GREEDY ALGORITHM AND EMBBEDDINGS

Eugenio Hernández

Universidad Autónoma de Madrid (Spain)

XIV Encuentro de la Red de Análisis Funcional y Aplicaciones Bilbao, 8-10 Marzo, 2018

Joint work with P. Berná, O. Blasco, G. Garrigós and, T. Oikhberg

N-term approximation and greedy algorithm

 $X = Banach space, \{e_n, e_n^*\}_{n=1}^{\infty} = seminormalized, complete, biorthogonal system, <math>x = \sum_{n=1}^{\infty} e_n^*(x)e_n$

• *N*-term approximation: Given $x \in \mathbb{X} \longrightarrow$ want good approximant within

$$\Sigma_{N} = \left\{ \sum_{\lambda \in \Lambda} c_{\lambda} \mathbf{e}_{\lambda} : |\Lambda| \leq N \right\}$$

• A natural choice are greedy operators:

$$x \in \mathbb{X} \longmapsto \mathbb{G}_N x = \sum_{j \in \Lambda(x)} \mathbf{e}_j^*(x) \mathbf{e}_j \in \Sigma_N$$

where $\min_{j \in \Lambda(x)} |\mathbf{e}_j^*(x)| \ge \max_{n \notin \Lambda(x)} |\mathbf{e}_n^*(x)|$ and $|\Lambda(x)| = N$.

N-term approximation and greedy algorithm

- **Q**: How good is $||x \mathbb{G}_N x||$ vs $\sigma_N(x) = \inf_{x_N \in \Sigma_N} ||x x_N||$?
- **Goal:** find smallest $L_N = L_N(X, \{e_n\})$ s.t.

 $||x - \mathbb{G}_N x|| \leq \mathbf{L}_N \sigma_N(x), \quad \forall x \in \mathbb{X}$

Examples

•
$$\{\mathbf{e}_n\} = \text{ONB} \implies \mathbf{L}_N = 1$$

• $\{e^{2\pi i k x}\}_{k=-\infty}^{\infty} = \mathcal{T} \implies \mathbf{L}_N(L^p, \mathcal{T}) \approx N^{\lfloor \frac{1}{p} - \frac{1}{2} \rfloor}$ [Tem'98]
• $\{h_{j,k}\} = \mathcal{H} \implies \mathbf{L}_N(L^p, \mathcal{H}) = O(1), \ 1 , [Tem'98]$

Given X and $\mathcal{B} = \{\mathbf{e}_n\}_{n=1}^{\infty}$ (basis), when is \mathbb{G}_{NX} "essentially" optimal?

• Theorem [Konyagin-Temlyakov'99]:

$$L_N = O(1)$$
 iff \mathcal{B} is unconditional and democratic.
Moreover, $L_N \leq K + 4K^3\Delta$, provided

 $\|P_A x\| \leq K \|x\|, \qquad \|\mathbf{1}_A\| \leq \Delta \|\mathbf{1}_B\|, \ \forall |A| = |B| < \infty$

where
$$\mathbf{1}_A = \sum_{n \in A} e_n$$
.

• Examples:

- $\{\mathbf{e}_n\}$ in ℓ^p , \mathcal{W} in $F^s_{p,q}$,... are greedy bases
- ... but $\{\mathbf{e}_n\}$ in $\ell^p \oplus \ell^{q}$, or \mathcal{W} in $B^s_{p,q}$ are not democratic if $p \neq q$...
- \mathcal{H} is **not** unconditional in L^1 , BV...
- To handle such examples need more general bounds for L_N...

- Definition: $\{\mathbf{e}_n, \mathbf{e}_n^*\}$ is a quasi-greedy system in \mathbb{X} if $\|G_N x\| \leq \mathbf{q} \|x\|, \forall N, x \text{ (equivalently, } \mathbb{G}_N x \to x, \forall x \in \mathbb{X} \text{ [Wo'00]})$
- Examples:
 - Every greedy basis is quasi-greedy.
 - \mathcal{H} q-greedy and democratic in $BV([0,1]^d)$, $d \geq 2$, [Cohen'99],[Wo'03]
 - Lindenstrauss basis: $\mathcal{L} = \{\mathbf{e}_n \frac{1}{2}(\mathbf{e}_{2n} + \mathbf{e}_{2n+1})\}$ in ℓ^1 is q-greedy and democratic [Dilworth-Mitra'01]

QUASI-GREEDY BASES

Consider the parameters

$$K_N = \sup_{|A| \le N} \|P_A\|, \qquad \Delta_N = \sup_{|A| = |B| \le N} \frac{\|\mathbf{1}_A\|}{\|\mathbf{1}_B\|}$$

• A nice remark [DKK'03]: $\mathcal{B} = \text{quasi-greedy} \implies K_N \lesssim \log N !!$

Thm [GHO'13]:

If ${\mathcal B}$ is quasi-greedy then

$$\mathbf{L}_N \approx \max\left\{ K_N, \, \Delta_N \right\}$$

Moreover, $\mathbf{L}_N \leq \mathbf{K}_{2N} + 8\mathbf{q}^4 \Delta_N \longrightarrow \text{actually } \mathbf{q}^3 \dots \text{ [DKO'15]}$

• **Q**: Bound L_N for non q-greedy bases?

Eugenio Hernández (UAM) Greedy algorithm and embeddings

Let $\{\mathbf{e}_n, \mathbf{e}_n^*\}_{n=1}^\infty$ complete, biorthogonal in $\mathbb{X} imes \mathbb{X}^*$ (seminormalized)

- Notation: $\mathbf{1}_{\varepsilon A} = \sum_{n \in A} \varepsilon_n \mathbf{e}_n$, $\mathbf{1}_{\varepsilon A}^* = \sum_{n \in A} \varepsilon_n \mathbf{e}_n^*$, $A \subset \mathbb{N}$, $|\varepsilon| = 1$.
- Suppose one knows upper bounds for:

$$\left\|\mathbf{1}_{\boldsymbol{arepsilon}A}\right\|_{\mathbb{X}} \leq \eta_1(\boldsymbol{\mathsf{N}}), \quad \left\|\mathbf{1}_{\boldsymbol{arepsilon}A}^*\right\|_{\mathbb{X}^*} \leq \eta_2(\boldsymbol{\mathsf{N}}), \quad \forall \ |\boldsymbol{\mathsf{A}}| = \boldsymbol{\mathsf{N}}, \ |\boldsymbol{arepsilon}| = 1,$$

with η_1, η_2 increasing concave sequences, that is $\Delta^2 \eta(n) = \Delta \eta(n) - \Delta \eta(n+1) \ge 0$ and $\Delta \eta(n) = \eta(n) - \eta(n-1)$

• Define
$$S_N(\eta_1, \eta_2) = \sum_{n=1}^N \Delta \eta_1(n) \Delta \eta_2(n)$$

Theorem 1: [BBGHO'17]

- $K_N \leq S_N(\eta_1, \eta_2)$ and $L_N \leq 1 + 3S_N(\eta_1, \eta_2)$. Also, $K_N^* \leq S_N(\eta_1, \eta_2)$ and $L_N^* \leq 1 + 3S_N(\eta_1, \eta_2)$ (symmetry)
- These estimates are best possible, i. e. there exists X and {e_n, e^{*}_n}[∞]_{n=1} for which all the equalities hold.

• The best η_1, η_2 we can take in Theorem 1 are

$$D(N) = \sup_{|A|=N, |arepsilon|=1} \|\mathbf{1}_{arepsilon A}\|\,, \quad ext{and} \quad D^*(N) = \sup_{|A|=N, |arepsilon|=1} \|\mathbf{1}_{arepsilon A}^*\|_*\,.$$

... if they are concave...

Sharp embeddings into X [bbgho'17]

• A sequence space \mathbb{S} embeds into \mathbb{X} via \mathcal{B} (with norm c), denoted $\mathbb{S} \xrightarrow{\mathcal{B}, c} \mathbb{X}$, if for every $\mathbf{s} = \{s_n\}_{n=1}^{\infty} \in \mathbb{S}$, there exists a **unique** $x \in \mathbb{X}$ such that $\mathbf{e}_n^*(x) = s_n$ and it holds:

$$||x|| \le c ||\mathbf{s}||_{\mathbb{S}} = c ||\{\mathbf{e}_{j}^{*}(x)\}_{j=1}^{\infty}||_{\mathbb{S}}.$$

• Discrete weighted Lorentz spaces: $\eta \in \mathbb{W}$,

$$\ell_{\eta}^{1} = \Big\{ \mathbf{s} \in c_{0} : \|\mathbf{s}\|_{\ell_{\eta}^{1}} := \sum_{j=1}^{\infty} s_{j}^{*} \frac{\eta(j)}{j} < \infty \Big\}.$$

Theorem 2

The following are equivalent: i) $\|\mathbf{1}_{\epsilon A}\| \leq \eta(|A|)$ for all finite $A \subset \mathbb{N}$ and all $|\epsilon| = 1, .$ ii) $\|\sum_{n \in n} a_n e_n\|_{\mathbb{X}} \leq \|\mathbf{a}\|_{\ell_{\widehat{\eta}}^1}$, for all $\mathbf{a} = \{a_n\} \in c_{00}$. If \mathcal{B}^* is total, then each of the above is equivalent to iii) $\ell_{\widehat{\eta}}^1 \stackrel{\mathcal{B}, 1}{\hookrightarrow} \mathbb{X}$.

Sharp embeddings of X [bbgho'17]

- The space X embeds into S via B (with norm c), denoted X → S, if for every x ∈ X it holds: ||{e_i^{*}(x)}_{i=1}||_S ≤ c||x||.
- Discrete weighted Marcinkiewicz spaces: $\eta \ge 0$,

$$m(\eta) = \left\{ \mathbf{s} \in c_0 : \|\mathbf{s}\|_{m(\eta)} := \sup_{k \in \mathbb{N}} \frac{\eta(k)}{k} \sum_{j=1}^k s_j^* < \infty \right\} .$$

• **Remark:** When $\eta' = \{j/\eta(j)\}_{j=1}^{\infty}$, is the "dual" weight, then $(\ell_{\eta}^{1})^{*} = m(\eta')$ (... if $\eta \in \mathbb{W}_{d}$ and $\inf_{n} \frac{\eta(n)}{n} = 0.$)

Theorem 3:

The following are equivalent: i) $\|\mathbf{1}_{\varepsilon A}^{*}\|_{*} \leq \eta(|A|)$ for all finite $A \subset \mathbb{N}$ and all $|\varepsilon| = 1$. ii) $\mathbb{X} \stackrel{\mathcal{B},1}{\hookrightarrow} m(\eta')$, with $\eta' = \{j/\eta(j)\}_{j=1}^{\infty}$.

Sketch of proof: Thm 1 $(K_N \leq S_N(\eta_1, \eta_2))$

We follow the strategy developed in [DKO'15]

• Thm 2 gives $\|P_A x\| \le \sum_{j=1}^N a_j^*(P_A x) \Delta \eta_1(j) \le \sum_{j=1}^N a_j^*(x) \Delta \eta_1(j) := A_N(x)$

• Let $S_J(x) := \sum_{j=1}^J a_j^*(x)$. By Abel summation

$$A_N(x) = \sum_{j=1}^N [S_j(x) - S_{j-1}(x)] \Delta \eta_1(j) = \sum_{j=1}^{N-1} \Delta^2 \eta_1(j) S_j(x) + \Delta \eta_1(N) S_N(x).$$

- From Thm 3, $\frac{1}{\eta_2(j)}S_j(x) = \frac{\eta_2'(j)}{j}\sum_{n=1}^j a_n^*(x) \le ||x||.$
- By Abel summation again

$$\|P_A x\| \leq \Big[\sum_{j=1}^{N-1} \Delta^2 \eta_1(j) \eta_2(j) + \Delta \eta_1(N) \eta_2(N)\Big] \|x\| = S_N(\eta_1, \eta_2) \|x\|.$$

• Thus $K_N \leq S_N(\eta_1, \eta_2)$

Let $\{\mathbf{e}_n\}_{n=1}^{\infty}$ be the canonical basis in ℓ^1 .

- Difference basis: $\mathbf{x}_1 = \mathbf{e}_1$, $\mathbf{x}_n = \mathbf{e}_n \mathbf{e}_{n-1}$, $n \ge 2$. $\mathbb{X} = \overline{\operatorname{span}}^{\ell^1} \{\mathbf{x}_n\}_{n=1}^{\infty}$.
- **Dual system**: vectors in ℓ^{∞} of the form $\mathbf{x}_n^* = \sum_{m=n}^{\infty} e_m^*$ and

$$\left\|\sum_{n=1}^{\infty} c_n \mathbf{x}_n^*\right\|_* = \sup_{n \ge 1} \left|\sum_{j=1}^n c_j\right|, \qquad \{c_n\} \in c_{00}.$$

(Summing basis, [LT'1977])

- Lemma 4: $\{\mathbf{x}_n, \mathbf{x}_n^*\}_{n=1}^{\infty}$ as above: D(N) = 2N and $D^*(N) = N$.
- Since $S_N(D, D^*) = \sum_{j=1}^N 2 \times 1 = 2N$, Thm 1 gives $K_N, K_N^* \le 2N$ and $L_N, L_N^* \le 1 + 6N$
- Equality can be proved by testing with particular elements this gives the announced sharpness of Thm 1.... (the values of K_N^* and L_N^* were known, [BBG'17].)

Let $\{\mathbf{e}_n\}_{n=1}^{\infty}$ be the canonical basis in ℓ^1 .

- (Lindenstrauss, 1964): \mathcal{L} : $\mathbf{x}_n = \mathbf{e}_n - \frac{1}{2}\mathbf{e}_{2n+1} - \frac{1}{2}\mathbf{e}_{2n+2}$, n = 1, 2, 3, ... \mathcal{L} is a basis for $\mathbb{D} = \overline{\text{span}} \{\mathcal{L}\}$ in ℓ^1 .
- Dual system (Holub-Retherford, 1970): $\mathcal{Y}: \mathbf{y}_n := \sum_{j=0}^n 2^{-j} \mathbf{e}_{\gamma_j(n)} \in c_0, \ n = 1, 2, 3...$ where $\gamma_0(n) = n$ and $\gamma_{j+1}(n) = \lfloor \frac{\gamma_j(n)-1}{2} \rfloor \ (j \ge 0)$, with the convention $\mathbf{e}_{\gamma} = \mathbf{0}$ if $\gamma \le 0$. (\mathcal{Y} is a Shauder basis for c_0)
- Lemma 5: D(N) = 2N and $D^*(N) \approx \ln(N+1) := \eta_2(N)$.
- Since $S_N(D, \eta_2) = \sum_{j=1}^N 2 \Delta \eta_2(j) = 2 \ln(N+1)$, Thm 1 gives $K_N, K_N^* \preceq \ln(N+1)$ and $L_N, L_N^* \preceq \ln(N+1)$
- Equivalence can be proved by testing with particular elements (the values of K_N and L_N were known.)

EXAMPLE 3: THE TRIGONOMETRIC SYSTEM

 $\mathcal{T} = \{e^{2\pi i k x}\}_{k \in \mathbb{Z}^d} \text{ in } L^p(\mathbb{T}^d), \ 1 \le p \le \infty, \text{ with } L^\infty(\mathbb{T}^d) = C(\mathbb{T}^d).$ • For $1 \le p \le 2, \ D(N) \le N^{1/2} := \eta_1(N) \text{ and } D^*(N) \le N^{1/p} := \eta_2(N).$

$$S_{N}(\eta_{1},\eta_{2}) \leq \sum_{j=1}^{N} j^{-\frac{1}{2}} j^{\frac{1}{p}-1} \leq c_{p} N^{\frac{1}{p}-\frac{1}{2}}, \ p \neq 2$$

• For $2 \le p \le \infty$, $D(N) \le N^{1/p'} := \eta_1(N)$ and $D^*(N) \le N^{1/2} := \eta_2(N)$.

$$S_{N}(\eta_{1},\eta_{2}) \leq \sum_{j=1}^{N} j^{\frac{1}{p'}-1} j^{-\frac{1}{2}} \leq c_{p} N^{\frac{1}{p'}-\frac{1}{2}} = c_{p} N^{\frac{1}{2}-\frac{1}{p}}, \ p \neq 2$$

• By Theorem 1, $K_N(\mathcal{T}, L^p), L_N(\mathcal{T}, L^p) \leq c_p N^{\lfloor \frac{1}{p} - \frac{1}{2} \rfloor}, p \neq 2.$ ([T'98]) The lower bound also holds: Remark 2 in [T'98]

• Drawback: we cannot recover the trivial case p = 2.

More examples

• For the Haar system $\mathcal{H} = \{h_{j,k}\}$ in L^1 ,

$$D(N)=D^*(N)=N.$$

Theorem 1 gives $L_N \leq 1 + 3N$ ([Oswald'2001] with equality)

• For the Haar system $\mathcal{H} = \{h_{j,k}\}$ in BMO_d ,

$$D(N) \approx \sqrt{\ln(N+1)}, \quad D^*(N) = N.$$

Theorem 1 gives $L_N \precsim \sqrt{\ln(N+1)}$ ([Oswald'2001] with equality)

• Drawback: For greedy bases, $S_N \preceq \ln(N+1)$, and Theorem 1 gives $L_N \preceq \ln(N+1)$, while $L_N \approx 1$.

THANKS FOR YOUR ATTENTION!!

EUGENIO HERNÁNDEZ (UAM) GREEDY ALGORITHM AND EMBEDDINGS