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If f is a locally integrable function we define the Hardy-Littlewood
maximal operator as

Mf (x) = sup
Q3x

1

|Q|

∫
Q
|f (y)|dy .

Theorem (B. Muckenhoupt, 1972)

Let 1 < p <∞ then∫
(Mf )pw(x)dx ≤ Cp,w

∫
|f |pw(x)dx

if and only if

supQ

(
1

|Q|

∫
Q
w(x)dx

)(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1
<∞.

if the last inequality holds we say that w belongs to Ap.
If Mw

w ∈ L∞ we say w ∈ A1
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The Hilbert transform:

Hf (x) =
1

π
limε→0

∫
|x−y |>ε

1

x − y
f (y)dy .

Hunt, Muckenhoupt and Wheeden (1973) proved that (1 < p <∞)

‖Hf ‖Lp(w) ≤ C‖f ‖Lp(w)

if and only if w ∈ Ap
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Calderón-Zygmund operators

Definition

A Calderón-Zygmund operator T (CZO) is an operator bounded on
L2(Rn) that admits the following representation

Tf (x) =

∫
K (x , y)f (y)dy

with f ∈ C∞c (Rn) and x 6∈ supp f and where
K : Rn × Rn \ {(x , x) : x ∈ Rn} −→ R has the following properties

Size condition: |K (x , y)| ≤ C2
1

|x−y |n x 6= 0.

Smoothness condition (Hölder-Lipschitz):

|K (x , y)− K (x , z)| ≤ C1
|y−z|δ
|x−y |n+δ

1
2 |x − y | > |y − z |

|K (x , y)− K (z , y)| ≤ C1
|x−z|δ
|x−y |n+δ

1
2 |x − y | > |x − z |

where C1 > 0 and C2 > 0 are constants independent of x , y , z .



R. Coifman y C. Fefferman (1974) proved that (1 < p <∞)
if w ∈ Ap then any CZO operator T safisfies

‖Tf ‖Lp(w) ≤ CT ,w‖f ‖Lp(w)

If T is the Riesz transform then Ap is also a necessary condition for the
Lp(w) boundedness.

Coifman-Fefferman estimate, if 0 < r <∞ and v is a ”good” weight, then∫
|Tf |rv(x)dx ≤ Cp,v

∫
Mf rv(x)dx
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Rubio de Francia’s extrapolation theorem

Theorem (Rubio de Francia, 1984)

Fixed 1 ≤ p0 <∞, if T is a bounded operator on Lp0(w) for every
w ∈ Ap0 .
Then for every 1 < p <∞ and for all w ∈ Ap; T is bounded on Lp(w).

New proofs, variants and very useful extensions have been widely studied
by J. Garćıa-Cuerva, J. L. Torrea, J. Duoandikoetxea, D. Cruz-Uribe, J. M.
Martell, and C. Pérez between others...
- It can be consider a pair of functions (f , g), where, in particular, g could
be Tf ...
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Rubio de Francia extrapolation trick

‖f ‖Lp(w) = sup{‖g‖
Lp

′
(σ)

=1}

∫
|f |g

Given g ≥ 0 with ‖g‖Lp′ (σ) = 1, define

Rg(x) =
∞∑
k=0

Mkg(x)

(2‖M‖L2(σ))k
.

Then g ≤ Rg , ‖Rg‖L2(σ) ≤ 2, and Rg ∈ A1.

∫
|Tf |g ≤

∫
|Tf |Rg ≤ C‖f ‖L1(Rg)

≤ C‖f ‖Lp(w)‖Rg‖Lp′ (σ)
≤ 2C‖f ‖Lp(w).
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Bilinear Calderón-Zygmund operators

let T : S(Rn)× S(Rn)→ S ′(Rn). T is an bilinear Calderón-Zygmund operator if,
for some 1 ≤ q1, q2 <∞ and 1

2 ≤ q <∞ satisfying 1
q = 1

q1
+ 1

q2
, it extends to a

bounded bilinear operator from Lq1 × Lq2 to Lq, and if there exists K defined off
the diagonal x = y1 = y2 in (Rn)3 satisfying

T (f1, f2)(x) =

∫
(Rn)2

K (x , y1, y2)f1(y1)f2(y2) dy1dy2

for all x /∈ ∩2j=1suppfj ;

|K (y0, y1, y2)| ≤ A( 2∑
k,l=0

|yk − yl |
)2n ;

|K (y0, y1, y2)− K (y0, y
′
1, y2)| ≤ A|y1 − y ′1|ε(∑2

k,l=0 |yk − yl |
)2n+ε ,

for some ε > 0 and all 0 ≤ j ≤ m, whenever |y1 − y ′1| ≤ 1
2max0≤k≤2|yj − yk |.
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-Multilinear Calderón-Zygmund were widely studied by R. Coifman and Y.
Meyer in the 70’th and 80’th

-L. Grafakos and R. Torres in several works (since 2000)

If we denote ~w = (w1,w2); ν~w = w
q/q1
1 w

q/q2
2 and then if 1 < qi and

wi ∈ Aqi i = 1, 2, then bilinear Calderón-Zygmund operator T maps

Lq1(w1)× Lq2(w2)→ Lq(ν~w )

As a consequence of a “control” of the way...

T (f1, f2) � Mf1Mf2
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Theorem (Grafakos and Martell, 2004)

Let 1 < r1, r2 <∞ and 1
r = 1

r1
+ 1

r2
. Assume that

‖T (f1, f2)‖Lr (ν~w ) ≤ C
2∏

i=1

‖fi‖Lri (wi )

holds for all (w1,w2) ∈ (Ar1 ,Ar2). Then

‖T (f1, f2)‖Lp(ν~w ) ≤ C
2∏

i=1

‖fi‖Lpi (wi )

holds for all (w1,w2) ∈ (Ap1 ,Ap2) with 1 < p1, p2 <∞ and 1
p = 1

p1
+ 1

p2
.



In 2009 jointly with Lerner, Pérez, Torres and Trujillo-Gonzalez [LOPTT]
introduced

M(f1, f2)(x) = sup
x∈Q

2∏
i=1

1

|Q|

∫
Q
|fi (yi )|dyi .

T (f1, f2) �M(f1, f2)
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Multilinear Muckenhoupt weights

Let ν~w = w
q/q1
1 w

q/q2
2 . Let 1 ≤ q1, q2 <∞ and q such that 1

q = 1
q1

+ 1
q2

.
We say that ~w = (w1,w2) satisfies the multilinear A~q condition if

sup
Q

( 1

|Q|

∫
Q
ν~w

)1/q 2∏
i=1

( 1

|Q|

∫
Q
w

1−q′i
i

)1/q′i
<∞

when qi = 1,
(

1
|Q|
∫
Q w

1−q′i
i

)1/q′i
is understood as (infQwi )

−1.

Theorem (LOPTT, 2009)

Let 1 < q1, q2 <∞ and q such that 1
q = 1

q1
+ 1

q2
then ~w satisfies A~q

condition if and only if M maps Lq1(w1)× Lq2(w2) into Lq(ν~w )

Then, if ~w satisfies A~q a bilinear Calderón-Zygmund operator T also maps
Lq1(w1)× Lq2(w2) into Lq(ν~w )
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+ 1
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condition if and only if M maps Lq1(w1)× Lq2(w2) into Lq(ν~w )

Then, if ~w satisfies A~q a bilinear Calderón-Zygmund operator T also maps
Lq1(w1)× Lq2(w2) into Lq(ν~w )
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Some remarks on multiple A~p weights

-From the characterization, one can see that Aq1 × Aq2 ( A~q.

It is easy to check that (|x |−n, 1) ∈ A(1,1), however, |x |−n is not even
locally integrable, so of course |x |−n /∈ Aq for any q ≥ 1.
-Moreover other general properties as monotonicity and (reasonable)
factorization are not true for the clases A~q .
-All these facts kept open the extrapolation theorem related to multiple A~q
weights...
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Extrapolation for multiple A~p weights

Theorem (K. Li, J. M. Martell, O., 2018)

Let F be a collection of 3-tuples of non-negative functions. Let
~p = (p1, p2), with 1 ≤ p1, p2 <∞, such that given any ~w ∈ A~p the
inequality

‖f ‖Lp(w) ≤ C ([~w ]A~p)
2∏

i=1

‖fi‖Lpi (wi )

holds for every (f , f1, f2) ∈ F , where 1
p := 1

p1
+ 1

p2
and w :=

∏2
i=1 w

p
pi
i .

Then for all exponents ~q = (q1, q2), with qi > 1, i = 1, 2, and for all
weights ~v ∈ A~q the inequality

‖f ‖Lq(v) ≤ C ([~v ]A~q)
2∏

i=1

‖fi‖Lqi (vi )

holds for every (f , f1, f2) ∈ F , 1
q := 1

q1
+ 1

q2
and v :=

∏2
i=1 v

q
qi
i .
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Moreover, for the same family of exponents and weights, and for all
exponents ~s = (s1, s2) with si > 1, i = 1, 2,∥∥∥∥(∑

j

(f j)s
) 1

s

∥∥∥∥
Lq(v)

≤ C ([~v ]A~q)
2∏

i=1

∥∥∥∥(∑
j

(f ji )si
) 1

si

∥∥∥∥
Lqi (vi )

for all {(f j , f j1 , f
j
2 )}j ⊂ F , where 1

s := 1
s1

+ 1
s2

.



New starting point...

How can we build A(1,1) weights?

It is known (w1,w2) ∈ A(1,1) if and only if
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A (very) rough idea of the proof

-Bearing in mind that, we can follow Duoandikoetxea’s off-diagonal
extrapolation theorem...
We study the extrapolation from (p1, p2) to (q1, q2) by a two-step
consideration: first (p1, p2) to (p1, q2) and then to (q1, q2).
We can actually rewrite ‖g‖Lp(w) ≤ C‖f1‖Lp1 (w1)‖f2‖Lp2 (w2) as

‖g̃‖
Lp(w

p
p2
2 )
≤ C‖f̃ ‖Lp2 (w2), where g̃ = gw

1
p1
1 and f̃ = ‖f1‖Lp1 (w1)f2.

Since p1 and w1 are fixed, we can seek for some characterization of w2

when assuming ~w ∈ A(p1,p2).....
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bilinear Marcinkiewicz-Zygmund inequalities

Theorem (D. Carando, M. Mazzitelli, S.O., 2016)

Let T be a bilinear Calderón-Zygmund operator. Let 1 < r ≤ 2 and let
1 < q1, q2 <∞ if r = 2 or 1 < q1, q2 < r if 1 < r < 2. Then for
~w = (w1,w2) ∈ A~q there holds∥∥∥∥(∑

i ,j

|T (fi , gj)|r
) 1

r
∥∥∥∥
Lq(w)

≤ C

∥∥∥∥(∑
i

|fi |r
) 1

r
∥∥∥∥
Lq1 (w1)

∥∥∥∥(∑
j

|gj |r
) 1

r
∥∥∥∥
Lq2 (w2)

,

where 1
q = 1

q1
+ 1

q2
and w = w

q
q1
1 w

q
q2
2 .

Now, by using extrapolation we can remove the restriction q1, q2 < r

Corollary

Let T be bilinear Calderón-Zygmund operator. Given 1 < r ≤ 2 and
1 < q1, q2 <∞, then previous inequality holds for all ~w = (w1,w2) ∈ A~q.
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- the results holds in the multilinear case (proofs a little more
complicated...)

-Actually, the results also hold in the context of the classes A~p,~r (good
weights for more singular operators as the bilinear Hilbert transform and
commutators of the the bilinear Hilbert transform)

BH(f , g)(x) = p.v .

∫
f (x − t)g(x + t)

t
dt

-From A. Culiuc, F. Di Plinio and Y. Ou (2016) we can go to the
quasi-Banach range and to recover several recent results of
Benea-Muscalu.
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