Teoría de pesos para operadores multilineales, extensiones vectoriales y extrapolación

Encuentro Análisis Funcional

Sheldy Ombrosi

Universidad Nacional del Sur y CONICET

8 de marzo de 2018

うてん 前 (中国)(中国)(日)

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

Theorem (B. Muckenhoupt, 1972)

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

Theorem (B. Muckenhoupt, 1972)

Let 1 then

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

Theorem (B. Muckenhoupt, 1972)

Let 1 then

$$\int (Mf)^{p} w(x) dx \leq C_{p,w} \int |f|^{p} w(x) dx$$

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

Theorem (B. Muckenhoupt, 1972)

Let 1 then

$$\int (Mf)^p w(x) dx \leq C_{p,w} \int |f|^p w(x) dx$$

if and only if

$$\sup_{Q}\left(\frac{1}{|Q|}\int_{Q}\mathbf{w}(x)dx\right)\left(\frac{1}{|Q|}\int_{Q}\mathbf{w}(x)^{-1/(p-1)}dx\right)^{p-1}<\infty.$$

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| dy.$$

Theorem (B. Muckenhoupt, 1972)

Let $1 < \textit{p} < \infty$ then

$$\int (Mf)^p w(x) dx \leq C_{p,w} \int |f|^p w(x) dx$$

if and only if

$$\sup_{Q}\left(\frac{1}{|Q|}\int_{Q}\mathbf{w}(x)dx\right)\left(\frac{1}{|Q|}\int_{Q}\mathbf{w}(x)^{-1/(p-1)}dx\right)^{p-1}<\infty.$$

if the last inequality holds we say that w belongs to A_p . If $\frac{Mw}{w} \in L^{\infty}$ we say $w \in A_1$ The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

(€) → (4)

Hunt, Muckenhoupt and Wheeden (1973) proved that (1

The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

Hunt, Muckenhoupt and Wheeden (1973) proved that (1

$$\|Hf\|_{L^p(\mathbf{w})} \leq C \|f\|_{L^p(\mathbf{w})}$$

The Hilbert transform:

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy.$$

Hunt, Muckenhoupt and Wheeden (1973) proved that (1

$$\|Hf\|_{L^p(\mathbf{w})} \leq C \|f\|_{L^p(\mathbf{w})}$$

if and only if $w \in A_p$

Calderón-Zygmund operators

Definition

A Calderón-Zygmund operator T (CZO) is an operator bounded on $L^2(\mathbb{R}^n)$ that admits the following representation

$$Tf(x) = \int K(x,y)f(y)dy$$

with $f \in C_c^{\infty}(\mathbb{R}^n)$ and $x \notin \text{supp } f$ and where $K : \mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, x) : x \in \mathbb{R}^n\} \longrightarrow \mathbb{R}$ has the following properties Size condition: $|K(x, y)| \leq C_2 \frac{1}{|x-y|^n} \qquad x \neq 0.$ Smoothness condition (Hölder-Lipschitz): $|K(x, y) - K(x, z)| \leq C_1 \frac{|y-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |y-z|$ $|K(x, y) - K(z, y)| \leq C_1 \frac{|x-z|^{\delta}}{|x-y|^{n+\delta}} \qquad \frac{1}{2}|x-y| > |x-z|$

where $C_1 > 0$ and $C_2 > 0$ are constants independent of x, y, z.

 $\|Tf\|_{L^p(\mathbf{w})} \leq C_{T,\mathbf{w}} \|f\|_{L^p(\mathbf{w})}$

$$\|Tf\|_{L^p(w)} \leq C_{T,w} \|f\|_{L^p(w)}$$

If T is the Riesz transform then A_p is also a necessary condition for the $L^p(w)$ boundedness.

$$\|Tf\|_{L^p(w)} \leq C_{T,w} \|f\|_{L^p(w)}$$

If T is the Riesz transform then A_p is also a necessary condition for the $L^p(w)$ boundedness.

Coifman-Fefferman estimate, if $0 < r < \infty$ and v is a "good" weight, then

$$\int |Tf|^{r} \mathbf{v}(x) dx \leq C_{p,\mathbf{v}} \int Mf^{r} \mathbf{v}(x) dx$$

Rubio de Francia's extrapolation theorem

Theorem (Rubio de Francia, 1984)

Fixed $1 \le p_0 < \infty$, if T is a bounded operator on $L^{p_0}(w)$ for every $w \in A_{p_0}$. Then for every $1 and for all <math>w \in A_p$; T is bounded on $L^p(w)$.

Rubio de Francia's extrapolation theorem

Theorem (Rubio de Francia, 1984)

Fixed $1 \le p_0 < \infty$, if T is a bounded operator on $L^{p_0}(w)$ for every $w \in A_{p_0}$. Then for every $1 and for all <math>w \in A_p$; T is bounded on $L^p(w)$.

New proofs, variants and very useful extensions have been widely studied by J. García-Cuerva, J. L. Torrea, J. Duoandikoetxea, D. Cruz-Uribe, J. M. Martell, and C. Pérez between others...

Rubio de Francia's extrapolation theorem

Theorem (Rubio de Francia, 1984)

Fixed $1 \le p_0 < \infty$, if T is a bounded operator on $L^{p_0}(w)$ for every $w \in A_{p_0}$. Then for every $1 and for all <math>w \in A_p$; T is bounded on $L^p(w)$.

New proofs, variants and very useful extensions have been widely studied by J. García-Cuerva, J. L. Torrea, J. Duoandikoetxea, D. Cruz-Uribe, J. M. Martell, and C. Pérez between others...

- It can be consider a pair of functions (f, g), where, in particular, g could be Tf...

$$\|f\|_{L^{p}(w)} = \sup_{\{\|g\|_{L^{p'}(\sigma)}=1\}} \int |f|g|$$

$$\|f\|_{L^{p}(w)} = \sup_{\{\|g\|_{L^{p'}(\sigma)}=1\}} \int |f|g|$$

Given $g \geq 0$ with $\|g\|_{L^{p'}(\sigma)} = 1$, define

$$\mathcal{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma)})^k}.$$

イロン イ理と イヨン イヨン

æ

$$\|f\|_{L^{p}(w)} = \sup_{\{\|g\|_{L^{p'}(\sigma)}=1\}} \int |f|g|$$

Given $g \geq 0$ with $\|g\|_{L^{p'}(\sigma)} = 1$, define

$$\mathcal{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma)})^k}.$$

ヘロン 人間 とくほとくほとう

æ

Then $g \leq \mathcal{R}g$, $\|\mathcal{R}g\|_{L^2(\sigma)} \leq 2$, and $\mathcal{R}g \in A_1$.

$$\|f\|_{L^{p}(w)} = \sup_{\{\|g\|_{L^{p'}(\sigma)}=1\}} \int |f|g|$$

Given $g \geq 0$ with $\|g\|_{L^{p'}(\sigma)} = 1$, define

$$\mathcal{R}g(x) = \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2\|M\|_{L^2(\sigma)})^k}.$$

Then $g \leq \mathcal{R}g$, $\|\mathcal{R}g\|_{L^2(\sigma)} \leq 2$, and $\mathcal{R}g \in A_1$.

$$\begin{split} \int |Tf|g &\leq \int |Tf|\mathcal{R}g \leq C \|f\|_{L^1(\mathcal{R}g)} \\ &\leq C \|f\|_{L^p(w)} \|\mathcal{R}g\|_{L^{p'}(\sigma)} \\ &\leq 2C \|f\|_{L^p(w)}. \end{split}$$

let $T: S(\mathbb{R}^n) \times S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$. *T* is an bilinear Calderón-Zygmund operator if, for some $1 \leq q_1, q_2 < \infty$ and $\frac{1}{2} \leq q < \infty$ satisfying $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$, it extends to a bounded bilinear operator from $L^{q_1} \times L^{q_2}$ to L^q , and if there exists *K* defined off the diagonal $x = y_1 = y_2$ in $(\mathbb{R}^n)^3$ satisfying

let $T: S(\mathbb{R}^n) \times S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$. *T* is an bilinear Calderón-Zygmund operator if, for some $1 \leq q_1, q_2 < \infty$ and $\frac{1}{2} \leq q < \infty$ satisfying $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$, it extends to a bounded bilinear operator from $L^{q_1} \times L^{q_2}$ to L^q , and if there exists *K* defined off the diagonal $x = y_1 = y_2$ in $(\mathbb{R}^n)^3$ satisfying

$$T(f_1, f_2)(x) = \int_{(\mathbb{R}^n)^2} K(x, y_1, y_2) f_1(y_1) f_2(y_2) \, dy_1 dy_2$$

for all $x \notin \bigcap_{j=1}^2 \operatorname{supp} f_j$;

let $T: S(\mathbb{R}^n) \times S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$. *T* is an bilinear Calderón-Zygmund operator if, for some $1 \leq q_1, q_2 < \infty$ and $\frac{1}{2} \leq q < \infty$ satisfying $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$, it extends to a bounded bilinear operator from $L^{q_1} \times L^{q_2}$ to L^q , and if there exists *K* defined off the diagonal $x = y_1 = y_2$ in $(\mathbb{R}^n)^3$ satisfying

$$T(f_1, f_2)(x) = \int_{(\mathbb{R}^n)^2} K(x, y_1, y_2) f_1(y_1) f_2(y_2) \, dy_1 dy_2$$

for all $x \notin \bigcap_{j=1}^2 \operatorname{supp} f_j$;

$$|K(y_0, y_1, y_2)| \leq \frac{A}{\left(\sum\limits_{k,l=0}^2 |y_k - y_l|\right)^{2n}};$$

let $T: S(\mathbb{R}^n) \times S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$. *T* is an bilinear Calderón-Zygmund operator if, for some $1 \leq q_1, q_2 < \infty$ and $\frac{1}{2} \leq q < \infty$ satisfying $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$, it extends to a bounded bilinear operator from $L^{q_1} \times L^{q_2}$ to L^q , and if there exists *K* defined off the diagonal $x = y_1 = y_2$ in $(\mathbb{R}^n)^3$ satisfying

$$T(f_1, f_2)(x) = \int_{(\mathbb{R}^n)^2} K(x, y_1, y_2) f_1(y_1) f_2(y_2) \, dy_1 dy_2$$

for all $x \notin \bigcap_{j=1}^2 \operatorname{supp} f_j$;

$$|K(y_0, y_1, y_2)| \leq \frac{A}{\left(\sum\limits_{k,l=0}^2 |y_k - y_l|\right)^{2n}};$$

$$|\mathcal{K}(y_0, y_1, y_2) - \mathcal{K}(y_0, y_1', y_2)| \leq \frac{A|y_1 - y_1'|^{\epsilon}}{\left(\sum_{k,l=0}^2 |y_k - y_l|\right)^{2n+\epsilon}},$$

for some $\epsilon > 0$ and all $0 \le j \le m$, whenever $|y_1 - y'_1| \le \frac{1}{2} \max_{1 \le k \le 2} |y_j - y_k|$.

A E A

.∋...>

< ∃ > <

-L. Grafakos and R. Torres in several works (since 2000)

-L. Grafakos and R. Torres in several works (since 2000)

If we denote $\vec{w} = (w_1, w_2)$; $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$ and then if $1 < q_i$ and $w_i \in A_{q_i}$ i = 1, 2, then bilinear Calderón-Zygmund operator T maps

-L. Grafakos and R. Torres in several works (since 2000)

If we denote $\vec{w} = (w_1, w_2)$; $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$ and then if $1 < q_i$ and $w_i \in A_{q_i}$ i = 1, 2, then bilinear Calderón-Zygmund operator T maps

 $L^{q_1}(w_1) \times L^{q_2}(w_2) \rightarrow L^q(\nu_{\vec{w}})$

-L. Grafakos and R. Torres in several works (since 2000)

If we denote $\vec{w} = (w_1, w_2)$; $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$ and then if $1 < q_i$ and $w_i \in A_{q_i}$ i = 1, 2, then bilinear Calderón-Zygmund operator T maps

$$L^{q_1}(w_1) \times L^{q_2}(w_2) \rightarrow L^q(\nu_{\vec{w}})$$

As a consequence of a "control" of the way...

 $T(f_1, f_2) \preceq M f_1 M f_2$

Theorem (Grafakos and Martell, 2004)

Let $1 < r_1, r_2 < \infty$ and $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$. Assume that

$$\|T(f_1, f_2)\|_{L^r(\nu_{\vec{w}})} \leq C \prod_{i=1}^2 \|f_i\|_{L^{r_i}(w_i)}$$

holds for all $(w_1, w_2) \in (A_{r_1}, A_{r_2})$. Then

$$\|T(f_1, f_2)\|_{L^p(\nu_{\vec{w}})} \leq C \prod_{i=1}^2 \|f_i\|_{L^{p_i}(w_i)}$$

holds for all $(w_1, w_2) \in (A_{p_1}, A_{p_2})$ with $1 < p_1, p_2 < \infty$ and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$.

In 2009 jointly with Lerner, Pérez, Torres and Trujillo-Gonzalez [LOPTT] introduced

$$\mathcal{M}(f_1, f_2)(x) = \sup_{x \in Q} \prod_{i=1}^2 \frac{1}{|Q|} \int_Q |f_i(y_i)| dy_i.$$

< ≣ ► <

3) 3

In 2009 jointly with Lerner, Pérez, Torres and Trujillo-Gonzalez [LOPTT] introduced

$$\mathcal{M}(f_1, f_2)(x) = \sup_{x \in Q} \prod_{i=1}^2 \frac{1}{|Q|} \int_Q |f_i(y_i)| dy_i.$$

 $T(f_1, f_2) \preceq \mathcal{M}(f_1, f_2)$

< ≣ ► <

3) 3

Let $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$. Let $1 \le q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. We say that $\vec{w} = (w_1, w_2)$ satisfies the *multilinear* $A_{\vec{q}}$ condition if

Let $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$. Let $1 \le q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. We say that $\vec{w} = (w_1, w_2)$ satisfies the *multilinear* $A_{\vec{q}}$ condition if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \nu_{\vec{w}}\right)^{1/q} \prod_{i=1}^{2} \left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-q_{i}'}\right)^{1/q_{i}'} < \infty$$

Let $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$. Let $1 \le q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. We say that $\vec{w} = (w_1, w_2)$ satisfies the *multilinear* $A_{\vec{q}}$ condition if

$$\begin{split} \sup_{Q} \Big(\frac{1}{|Q|} \int_{Q} \nu_{\vec{w}} \Big)^{1/q} \prod_{i=1}^{2} \Big(\frac{1}{|Q|} \int_{Q} w_{i}^{1-q_{i}'} \Big)^{1/q_{i}'} < \infty \end{split}$$
when $q_{i} = 1$, $\Big(\frac{1}{|Q|} \int_{Q} w_{i}^{1-q_{i}'} \Big)^{1/q_{i}'}$ is understood as $(inf_{Q}w_{i})^{-1}$.

Let $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$. Let $1 \le q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. We say that $\vec{w} = (w_1, w_2)$ satisfies the *multilinear* $A_{\vec{q}}$ condition if

$$\sup_{Q} \Big(\frac{1}{|Q|} \int_{Q} \nu_{\vec{w}} \Big)^{1/q} \prod_{i=1}^{2} \Big(\frac{1}{|Q|} \int_{Q} w_{i}^{1-q_{i}'} \Big)^{1/q_{i}'} < \infty$$

when $q_i = 1$, $\left(\frac{1}{|Q|}\int_Q w_i^{1-q_i'}\right)^{1/q_i'}$ is understood as $(inf_Q w_i)^{-1}$.

Theorem (LOPTT, 2009)

Let $1 < q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$ then \vec{w} satisfies $A_{\vec{q}}$ condition if and only if \mathcal{M} maps $L^{q_1}(w_1) \times L^{q_2}(w_2)$ into $L^q(\nu_{\vec{w}})$

Let $\nu_{\vec{w}} = w_1^{q/q_1} w_2^{q/q_2}$. Let $1 \le q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. We say that $\vec{w} = (w_1, w_2)$ satisfies the multilinear $A_{\vec{q}}$ condition if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \nu_{\vec{w}} \right)^{1/q} \prod_{i=1}^{2} \left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-q_{i}'} \right)^{1/q_{i}'} < \infty$$

when $q_i = 1$, $\left(\frac{1}{|Q|}\int_Q w_i^{1-q_i'}\right)^{1/q_i'}$ is understood as $(inf_Q w_i)^{-1}$.

Theorem (LOPTT, 2009)

Let $1 < q_1, q_2 < \infty$ and q such that $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$ then \vec{w} satisfies $A_{\vec{q}}$ condition if and only if \mathcal{M} maps $L^{q_1}(w_1) \times L^{q_2}(w_2)$ into $L^q(\nu_{\vec{w}})$

Then, if \vec{w} satisfies $A_{\vec{q}}$ a bilinear Calderón-Zygmund operator T also maps $L^{q_1}(w_1) \times L^{q_2}(w_2)$ into $L^q(\nu_{\vec{w}})$

イロト イヨト イヨト イヨト

-From the characterization, one can see that $A_{q_1} \times A_{q_2} \subsetneq A_{\vec{q}}$.

-From the characterization, one can see that $A_{q_1} \times A_{q_2} \subsetneq A_{\vec{q}}$. It is easy to check that $(|x|^{-n}, 1) \in A_{(1,1)}$, however, $|x|^{-n}$ is not even locally integrable, so of course $|x|^{-n} \notin A_q$ for any $q \ge 1$.

-From the characterization, one can see that $A_{q_1} \times A_{q_2} \subsetneq A_{\vec{q}}$. It is easy to check that $(|x|^{-n}, 1) \in A_{(1,1)}$, however, $|x|^{-n}$ is not even locally integrable, so of course $|x|^{-n} \notin A_q$ for any $q \ge 1$. -Moreover other general properties as monotonicity and (reasonable)

《曰》 《圖》 《臣》 《臣》

factorization are not true for the clases $A_{\vec{q}}$.

-From the characterization, one can see that $A_{q_1} \times A_{q_2} \subsetneq A_{\vec{q}}$. It is easy to check that $(|x|^{-n}, 1) \in A_{(1,1)}$, however, $|x|^{-n}$ is not even locally integrable, so of course $|x|^{-n} \notin A_q$ for any $q \ge 1$.

-Moreover other general properties as monotonicity and (reasonable) factorization are not true for the clases $A_{\vec{q}}$.

-All these facts kept open the *extrapolation theorem* related to multiple $A_{\vec{q}}$ weights...

Extrapolation for multiple $A_{\vec{p}}$ weights

Theorem (K. Li, J. M. Martell, O., 2018)

Let \mathcal{F} be a collection of 3-tuples of non-negative functions. Let $\vec{p} = (p_1, p_2)$, with $1 \le p_1, p_2 < \infty$, such that given any $\vec{w} \in A_{\vec{p}}$ the inequality

$$\|f\|_{L^p(w)} \leq C([\vec{w}]_{A_{\vec{p}}}) \prod_{i=1}^2 \|f_i\|_{L^{p_i}(w_i)}$$

holds for every
$$(f, f_1, f_2) \in \mathcal{F}$$
, where $\frac{1}{p} := \frac{1}{p_1} + \frac{1}{p_2}$ and $w := \prod_{i=1}^2 w_i^{\frac{p_i}{p_i}}$.

Extrapolation for multiple $A_{\vec{p}}$ weights

Theorem (K. Li, J. M. Martell, O., 2018)

Let \mathcal{F} be a collection of 3-tuples of non-negative functions. Let $\vec{p} = (p_1, p_2)$, with $1 \le p_1, p_2 < \infty$, such that given any $\vec{w} \in A_{\vec{p}}$ the inequality

$$\|f\|_{L^p(w)} \leq C([\vec{w}]_{A_{\vec{p}}}) \prod_{i=1}^2 \|f_i\|_{L^{p_i}(w_i)}$$

holds for every $(f, f_1, f_2) \in \mathcal{F}$, where $\frac{1}{p} := \frac{1}{p_1} + \frac{1}{p_2}$ and $w := \prod_{i=1}^2 w_i^{\frac{p}{p_i}}$. Then for all exponents $\vec{q} = (q_1, q_2)$, with $q_i > 1$, i = 1, 2, and for all weights $\vec{v} \in A_{\vec{q}}$ the inequality

$$\|f\|_{L^q(v)} \leq C([\vec{v}]_{A_{\vec{q}}}) \prod_{i=1}^2 \|f_i\|_{L^{q_i}(v_i)}$$

holds for every $(f, f_1, f_2) \in \mathcal{F}$, $\frac{1}{q} := \frac{1}{q_1} + \frac{1}{q_2}$ and $v := \prod_{i=1}^2 v_i^{\overline{q_i}}$.

Moreover, for the same family of exponents and weights, and for all exponents $\vec{s} = (s_1, s_2)$ with $s_i > 1$, i = 1, 2,

$$\left\|\left(\sum_{j} (f^{j})^{s}\right)^{\frac{1}{s}}\right\|_{L^{q}(v)} \leq C([\vec{v}]_{A_{\vec{q}}}) \prod_{i=1}^{2} \left\|\left(\sum_{j} (f_{i}^{j})^{s_{i}}\right)^{\frac{1}{s_{i}}}\right\|_{L^{q_{i}}(v_{i})}$$

for all $\{(f^{j}, f_{1}^{j}, f_{2}^{j})\}_{j} \subset \mathcal{F}$, where $\frac{1}{s} := \frac{1}{s_{1}} + \frac{1}{s_{2}}$.

How can we build $A_{(1,1)}$ weights?

How can we build $A_{(1,1)}$ weights? It is known $(w_1, w_2) \in A_{(1,1)}$ if and only if

$$w_1^{\frac{1}{2}} \in A_1$$
 $w_2^{\frac{1}{2}} \in A_1$ and $w_1^{\frac{1}{2}} w_2^{\frac{1}{2}} \in A_1$.

・ 御 ト ・ ヨ ト ・ ヨ ト

3

How can we build $A_{(1,1)}$ weights? It is known $(w_1, w_2) \in A_{(1,1)}$ if and only if

$$w_1^{rac{1}{2}} \in A_1$$
 $w_2^{rac{1}{2}} \in A_1$ and $w_1^{rac{1}{2}} w_2^{rac{1}{2}} \in A_1.$

However, it is very useful the following: $(w_1, w_2) \in A_{(1,1)}$ if and only

How can we build $A_{(1,1)}$ weights? It is known $(w_1, w_2) \in A_{(1,1)}$ if and only if

$$w_1^{rac{1}{2}} \in A_1$$
 $w_2^{rac{1}{2}} \in A_1$ and $w_1^{rac{1}{2}} w_2^{rac{1}{2}} \in A_1.$

However, it is very useful the following: $(w_1, w_2) \in A_{(1,1)}$ if and only

$$w_1^{\frac{1}{2}} \in A_1$$
 and $w_2^{\frac{1}{2}} \in A_1(w_1^{\frac{1}{2}}).$

A (very) rough idea of the proof

- イロト イ団ト イヨト イヨト 三ヨー わらび

A (very) rough idea of the proof

-Bearing in mind that, we can follow Duoandikoetxea's off-diagonal extrapolation theorem...

A (very) rough idea of the proof

-Bearing in mind that, we can follow Duoandikoetxea's off-diagonal extrapolation theorem...

We study the extrapolation from (p_1, p_2) to (q_1, q_2) by a two-step consideration: first (p_1, p_2) to (p_1, q_2) and then to (q_1, q_2) .

-Bearing in mind that, we can follow Duoandikoetxea's off-diagonal extrapolation theorem...

We study the extrapolation from (p_1, p_2) to (q_1, q_2) by a two-step consideration: first (p_1, p_2) to (p_1, q_2) and then to (q_1, q_2) . We can actually rewrite $||g||_{L^p(w)} \leq C ||f_1||_{L^{p_1}(w_1)} ||f_2||_{L^{p_2}(w_2)}$ as

$$\| ilde{g}\|_{L^{p}(w_{2}^{\frac{p}{p_{2}}})} \leq C \| ilde{f}\|_{L^{p_{2}}(w_{2})}, ext{ where } ilde{g} = gw_{1}^{\overline{p_{1}}} ext{ and } ilde{f} = \|f_{1}\|_{L^{p_{1}}(w_{1})}f_{2}.$$

-Bearing in mind that, we can follow Duoandikoetxea's off-diagonal extrapolation theorem...

We study the extrapolation from (p_1, p_2) to (q_1, q_2) by a two-step consideration: first (p_1, p_2) to (p_1, q_2) and then to (q_1, q_2) . We can actually rewrite $||g||_{L^p(w)} \leq C ||f_1||_{L^{p_1}(w_1)} ||f_2||_{L^{p_2}(w_2)}$ as

 $\|\tilde{g}\|_{L^{p}(w_{2}^{\frac{p}{p_{2}}})} \leq C \|\tilde{f}\|_{L^{p_{2}}(w_{2})}$, where $\tilde{g} = gw_{1}^{\frac{1}{p_{1}}}$ and $\tilde{f} = \|f_{1}\|_{L^{p_{1}}(w_{1})}f_{2}$. Since p_{1} and w_{1} are fixed, we can seek for some characterization of w_{2} when assuming $\vec{w} \in A_{(p_{1},p_{2})}$

bilinear Marcinkiewicz-Zygmund inequalities

Theorem (D. Carando, M. Mazzitelli, S.O., 2016)

Let T be a bilinear Calderón-Zygmund operator. Let $1 < r \le 2$ and let $1 < q_1, q_2 < \infty$ if r = 2 or $1 < q_1, q_2 < r$ if 1 < r < 2. Then for $\vec{w} = (w_1, w_2) \in A_{\vec{q}}$ there holds

$$\left\| \left(\sum_{i,j} |T(f_i, g_j)|^r \right)^{\frac{1}{r}} \right\|_{L^q(w)} \le C \left\| \left(\sum_i |f_i|^r \right)^{\frac{1}{r}} \right\|_{L^{q_1}(w_1)} \left\| \left(\sum_j |g_j|^r \right)^{\frac{1}{r}} \right\|_{L^{q_2}(w_2)}$$

where $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$ and $w = w_1^{\frac{q}{q_1}} w_2^{\frac{q}{q_2}}$.

bilinear Marcinkiewicz-Zygmund inequalities

Theorem (D. Carando, M. Mazzitelli, S.O., 2016)

Let T be a bilinear Calderón-Zygmund operator. Let $1 < r \le 2$ and let $1 < q_1, q_2 < \infty$ if r = 2 or $1 < q_1, q_2 < r$ if 1 < r < 2. Then for $\vec{w} = (w_1, w_2) \in A_{\vec{q}}$ there holds

$$\left\| \left(\sum_{i,j} |T(f_i, g_j)|^r \right)^{\frac{1}{r}} \right\|_{L^q(w)} \le C \left\| \left(\sum_i |f_i|^r \right)^{\frac{1}{r}} \right\|_{L^{q_1}(w_1)} \left\| \left(\sum_j |g_j|^r \right)^{\frac{1}{r}} \right\|_{L^{q_2}(w_2)} \right\|_{L^{q_2}(w_2)}$$
where $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$ and $w = w_1^{\frac{q}{q_1}} w_2^{\frac{q}{q_2}}$.

Now, by using extrapolation we can remove the restriction $q_1, q_2 < r$

bilinear Marcinkiewicz-Zygmund inequalities

Theorem (D. Carando, M. Mazzitelli, S.O., 2016)

Let T be a bilinear Calderón-Zygmund operator. Let $1 < r \le 2$ and let $1 < q_1, q_2 < \infty$ if r = 2 or $1 < q_1, q_2 < r$ if 1 < r < 2. Then for $\vec{w} = (w_1, w_2) \in A_{\vec{q}}$ there holds

$$\left\| \left(\sum_{i,j} |T(f_i, g_j)|^r \right)^{\frac{1}{r}} \right\|_{L^q(w)} \le C \left\| \left(\sum_i |f_i|^r \right)^{\frac{1}{r}} \right\|_{L^{q_1}(w_1)} \left\| \left(\sum_j |g_j|^r \right)^{\frac{1}{r}} \right\|_{L^{q_2}(w_2)}$$

where $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$ and $w = w_1^{\frac{q}{q_1}} w_2^{\frac{q}{q_2}}$.

Now, by using extrapolation we can remove the restriction $q_1, q_2 < r$

Corollary

Let T be bilinear Calderón-Zygmund operator. Given $1 < r \le 2$ and $1 < q_1, q_2 < \infty$, then previous inequality holds for all $\vec{w} = (w_1, w_2) \in A_{\vec{q}}$.

- the results holds in the multilinear case (proofs a little more complicated...)

- the results holds in the multilinear case (proofs a little more complicated...)

-Actually, the results also hold in the context of the classes $A_{\vec{p},\vec{r}}$ (good weights for more singular operators as the bilinear Hilbert transform and commutators of the the bilinear Hilbert transform)

$$BH(f,g)(x) = p.v. \int rac{f(x-t)g(x+t)}{t} dt$$

- the results holds in the multilinear case (proofs a little more complicated...)

-Actually, the results also hold in the context of the classes $A_{\vec{p},\vec{r}}$ (good weights for more singular operators as the bilinear Hilbert transform and commutators of the the bilinear Hilbert transform)

$$BH(f,g)(x) = p.v. \int \frac{f(x-t)g(x+t)}{t} dt$$

-From A. Culiuc, F. Di Plinio and Y. Ou (2016) we can go to the quasi-Banach range and to recover several recent results of Benea-Muscalu.

イロト イヨト イヨト イヨト

æ

al Barcelona por tan buen futbol :) :)...

al Barcelona por tan buen futbol :) :)...

I ∃ ►

al Barcelona por tan buen futbol :) :)... y al Madrid también!!!