

support. Observe the boundary behavior.

Uniqueness and comparison. These questions of are solved in dimension N = 1
thanks to the trick of integration in space used previously by Biler, Karch, and
Monneau (2008). New tools are needed to make progress in several dimensions.
Recent uniqueness results are due to Zhou, Xiao, and Chen. They obtain local in
time strong solutions in Besov spaces. Thus, for initial data in Bα1,∞ if 1/2 ≤ s < 1
and α > N + 1 and N ≥ 2. Therefore, Besov regularity implies uniqueness for
small times.
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Functional analysis and convergence rates

Proving that the self-similar solutions (Caffareli-Vazquez, Biler-Imbert-
Karch-Monneau) are attractors with a calculated rate is done in 1D in

♥ Exponential Convergence Towards Stationary States for the 1D Porous
Medium Equation with Fractional Pressure, by J. A. Carrillo, Y. Huang, M. C.
Santos, and J. L. Vázquez. JDE, 2015.
It uses entropy analysis and Bakry Emery method, and new functional
inequalities.

Details of the proof are as follows: the nonlinear nonlocal equation, is written after
renormalization as

(13) ρt = ∇ ·
(
ρ(∇(−∆)−sρ+ λx)

)
, λ > 0, x ∈ Rd ,

and has the stationary profile

ρ∞(x) = Kd,s
(
R2 − |x |2

)1−s
+
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Functional analysis and convergence rates
the free energy E(ρ) defined as

E(ρ) =
1
2

∫
Rd

{
(−∆)−sρ(x) + λ|x |2

}
ρ(x) dx(14)

=
cd,s

2

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x − y |d−2s dydx + λ

∫
Rd

|x |2

2
ρ(x) dx ,

is a Lyapunov functional for 0 < s < min(1, d/2). One can similarly define the
Lyapunov functional for 1/2 ≤ s < 1 in one dimension, assuming that ρ satisfies a
growth condition at infinity, namely ρ log |x | ∈ L1(R) if s = 1/2 and
ρ|x |2s−1 ∈ L1(R) if 1/2 < s < 1.

One can obtain the formal relation dE(ρ)/dt = −I(ρ), where we denote by I(ρ)
the entropy dissipation (or entropy production) of E , given by

I(ρ) =

∫
Rd
ρ |∇ξ|2 dx , with ξ =

δE
δρ

= (−∆)−sρ+
λ

2
|x |2.

Using this relation, we have that the solution of (13) converge towards ρ∞ (paper
Caff-Vaz 2011), but no rate was obtained because of unknown functional
Poincaré-like functional inequality.
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Functional analysis and convergence rates
Now, we can consider the difference E(ρ|ρ∞) := E(ρ)− E(ρ∞) as a measure of
convergence towards equilibrium. We first rewrite the equation (13) as

(15) ρt = ∇ · (ρ∇ξ) with ξ := (−∆)−sρ+ λ|x |2/2.

After many calculations we get dI(ρ)/dt = −2λI(ρ)− 2R(ρ). By good fortune in
trying to put R(ρ) in good shape we get the signed version

R(ρ) =
c+

d,s

2

∫
Rd

∫
Rd
ρ(x)ρ(y)

〈
∇ξ(x)−∇ξ(y),K(x − y)

(
∇ξ(x)−∇ξ(y)

)〉
dydx ,

(16)

where K(x) is a matrix with entries Kij (x) and the integrand is symmetrized in the
last step. R(ρ) ≤ 0 in 1D, look the matrix K(x − y).
equivalent functional inequality in the “product form”

(17)
∫
Rd
ρ(−∆)−sρ dx ≤ C

(∫
Rd
ρ dx

)2−3θ (∫
Rd
ρ|∇(−∆)−sρ|2 dx

)θ
,

where θ = d−2s
2d+2−4s is determined by the homogeneity and C is given by any

function ρ(x) = A(R2 − |x − x0|2)1−s
+ (which is independent of A, R and x0).

Mention of the inequalities that are related: Log-Sobolev, Talagrand, and the HWI
inequalities (see comments in the paper).
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Work to Do
Open problem. We do not know how to do the analysis of rates of convergence in
several space dimensions. That means that we do not control the fine dynamics
in any functional space.

Study the optimal regularity of the solutions

Study the equation and regularity of the free boundary

Study fine asymptotic behavior in other classes of data

Study these nonlocal problems in bounded domains

Decide conditions of uniqueness

Decide conditions of comparison

Write a performing numerical code

Consider different nonlocal nonlinear diffusion problems

Discuss the Stochastic Particle Models in the literature that involve long-range
effects and anomalous diffusion parameters.

See JLV’s mentioned survey paper (Lecture Notes to appear).
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