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Introduction

Müntz-Szász Theorem

Let {λn}n∈N be a sequence of real numbers such that

0 < λ1 < λ2 < · · · < λn < · · · .

Then, the collection of finite linear combinations of the functions
tλ1 , tλ2 , tλ3 , . . . , i.e., the set

span{1, tλ1 , tλ2 , tλ3 , . . . }

is dense in C [0, 1] if and only if

∞∑
n=1

1

λn
= +∞.
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1. The Weierstrass Approximation Theorem ([CMOR])

Target: To provide a proof of the classical Weierstrass Approximation
Theorem (with the ‖ · ‖∞) on compact sets in the real line.

Theorem (Korovkin, 1953)

Let f0, f1, f2 : [a, b]→ C defined by

f0(t) = 1, f1(t) = t, and f2(t) = t2,

for t ∈ [a, b]. For n ≥ 1, let Pn : C [a, b]→ C [a, b] a linear operator.
Suppose that:

1 Each Pn is positive, i.e., Pnf ≥ 0 if f ≥ 0;

2 for m = 0, 1, 2, it satisfies limn→∞ ‖Pnfm − fm‖∞ = 0.

Then,
lim

n→∞
‖Pnf − f ‖∞ = 0,

where f ∈ C [a, b].
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Proof.
It is enough to prove the result for real-valued functions, otherwise, one
can write f = <f + i=f .

Let f ∈ C [a, b] a real-valued function and α > 0 such that ‖f ‖∞ ≤ α.
Let t, s ∈ [a, b], then,

− 2α ≤ f (t)− f (s) ≤ 2α. (1)

Fixed ε > 0. Note that f is uniformly continuous on [a, b]. Hence there
exists δ(ε) > 0 such that if t, s ∈ [a, b] with |t − s| < δ, then

− ε ≤ f (t)− f (s) ≤ ε. (2)

Fixed s ∈ [a, b], define gs(t) = (t − s)2. If t, s ∈ [a, b] and |t − s| ≥ δ,
then gs(t) ≥ δ2. Now, combining (1) y (2),

−ε− 2α
gs(t)

δ2
≤ f (t)− f (s) ≤ ε+ 2α

gs(t)

δ2
,

for every t, s ∈ [a, b].
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Since Pn is linear and positive,

−εPnf0 − 2α
Pngs
δ2
≤ Pnf − f (s)Pnf0 ≤ εPnf0 + 2α

Pngs
δ2

.

By hypothesis, Pnf0(s)→ 1 uniformly in s ∈ [a, b]. Moreover,
Pngs(s)→ 0 uniformly on [a, b]. Indeed,

gs = f2 − 2sf1 + s2f0

and

lim
n→∞

Pngs(s) = lim
n→∞

Pnf2(s)− 2sPnf1(s) + s2Pnf0(s)

= s2 − 2ss + s21 = 0

uniformly. Therefore,
Pnf (s) −→ f (s)

uniformly in s ∈ [a, b], as we desired.
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The Korovkin Theorem is the key for the proof of Weierstrass Theorem.

Theorem (Weierstrass, 1885)

The set of all polynomials is dense in (C [a, b], ‖ · ‖∞).

Proof.
Firstly, due to the change of variable t 7→ a + t(b − a), one can suppose,
without loss of generality, that [a, b] = [0, 1]. Consider, for n ≥ 1, the
operator

Bn : C [0, 1] −→ C [0, 1]

f 7−→ Bnf (t) =
n∑

k=0

f (k/n)

(
n

k

)
tk(1− t)n−k .

Such Bnf is called the n−th Berstein’s polynomial associated to f .
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The result is proved if the sequence {Bn}n≥1 verifies the hypothesis of
the Korovkin Theorem.

It is clear that Bn is linear and positive. Moreover, we have

Bnf0 = f0,

Bnf1 = f1,

Bnf2 =

(
1− 1

n

)
f2 +

1

n
f1,

(3)

for n ≥ 1, that implies

lim
n→∞

‖Bnfm − fm‖∞ = 0,

for m = 0, 1, 2. Finally, we need to proof the truthfulness of (3).
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2. Müntz-Szász Theorem ([EMMS, R])

Let {λn}n∈N be a strictly increasing sequence of positive numbers. Then,
the collection of finite linear combinations of functions 1, tλ1 , tλ2 , tλ3 , ...,
that is span{1, tλ1 , tλ2 , tλ3 , ...}, is dense in C [0, 1] if and only if

∞∑
n=1

1

λn
= +∞.

Theorem
Let 0 < λ1 < λ2 < λ3 < ... and

X = span{1, tλ1 , tλ2 , tλ3 , ...}

a) If
∞∑
n=1

1/λn = +∞, then X = C [0, 1].

b) If
∞∑
n=1

1/λn < +∞ and λ /∈ {λn}, λ 6= 0, then tλ /∈ X .
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Proposition

If
∞∑
n=1

1/λn =∞, µ is a Borel complex measure on [0, 1] and T is the

bounded linear functional on C [0, 1]∗ ∼= M[0, 1] associated to µ such that

T (tλn) =

∫ 1

0

tλndµ(t) = 0, n = 1, 2, 3, ... (4)

then

T (tk) =

∫ 1

0

tkdµ(t) = 0, k = 1, 2, 3, ... (5)

Proof.
Since the integrand in (4) and (5) cancels on t = 0, we can assume that
µ concentrates on (0, 1].
Let’s consider the function

f (z) =

∫ 1

0

tzdµ(t) =

∫ 1

0

ez log tdµ(t).
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It is well defined on the right complex semiplane H0:

|f (z)| ≤
∫ 1

0

|ez log t |d |µ|(t) =

∫ 1

0

t<(z)d |µ|(t) ≤ ||µ|| < +∞. (6)

In addition we have

f (z)− f (z0) =

∫ 1

0

(tz − tz0 )dµ(t)

⇒ |f (z)− f (z0)| ≤
∫ 1

0

|tz − tz0 |d |µ|(t)

Then fixed ε > 0, since tz is continuous on [0, 1]×H0 (uniformly on t,
because [0, 1] is compact) exists δ(ε) > 0 such that if |z − z0| < δ, then
|tz − tz0 | < ε,∀t ∈ [0, 1]. Thus,

|f (z)− f (z0)| ≤ ε
∫ 1

0

d |µ|(t) = ε||µ||

which proves the continuity of f .
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Let γ a C 1 closed path on H0. Then, by Fubini Theorem and since
z 7→ tz is holomorphic by Cauchy Theorem we have∮

γ
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∫ 1
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∮
γ
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Then, by Morera Theorem we conclude that f is holomorphic on H0.

On the other hand, on (6) we have proved that f is bounded on H0.

Let’s consider now the composition of f with a Möbius transformation of
the disc onto the right semiplane

g(z) = f

(
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1− z

)
, z ∈ D.

Notice that g ∈ H∞, this is,

g ∈ H(D),

g is bounded on D, because f is bounded.

By hypothesis (4) we have f (λn) = T (tλn) = 0, n = 1, 2, ..., therefore

g(αn) = 0, where αn =
λn − 1

λn + 1
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Theorem ([R, Theorem 15.23])

If f ∈ H∞ and α1, α2, ... are the zeros of f in D and if

∞∑
n=1

1− |αn| = +∞

then f (z) = 0 for all z ∈ D.

We deduce that g(z) = 0, ∀z ∈ D. In particular,

T (tk) =

∫ 1

0

tkdµ(t) = f (k) = g

(
k − 1

k + 1

)
= 0, k = 1, 2, ...



Proof.
Let’s proof a):
By Weierstrass Approximation Theorem it is enough to see that X
contains all the functions tk , with k = 1, 2, 3, ....

Suppose that ∃ k0 ∈ N such that tk0 /∈ X . By Hahn-Banach Theorem
exists a bounded linear functional T : C [0, 1] −→ R such that

T (tk0 ) 6= 0 and T |span{1,tλ1 ,tλ2 ,...} ≡ 0.

Riesz Representation Theorem

The space of Borel regular complex measures, M(I ), is the dual space of
C (I ) via

M(I ) −→ C (I )∗

µ 7−→
(
ϕ 7→< ϕ, µ >=

∫ 1

0

ϕdµ

)
= 〈·, µ〉.
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Since T verifies the hypothesis of Riesz Representation Theorem, exists a
Borel complex measure µ such that

T (ϕ) =

∫ 1

0

ϕ(t)dµ(t), ϕ ∈ C [0, 1],

satisfying in addition

1 T (tk0 ) =

∫ 1

0

tk0dµ(t) 6= 0;

2 T (tλn) =

∫ 1

0

tλndµ(t) = 0, n = 1, 2, ....

By the previous proposition we have that T (tk0 ) = 0 and T (tk0 ) 6= 0.

Thus tk ∈ X for all k ∈ N. This completes the proof of a).
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Let’s prove b). We assume

∞∑
n=1

1

λn
<∞.

Our goal is to construct a functional T = 〈·, µ〉 ∈ C [0, 1]∗ such that
T (tλn) = 0 for all n ∈ N0 (λ0 = 0) that does not vanish on tλ for each
positive λ with λ /∈ {λn}n∈N0 .

We are looking for a Borel complex measure µ in [0, 1] such that∫ 1

0

tzdµ(t)

define a bounded holomorphic function f on
H−1 := {z ∈ D : <(z) > −1} with zeros at {λn}.
We choose

f (z) =
z

(2 + z)3

∞∏
n=1

λn − z

2 + λn + z
, z ∈ C \ {−2− λn}n∈N.
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2 + λn + z
, z ∈ C \ {−2− λn}n∈N.



Now we prove that f is a meromorphic function on C with poles at
{−2− λn}. It is enough to check that

∞∑
n=1

∣∣∣∣1− λn − z

2 + λn + z

∣∣∣∣ (7)

converges uniformly on every compact subset K on C \ {−2− λn}n∈N.

Fix K compact set. There exists α > 0 such that

K ⊂ H−α = {z ∈ C : <(z) > −α}. As
∞∑
n=1

1

λn
is a convergent series of

positive terms, it is easy to see that there exists CK > 0 and N ∈ N such
that for all n > N ∣∣∣∣ 2z + 2

2 + λn + z

∣∣∣∣ ≤ CK

2 + λn − α
.

Hence, using the Weierstrass criterion and the convergence of the series
∞∑
n=1

1

λn
it follows the uniform convergence of (7) on K .
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We claim that f is bounded on H−1. We observe all terms in the infinite
product and the factor z

2+z are on D, because they are a Möbius
transform from H−1 onto the disk. Moreover,

1

|2 + z |2
≤ 1, ∀z ∈ H−1,

what proves our claim.

Using the previous bound we deduce that f ∈ L1({z ∈ C : <(z) = −1}),
since ∫

R
|f (−1 + it)|dt ≤

∫
R

dt

1 + t2
= π.
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|f (−1 + it)|dt ≤

∫
R

dt

1 + t2
= π.



Our next step is to represent f using Cauchy Theorem. Given z0 ∈ H−1,
we will have

f (z0) =

∫
C

f (z)

z − z0
dz ,

where C is the semicircumference with center −1 and radium
R > 1 + |z |, with extreme points −1− iR, −1 + R and closed by the
segment that links these points, as we can see in the figure.



If we parameterize the curve, we get

f (z0) =
1

2π

∫ R

−R

f (−1 + is)

1− is + z0
ds +

1

2π

∫ π/2

−π/2

f (−1 + Re iθ)

−1 + Re iθ − z0
Re iθdθ.

It is easy to see using |f (z)| ≤
∣∣∣ z

2+z3

∣∣∣ that if R →∞, the second term

on the sum goes to 0. Therefore, we obtain the following expresion for f :

f (z0) =
1

2π

∫
R

f (−1 + is)

1− is + z0
ds

for all z0 ∈ H−1.
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Due to the identity

1

z − is + 1
=

∫ 1

0

tz−isdt =

∫ 1

0

tze−is log tdt

and Fubini Theorem, we can write for each z ∈ H−1

f (z) =

∫ 1

0

tz
[

1

2π

∫
R
f (−1 + is)e−is log tds

]
dt. (8)

Now, if we define g(s) = f (−1 + is), it is clear that the inner integral at
(8) is ĝ(log t), where ĝ represents the Fourier transform of g .
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Finally, since ĝ is a Fourier transform of an integrable function, it follows
that is a bounded, continuous function on (0, 1]. Then, setting

dµ =
1

2π
ĝ(log t)dt

we obtain a Borel complex measure which represents f in the desired way:

f (z) =

∫ 1

0

tzdµ(t).

Thus, we get a functional T = 〈·, µ〉 that vanishes on
span{1, tλ1 , tλ2 , · · · }, but does not vanish on tλ (λ /∈ {λn}) due to our
election of f . Hence, we deduce that tλ /∈ X = span{1, tλ1 , tλ2 , · · · }, and
it finishes the proof.
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3. The Full Müntz Theorem in L2[0, 1], C [0, 1] and L1[0, 1]
([BE])

Full Müntz Theorem in L2[0, 1]

Let {λi}∞i=0 be a sequence of distinct real numbers greater than − 1
2 .

Then, the set
span

{
tλi : i ∈ N

}
is dense in L2[0, 1] if and only if

∞∑
i=0

2λi + 1

(2λi + 1)2 + 1
= +∞.



Proof.
Let m be a positive integer number different of any λi . We consider the
best approximation in L2[0, 1] of tm by elements of

span{tλ0 , tλ1 , . . . , tλn}.

It is well known that [R]:

min
bi∈C

∥∥∥∥∥tm −
∞∑
i=0

bi t
λi

∥∥∥∥∥
L2[0,1]

=
1√

2m + 1

n∏
i=0

∣∣∣∣ m − λi
m + λi + 1

∣∣∣∣ .
Then

tm ∈ span
{
tλi : i ∈ N

}
⇔ lim sup

n→∞

n∏
i=0

∣∣∣∣ m − λi
m + λi + 1

∣∣∣∣ = 0. (9)
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So, condition (9) is equivalent to:

lim sup
n→∞
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i=0,λi<m

(
1− 2λi + 1

m + λi + 1

)
= 0,

or

lim sup
n→∞

n∏
i=0,λi>m

(
1− 2m + 1

m + λi + 1

)
= 0.

And that holds if and only if:
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(
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, m ∈ N,

and by the Weierstrass Approximation Theorem the proof is finished.
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The Full Müntz Theorem in C [0, 1]

Let {λn}∞n=1 be a sequence of distinct, positive real numbers. Then

span{1, tλ1 , tλ2 , . . . },

is dense in C [0, 1] if and only if

∞∑
n=1

λn
λ2
n + 1

= +∞.



Proof.
We subdivide the proof in different cases, depending on how the
sequence {λn} behaves:

CASE I: inf λn > 0

CASE II: lim
n→+∞

λn = 0.

CASE III: {λn} = {αn} ∪ {βn}, with αn → 0 and βn →∞.

CASE IV: {λn} has a cluster point in (0,∞).
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so we have that
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is dense in C [0, 1] by the same argument of case inf λn > 0.
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⇐= Let’s suppose now that
∑∞

n=1 λn < +∞ and we show
span{1, tλ1 , tλ2 , · · · } is not dense in C [0, 1].

We need the following inequality:

Newman’s inequality

The inequality

||tp′(t)||∞ ≤ 11

(
n∑

i=1

λi

)
||p||∞

holds for every p ∈ span{1, tλ1 , · · · , tλn}.
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Then, if η =
∑∞

n=1 λn < +∞, we have that

||tp′(t)||∞ ≤ 11η||p||∞ (10)

for every p ∈ span{1, tλ1 , tλ2 , · · · }.

But if (10) holds, span{1, tλ1 , tλ2 , · · · } is not dense in C [0, 1].
Let us suppose that it is dense. If we set f (t) =

√
1− t, for every m ∈ N

there exists p ∈ span{1, tλ1 , tλ2 , · · · } such that ||p − f ||∞ < 1/m2.
It follows from this fact and Mean Value Theorem that

||tp′(t)||∞ ≥
m − 2

2

and this clearly contradicts (10) (this counterexample is shown in [A]).
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Theorem: Existence of Chebyshev Polynomials.

Let A be a compact subset of [0,∞) containing at least n + 1 points.
Then there exists a unique (extended) Chebyshev polynomial

Tn := Tn{λ0, λ1, . . . , λn;A},

for span{tλ0 , . . . , tλn} on A defined by

Tn(t) = c

(
tλn −

n−1∑
i=0

ai t
λi

)
,

where the numbers a0, a1, . . . , an−1 ∈ R are chosen to minimize∣∣∣∣∣
∣∣∣∣∣tλn −

n−1∑
i=0

ai t
λi

∣∣∣∣∣
∣∣∣∣∣
∞

,

and where c ∈ R is a normalization constant chosen so that ||Tn||∞ = 1,
and the sign of c is determined by Tn(maxA) > 0.



Theorem: Alternation Characterization.
The Chebyshev polynomial

Tn := Tn{λ0, λ1, . . . , λn;A} ∈ span{tλ0 , . . . , tλn},

is uniquely characterized by the existence of an alternation set

{t0 < t1 < · · · < tn} ⊂ A

for which

Tn(tj) = (−1)n−j = (−1)n−j ||Tn||∞, j = 0, 1, . . . , n.



Theorem [BE, Theorem 3.4]

Suppose {λi}∞i=1 is a sequence of nonnegative real numbers satisfying
λ0 = 0, λi ≥ 1 for i = 1, 2, . . . , and

∞∑
i=1

1

λi
< +∞.

Let ε ∈ (0, 1). Then there exists a constant c depending only on {λi}∞i=1

and ε so that
||p′||[0,1−ε] ≤ c ||p||[0,1]

for every p ∈ span{tλ0 , tλ1 , . . . }.



CASE III: {λi : i ∈ N} = {αi : i ∈ N} ∪ {βi : i ∈ N} with

lim
i→∞

αi = 0 and lim
i→∞

βi = +∞.

Note that
∑∞

i=1
λi

λ2
i +1

=∞ is equivalent to

∞∑
i=1

αi +
∞∑
i=1

1

βi
= +∞. (11)

⇐= If (11) holds, then the already examined cases yield the denseness
of span{1, tλ1 , tλ2 , . . . } in C [0, 1].
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=⇒ If (11) does not hold, then

∞∑
i=1

αi <∞ and
∞∑
i=1

1

βi
<∞.

Let
Tn,α := Tn{1, tα1 , . . . , tαn : [0, 1]},

Tn,β := Tn{1, tβ1 , . . . , tβn : [0, 1]},

T2n,α,β := Tn{1, tα1 , . . . , tαn , tβ1 , . . . , tβn : [0, 1]}.
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Newman’s inequality and the Mean Value Theorem imply that for
each ε > 0 exists a k1(ε) ∈ N depending only on {αi}∞i=1 and ε such that
Tn,α has at most k1(ε) zeros in [ε, 1) and at least n−k1(ε) zeros in (0, ε).

[BE, Theorem 3.4] and the Mean Value Theorem imply that for every
ε > 0 exists a k2(ε) ∈ N depending only on {βi}∞i=1 and ε such that Tn,β

has at most k2(ε) zeros in (0, 1− ε] and at least n − k2(ε) zeros in
(1− ε, 1).

Now, counting the zeros of Tn,α − T2n,α,β and Tn,β − T2n,α,β , we can
deduce that for every ε > 0 exists k(ε) ∈ N depending only on {λi}∞i=1

and ε, such that T2n,α,β has at most k(ε) zeros in [ε, 1− ε].
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Let ε := 1
4 and k := k( 1

4 ).

Pick k + 4 points

1

4
< η0 < η1 < · · · < ηk+3 <

3

4
,

and a function f ∈ C [0, 1] so that f (t) = 0 for all t ∈
[
0, 1

4

]
∪
[

3
4 , 1
]
,

while
f (ηi ) := 2(̇− 1)i , i = 0, 1, . . . , k + 3.

Assume that there exists a p ∈ span{1, tλ1 , tλ2 , . . . } so that

||f − p||[0,1] < 1.

Then p − T2n,α,β has at least 2n + 1 zeros in (0, 1).
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However for sufficiently large n,

p − T2n,α,β ∈ span{1, tλ1 , . . . , tλ2n},

which can have at most 2n zeros in [0, 1].This contradiction shows that

span{1, tλ1 , tλ2 , . . . },

is not dense in C [0, 1].
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CASE IV: Assume that {λn} has a cluster point in (0,∞).

Then there exists a subsequence {λnk} such that inf
k∈N

λnk > 0, and it

follows from case II.



CASE IV: Assume that {λn} has a cluster point in (0,∞).
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k∈N

λnk > 0, and it

follows from case II.



Full Müntz Theorem in L1[0, 1]

Suppose {λi}∞i=0 is a sequence of distinct real numbers greater than −1.
Then

span
{
tλi : i ∈ N ∪ {0}

}
,

is dense in L1[0, 1] if and only if

∞∑
i=0

λi + 1

(λi + 1)2 + 1
= +∞.



Proof.

=⇒ Assume that

span
{
tλi : i ∈ N ∪ {0}

}
,

is dense in L1[0, 1].

Let m ∈ Z+ be fixed. Let ε > 0. Choose a

p ∈ span{tλ0 , tλ1 , . . . },

such that
||tm − p||∞ < ε.
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Let m ∈ Z+ be fixed. Let ε > 0. Choose a
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such that
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Now let define

q(t) :=

∫ t

0

p(s)ds ∈ span{tλ0+1, tλ1+1, . . . }.

Then ∣∣∣∣∣∣∣∣ tm+1

m + 1
− q

∣∣∣∣∣∣∣∣
∞
< ε.

So the Weierstrass Approximation Theorem yields that

span{1, tλ0+1, tλ0+1, . . . },

is dense in C [0, 1]. Using the Full Müntz Theorem in C [0, 1],

∞∑
i=0

λi + 1

(λi + 1)2 + 1
= +∞.
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′′ ⇐=′′ Assume that

∞∑
i=0

λi + 1

(λi + 1)2 + 1
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Hence Blaschke’s Theorem ([R, Theorem 15.23]) yields that g = 0 on the
open unit disk.

Therefore f (z) = 0 whenever <(z) > −1, so
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for every u ∈ C [0, 1]. which contradicts the fact that h 6= 0.
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4. The Full Müntz Theorem in Lp[0, 1] ([0])

The Full Müntz Theorem in Lp[0, 1]

Let 1 < p <∞ and {λi}∞i=0 be a sequence of distinct real numbers
greater than −1/p. Then, the collection of finite linear combinations of
functions {tλ0 , tλ1 , tλ2 , . . . } is dense in Lp[0, 1] if and only if

∞∑
n=0

λi + 1/p

(λi + 1/p)2 + 1
= +∞. (12)

To prove this theorem we will use the following lemma:

Lemma

Suppose {µi}∞i=0 is a sequence of distinct positive real numbers such that
span{tµi−1/r}∞i=0 is dense in Lr [0, 1]. Then, span{tµi−1/s}∞i=0 is dense in
Ls [0, 1] for every s > r and span{1, tµ0 , tµ1 , . . . } is dense in C [0, 1].
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The Full Müntz Theorem in Lp[0, 1]

Let 1 < p <∞ and {λi}∞i=0 be a sequence of distinct real numbers
greater than −1/p. Then, the collection of finite linear combinations of
functions {tλ0 , tλ1 , tλ2 , . . . } is dense in Lp[0, 1] if and only if

∞∑
n=0

λi + 1/p

(λi + 1/p)2 + 1
= +∞. (12)

To prove this theorem we will use the following lemma:

Lemma

Suppose {µi}∞i=0 is a sequence of distinct positive real numbers such that
span{tµi−1/r}∞i=0 is dense in Lr [0, 1]. Then, span{tµi−1/s}∞i=0 is dense in
Ls [0, 1] for every s > r and span{1, tµ0 , tµ1 , . . . } is dense in C [0, 1].



Proof.
Let X = Lr [0, 1], Y = Ls [0, 1], A = span{tµi−1/r}∞i=0.

For the first part, we consider the operator J : Lr [0, 1]→ Ls [0, 1] defined
by:

(Jϕ)(t) = t−(1/r ′+1/s)

∫ t

0

ϕ(s)ds, (t ∈ [0, 1], ϕ ∈ Lr [0, 1])

where 1
r + 1

r ′ = 1.
We have for every n ∈ N that:

(Jψn)(t) = tn, ψn(t) = (n + 1/r ′ + 1/s)tn+1/s−1/r ,

then, by the Weierstrass Approximation Theorem, J(X ) is dense in Y
and consequently, J(A) = span{tµi−1/s}∞i=0 is dense in Lr [0, 1].
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For the second part, we consider the operator J : Lr [0, 1]→ Ls [0, 1]
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Proof of the Theorem.
Firstly, let {λi}∞i=0 be a sequence of distinct real numbers greater than
−1/p satisfying (12).

We consider {vi = λi − 1/p′}∞i=0, where 1
p + 1

p′ = 1, is a sequence of real
numbers greater than −1 and satisfying:

∞∑
i=0

vi + 1

(vi + 1)2 + 1
.

By the Full Müntz Theorem in L1[0, 1], the set

span{tvi}∞i=0 = span{tλi−1/p′
}∞i=0

is dense in L1[0, 1]. Choosing µi = λi + 1/p and applying the lemma we
will have that

span{tµi−1/p}∞i=0 = span{tλi}∞i=0

is dense in Lp[0, 1] for p > 1.
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By the Full Müntz Theorem in L1[0, 1], the set

span{tvi}∞i=0 = span{tλi−1/p′
}∞i=0

is dense in L1[0, 1]. Choosing µi = λi + 1/p and applying the lemma we
will have that

span{tµi−1/p}∞i=0 = span{tλi}∞i=0

is dense in Lp[0, 1] for p > 1.



Proof of the Theorem.
Firstly, let {λi}∞i=0 be a sequence of distinct real numbers greater than
−1/p satisfying (12).
We consider {vi = λi − 1/p′}∞i=0, where 1

p + 1
p′ = 1, is a sequence of real

numbers greater than −1 and satisfying:

∞∑
i=0

vi + 1

(vi + 1)2 + 1
.
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5. An application of the Müntz-Szász Theorem ([LLPZ])

Definition
We define the finite continuous Cesàro operator C1 on the complex
Banach space Lp[0, 1] for 1 < p <∞ by the expression:

(C1f )(t) :=
1

t

∫ t

0

f (s) ds (t ∈ [0, 1], f ∈ Lp[0, 1]).

Definition
Let T be an operator on a complex Banach space X .

The point spectrum of T is the set of those λ ∈ C for which there
exists a nonzero vector x ∈ X such that Tx = λx .

We say that T has rich point spectrum provided that int σp(T ) 6= ∅,
and that for every open disc D ⊂ σp(T ), the family of eigenvectors⋃

z∈D

ker(T − z)

is a total set.
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Lemma
Let T be a bounded linear operator on a complex Banach space X and
let us suppose that there is an analytic mapping h : int σp(T )→ X
verifying:

(i) h(z) ∈ ker(T − z)\{0} for all z ∈ int σp(T ),

(ii) {h(z) : z ∈ int σp(T )} is a total subset of X .

Then T has rich point spectrum.

Using this we will prove the following result:

Theorem

The finite continuous Cesàro operator C1 on Lp[0, 1] has rich point
spectrum.
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Proof.
It is known that σp(C1) = D(p′/2, p′/2), where 1

p + 1
p′ = 1. Moreover,

each z ∈ D(p′/2, p′/2) is a simple eigenvalue of C1 and a corresponding
eigenfunction is given by hz(t) = t(1−z)/z ,∀t ∈ [0, 1].

So h(·) : σp(C1)→ Lp[0, 1] is analytic and hz ∈ ker(C1 − z)\{0}. It
suffices to consider the sequence {zi} defined by:

zi =
i + 1

i + 2
p′, ∀ i ∈ N ∪ {0}.

We have that the sequence λi = (1− zi )/zi is greater than −1/p and
satisfies condition (12) and therefore span{tλi}∞i=0 is dense in Lp[0, 1]
and, consequently,

{hz : z ∈ D(p′/2, p′/2)}

is total in Lp[0, 1]. The result now follows from the previous lemma.
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