The Müntz-Szász Theorem and some extensions

Diego Bolón, Carlos Constantino, Clara Corbalán, Francisco Javier González, Daniel Nieves, Alicia Quero

Workshop 2. Directed by Pedro J. Miana (UZ)

March 8, 2018

Introduction

Müntz-Szász Theorem

Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers such that

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$$

Then, the collection of finite linear combinations of the functions $t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, \ldots$, i.e., the set

$$\mathsf{span}\{1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, \dots\}$$

is dense in C[0,1] if and only if

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = +\infty.$$

Introduction

(a) Herman Müntz (1884-1956) (b) Otto Szász (1884-1952)

- 1. The Weierstrass Approximation Theorem ([CMOR])
- 2. Müntz-Szász Theorem ([EMMS, R])
- 3. The Full Müntz Theorem in $L^2[0,1]$, C[0,1] and $L^1[0,1]$ ([BE])
- 4. The Full Müntz Theorem in $L^{p}[0,1]$ ([0])
- 5. An application of the Müntz-Szász Theorem ([LLPZ])

Bibliography

1. The Weierstrass Approximation Theorem ([CMOR])

Target: To provide a proof of the classical Weierstrass Approximation Theorem (with the $\|\cdot\|_{\infty}$) on compact sets in the real line.

1. The Weierstrass Approximation Theorem ([CMOR])

Target: To provide a proof of the classical Weierstrass Approximation Theorem (with the $\|\cdot\|_{\infty}$) on compact sets in the real line.

Theorem (Korovkin, 1953)

Let $f_0, f_1, f_2 \colon [a, b] \to \mathbb{C}$ defined by

$$f_0(t) = 1, \quad f_1(t) = t, \quad \text{and} \quad f_2(t) = t^2,$$

for $t \in [a, b]$. For $n \ge 1$, let P_n : $C[a, b] \rightarrow C[a, b]$ a linear operator. Suppose that:

• Each P_n is positive, i.e., $P_n f \ge 0$ if $f \ge 0$;

③ for m = 0, 1, 2, it satisfies $\lim_{n \to \infty} \|P_n f_m - f_m\|_{\infty} = 0$.

Then,

$$\lim_{n\to\infty}\|P_nf-f\|_{\infty}=0,$$

where $f \in C[a, b]$.

It is enough to prove the result for real-valued functions, otherwise, one can write $f = \Re f + i\Im f$.

It is enough to prove the result for real-valued functions, otherwise, one can write $f = \Re f + i\Im f$.

Let $f \in C[a, b]$ a real-valued function and $\alpha > 0$ such that $||f||_{\infty} \le \alpha$. Let $t, s \in [a, b]$, then,

$$-2\alpha \le f(t) - f(s) \le 2\alpha. \tag{1}$$

It is enough to prove the result for real-valued functions, otherwise, one can write $f = \Re f + i\Im f$.

Let $f \in C[a, b]$ a real-valued function and $\alpha > 0$ such that $||f||_{\infty} \le \alpha$. Let $t, s \in [a, b]$, then,

$$-2\alpha \le f(t) - f(s) \le 2\alpha. \tag{1}$$

Fixed $\varepsilon > 0$. Note that f is uniformly continuous on [a, b]. Hence there exists $\delta(\varepsilon) > 0$ such that if $t, s \in [a, b]$ with $|t - s| < \delta$, then

$$-\varepsilon \leq f(t) - f(s) \leq \varepsilon.$$
 (2)

It is enough to prove the result for real-valued functions, otherwise, one can write $f = \Re f + i\Im f$.

Let $f \in C[a, b]$ a real-valued function and $\alpha > 0$ such that $||f||_{\infty} \le \alpha$. Let $t, s \in [a, b]$, then,

$$-2\alpha \le f(t) - f(s) \le 2\alpha. \tag{1}$$

Fixed $\varepsilon > 0$. Note that f is uniformly continuous on [a, b]. Hence there exists $\delta(\varepsilon) > 0$ such that if $t, s \in [a, b]$ with $|t - s| < \delta$, then

$$-\varepsilon \leq f(t) - f(s) \leq \varepsilon.$$
 (2)

Fixed $s \in [a, b]$, define $g_s(t) = (t - s)^2$. If $t, s \in [a, b]$ and $|t - s| \ge \delta$, then $g_s(t) \ge \delta^2$.

It is enough to prove the result for real-valued functions, otherwise, one can write $f = \Re f + i\Im f$.

Let $f \in C[a, b]$ a real-valued function and $\alpha > 0$ such that $||f||_{\infty} \le \alpha$. Let $t, s \in [a, b]$, then,

$$-2\alpha \le f(t) - f(s) \le 2\alpha. \tag{1}$$

Fixed $\varepsilon > 0$. Note that f is uniformly continuous on [a, b]. Hence there exists $\delta(\varepsilon) > 0$ such that if $t, s \in [a, b]$ with $|t - s| < \delta$, then

$$-\varepsilon \leq f(t) - f(s) \leq \varepsilon.$$
 (2)

Fixed $s \in [a, b]$, define $g_s(t) = (t - s)^2$. If $t, s \in [a, b]$ and $|t - s| \ge \delta$, then $g_s(t) \ge \delta^2$. Now, combining (1) y (2),

$$-\varepsilon - 2lpha rac{\mathsf{g}_{\mathsf{s}}(t)}{\delta^2} \leq f(t) - f(\mathsf{s}) \leq \varepsilon + 2lpha rac{\mathsf{g}_{\mathsf{s}}(t)}{\delta^2},$$

for every $t, s \in [a, b]$.

$$-\varepsilon P_n f_0 - 2\alpha \frac{P_n g_s}{\delta^2} \le P_n f - f(s) P_n f_0 \le \varepsilon P_n f_0 + 2\alpha \frac{P_n g_s}{\delta^2}.$$

$$-\varepsilon P_n f_0 - 2\alpha \frac{P_n g_s}{\delta^2} \le P_n f - f(s) P_n f_0 \le \varepsilon P_n f_0 + 2\alpha \frac{P_n g_s}{\delta^2}$$

By hypothesis, $P_n f_0(s) \rightarrow 1$ uniformly in $s \in [a, b]$. Moreover, $P_n g_s(s) \rightarrow 0$ uniformly on [a, b].

$$-\varepsilon P_n f_0 - 2\alpha \frac{P_n g_s}{\delta^2} \leq P_n f - f(s) P_n f_0 \leq \varepsilon P_n f_0 + 2\alpha \frac{P_n g_s}{\delta^2}.$$

By hypothesis, $P_n f_0(s) \rightarrow 1$ uniformly in $s \in [a, b]$. Moreover, $P_n g_s(s) \rightarrow 0$ uniformly on [a, b]. Indeed,

$$g_s = f_2 - 2sf_1 + s^2 f_0$$

and

$$\lim_{n \to \infty} P_n g_s(s) = \lim_{n \to \infty} P_n f_2(s) - 2s P_n f_1(s) + s^2 P_n f_0(s)$$
$$= s^2 - 2ss + s^2 1 = 0$$

uniformly.

$$-\varepsilon P_n f_0 - 2\alpha \frac{P_n g_s}{\delta^2} \le P_n f - f(s) P_n f_0 \le \varepsilon P_n f_0 + 2\alpha \frac{P_n g_s}{\delta^2}$$

By hypothesis, $P_n f_0(s) \rightarrow 1$ uniformly in $s \in [a, b]$. Moreover, $P_n g_s(s) \rightarrow 0$ uniformly on [a, b]. Indeed,

$$g_s = f_2 - 2sf_1 + s^2 f_0$$

and

$$\lim_{n \to \infty} P_n g_s(s) = \lim_{n \to \infty} P_n f_2(s) - 2sP_n f_1(s) + s^2 P_n f_0(s)$$
$$= s^2 - 2ss + s^2 1 = 0$$

uniformly. Therefore,

$$P_n f(s) \longrightarrow f(s)$$

uniformly in $s \in [a, b]$, as we desired.

Theorem (Weierstrass, 1885)

The set of all polynomials is dense in $(C[a, b], \|\cdot\|_{\infty})$.

Theorem (Weierstrass, 1885)

The set of all polynomials is dense in $(C[a, b], \|\cdot\|_{\infty})$.

Proof.

Firstly, due to the change of variable $t \mapsto a + t(b - a)$, one can suppose, without loss of generality, that [a, b] = [0, 1].

Theorem (Weierstrass, 1885)

The set of all polynomials is dense in $(C[a, b], \|\cdot\|_{\infty})$.

Proof.

Firstly, due to the change of variable $t \mapsto a + t(b - a)$, one can suppose, without loss of generality, that [a, b] = [0, 1]. Consider, for $n \ge 1$, the operator

$$B_n: C[0,1] \longrightarrow C[0,1]$$

$$f \longmapsto B_n f(t) = \sum_{k=0}^n f(k/n) \binom{n}{k} t^k (1-t)^{n-k}.$$

Theorem (Weierstrass, 1885)

The set of all polynomials is dense in $(C[a, b], \|\cdot\|_{\infty})$.

Proof.

Firstly, due to the change of variable $t \mapsto a + t(b - a)$, one can suppose, without loss of generality, that [a, b] = [0, 1]. Consider, for $n \ge 1$, the operator

$$B_n: C[0,1] \longrightarrow C[0,1]$$

$$f \longmapsto B_n f(t) = \sum_{k=0}^n f(k/n) \binom{n}{k} t^k (1-t)^{n-k}$$

Such $B_n f$ is called the *n*-th Berstein's polynomial associated to *f*.

It is clear that B_n is linear and positive.

It is clear that B_n is linear and positive. Moreover, we have

$$B_{n}f_{0} = f_{0},$$

$$B_{n}f_{1} = f_{1},$$

$$B_{n}f_{2} = \left(1 - \frac{1}{n}\right)f_{2} + \frac{1}{n}f_{1},$$
(3)

for $n \ge 1$, that implies

$$\lim_{n\to\infty}\|B_nf_m-f_m\|_{\infty}=0,$$

for m = 0, 1, 2.

It is clear that B_n is linear and positive. Moreover, we have

$$B_{n}f_{0} = f_{0},$$

$$B_{n}f_{1} = f_{1},$$

$$B_{n}f_{2} = \left(1 - \frac{1}{n}\right)f_{2} + \frac{1}{n}f_{1},$$
(3)

for $n \ge 1$, that implies

$$\lim_{n\to\infty}\|B_nf_m-f_m\|_{\infty}=0,$$

for m = 0, 1, 2. Finally, we need to proof the truthfulness of (3).

If $t \in [0,1]$, then,

$$B_n f_0(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} = (t+1-t)^n = 1,$$

If $t \in [0,1]$, then,

$$B_n f_0(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} = (t+1-t)^n = 1,$$

$$B_n f_1(t) = \sum_{k=0}^n \frac{k}{n} \binom{n}{k} t^k (1-t)^{n-k} = \sum_{k=1}^n \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \sum_{k=0}^{n-1} \binom{n-1}{k} t^{k+1} (1-t)^{(n-1)-k} = t,$$

If $t \in [0,1]$, then,

$$B_n f_0(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} = (t+1-t)^n = 1,$$

$$B_n f_1(t) = \sum_{k=0}^n \frac{k}{n} \binom{n}{k} t^k (1-t)^{n-k} = \sum_{k=1}^n \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \sum_{k=0}^{n-1} \binom{n-1}{k} t^{k+1} (1-t)^{(n-1)-k} = t,$$

 and

$$B_n f_2(t) = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 \binom{n}{k} t^k (1-t)^{n-k} = \sum_{k=1}^n \frac{k}{n} \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \sum_{k=1}^n \left[\frac{(n-1)(k-1)}{n(n-1)} + \frac{1}{n}\right] \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \left(1 - \frac{1}{n}\right) t^2 + \frac{1}{n} t = \left(1 - \frac{1}{n}\right) f_2(t) + \frac{1}{n} f_1(t).$$

If $t \in [0, 1]$, then,

$$B_n f_0(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} = (t+1-t)^n = 1,$$

$$B_n f_1(t) = \sum_{k=0}^n \frac{k}{n} \binom{n}{k} t^k (1-t)^{n-k} = \sum_{k=1}^n \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \sum_{k=0}^{n-1} \binom{n-1}{k} t^{k+1} (1-t)^{(n-1)-k} = t,$$

 and

$$B_n f_2(t) = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 \binom{n}{k} t^k (1-t)^{n-k} = \sum_{k=1}^n \frac{k}{n} \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \sum_{k=1}^n \left[\frac{(n-1)(k-1)}{n(n-1)} + \frac{1}{n}\right] \binom{n-1}{k-1} t^k (1-t)^{n-k}$$
$$= \left(1 - \frac{1}{n}\right) t^2 + \frac{1}{n} t = \left(1 - \frac{1}{n}\right) f_2(t) + \frac{1}{n} f_1(t).$$

This finishes the proof.

2. Müntz-Szász Theorem ([EMMS, R])

Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a strictly increasing sequence of positive numbers. Then, the collection of finite linear combinations of functions $1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, ...,$ that is span $\{1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, ...\}$, is dense in C[0, 1] if and only if

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = +\infty.$$

2. Müntz-Szász Theorem ([EMMS, R])

Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a strictly increasing sequence of positive numbers. Then, the collection of finite linear combinations of functions $1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, ...,$ that is span $\{1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, ...\}$, is dense in C[0, 1] if and only if

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = +\infty.$$

Theorem

Let $0 < \lambda_1 < \lambda_2 < \lambda_3 < ...$ and

$$X = \overline{\mathsf{span}}\{1, t^{\lambda_1}, t^{\lambda_2}, t^{\lambda_3}, ...\}$$

a) If
$$\sum_{n=1}^{\infty} 1/\lambda_n = +\infty$$
, then $X = C[0, 1]$.
b) If $\sum_{n=1}^{\infty} 1/\lambda_n < +\infty$ and $\lambda \notin \{\lambda_n\}$, $\lambda \neq 0$, then $t^{\lambda} \notin X$.

Proposition

If $\sum_{n=1}^{\infty} 1/\lambda_n = \infty$, μ is a Borel complex measure on [0, 1] and T is the bounded linear functional on $C[0, 1]^* \cong M[0, 1]$ associated to μ such that

 $T(t^{\lambda_n}) = \int_0^1 t^{\lambda_n} d\mu(t) = 0, \quad n = 1, 2, 3, \dots$ (4)

then

$$T(t^{k}) = \int_{0}^{1} t^{k} d\mu(t) = 0, \quad k = 1, 2, 3, \dots$$
 (5)

Proposition

If $\sum_{n=1}^{\infty} 1/\lambda_n = \infty$, μ is a Borel complex measure on [0, 1] and T is the bounded linear functional on $C[0, 1]^* \simeq M[0, 1]$ according to μ such that

bounded linear functional on $\mathit{C}[0,1]^*\cong \mathit{M}[0,1]$ associated to μ such that

$$T(t^{\lambda_n}) = \int_0^1 t^{\lambda_n} d\mu(t) = 0, \quad n = 1, 2, 3, \dots$$
 (4)

then

$$T(t^{k}) = \int_{0}^{1} t^{k} d\mu(t) = 0, \quad k = 1, 2, 3, \dots$$
 (5)

Proof.

Since the integrand in (4) and (5) cancels on t = 0, we can assume that μ concentrates on (0, 1].

Let's consider the function

$$f(z) = \int_0^1 t^z d\mu(t) = \int_0^1 e^{z \log t} d\mu(t).$$

It is well defined on the right complex semiplane \mathbb{H}_0 :

$$|f(z)| \leq \int_{0}^{1} |e^{z \log t}| d|\mu|(t) = \int_{0}^{1} t^{\Re(z)} d|\mu|(t) \leq ||\mu|| < +\infty.$$
 (6)

It is well defined on the right complex semiplane \mathbb{H}_0 :

$$|f(z)| \leq \int_0^1 |e^{z \log t}|d|\mu|(t) = \int_0^1 t^{\Re(z)} d|\mu|(t) \leq ||\mu|| < +\infty.$$
 (6)

In addition we have

$$egin{aligned} &f(z)-f(z_0)=\int_0^1(t^z-t^{z_0})d\mu(t)\ &\Rightarrow |f(z)-f(z_0)|\leq\int_0^1|t^z-t^{z_0}|d|\mu|(t) \end{aligned}$$

Then fixed $\varepsilon > 0$, since t^z is continuous on $[0,1] \times \mathbb{H}_0$ (uniformly on t, because [0,1] is compact) exists $\delta(\varepsilon) > 0$ such that if $|z - z_0| < \delta$, then $|t^z - t^{z_0}| < \varepsilon, \forall t \in [0,1]$. Thus,

$$|f(z) - f(z_0)| \le \varepsilon \int_0^1 d|\mu|(t) = \varepsilon ||\mu||$$

which proves the continuity of f.

Let γ a C^1 closed path on \mathbb{H}_0 . Then, by Fubini Theorem and since $z \mapsto t^z$ is holomorphic by Cauchy Theorem we have

$$\oint_{\gamma} f(z)dz = \oint_{\gamma} \int_0^1 t^z d\mu(t)dz = \int_0^1 \oint_{\gamma} t^z dz \ d\mu(t) = 0.$$

Then, by Morera Theorem we conclude that f is holomorphic on \mathbb{H}_0 .

Let $\gamma \in C^1$ closed path on \mathbb{H}_0 . Then, by Fubini Theorem and since $z \mapsto t^z$ is holomorphic by Cauchy Theorem we have

$$\oint_{\gamma} f(z) dz = \oint_{\gamma} \int_0^1 t^z d\mu(t) dz = \int_0^1 \oint_{\gamma} t^z dz \ d\mu(t) = 0.$$

Then, by Morera Theorem we conclude that f is holomorphic on \mathbb{H}_0 . On the other hand, on (6) we have proved that f is bounded on \mathbb{H}_0 . Let's consider now the composition of f with a Möbius transformation of the disc onto the right semiplane

$$g(z) = f\left(\frac{1+z}{1-z}\right), \quad z \in \mathbb{D}.$$

Notice that $g \in H^{\infty}$, this is,

- $g \in \mathcal{H}(\mathbb{D})$,
- g is bounded on \mathbb{D} , because f is bounded.
Let $\gamma \in C^1$ closed path on \mathbb{H}_0 . Then, by Fubini Theorem and since $z \mapsto t^z$ is holomorphic by Cauchy Theorem we have

$$\oint_{\gamma} f(z) dz = \oint_{\gamma} \int_0^1 t^z d\mu(t) dz = \int_0^1 \oint_{\gamma} t^z dz \ d\mu(t) = 0.$$

Then, by Morera Theorem we conclude that f is holomorphic on \mathbb{H}_0 . On the other hand, on (6) we have proved that f is bounded on \mathbb{H}_0 . Let's consider now the composition of f with a Möbius transformation of the disc onto the right semiplane

$$g(z) = f\left(\frac{1+z}{1-z}\right), \quad z \in \mathbb{D}.$$

Notice that $g \in H^{\infty}$, this is,

• $g \in \mathcal{H}(\mathbb{D})$,

• g is bounded on \mathbb{D} , because f is bounded.

By hypothesis (4) we have $f(\lambda_n) = T(t^{\lambda_n}) = 0$, n = 1, 2, ..., therefore $g(\alpha_n) = 0$, where $\alpha_n = \frac{\lambda_n - 1}{\lambda_n + 1}$.

We claim that $\sum_{n=1}^\infty 1/\lambda_n = +\infty \Rightarrow \sum_{n=1}^\infty 1 - |\alpha_n| = +\infty.$ In fact

$$\sum_{n=1}^{\infty} 1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| = \sum_{n=1}^{\infty} \frac{\lambda_n + 1 - |\lambda_n - 1|}{\lambda_n + 1}.$$

There are two possible cases:

We claim that $\sum_{n=1}^{\infty} 1/\lambda_n = +\infty \Rightarrow \sum_{n=1}^{\infty} 1 - |\alpha_n| = +\infty$. In fact

$$\sum_{n=1}^{\infty} 1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| = \sum_{n=1}^{\infty} \frac{\lambda_n + 1 - |\lambda_n - 1|}{\lambda_n + 1}.$$

There are two possible cases:

• If $0 < \lambda_n < 1, \ \forall n \in \mathbb{N}$, then $\lambda_n + 1 - |\lambda_n - 1| = 2\lambda_n$. Thus

$$\sum_{n=1}^{\infty} 1 - |\alpha_n| = \sum_{n=1}^{\infty} \frac{2\lambda_n}{\lambda_n + 1} = +\infty$$

since
$$\frac{2\lambda_n}{\lambda_n+1} \not\rightarrow 0$$
, when $n \rightarrow \infty$.

We claim that $\sum_{n=1}^{\infty} 1/\lambda_n = +\infty \Rightarrow \sum_{n=1}^{\infty} 1 - |\alpha_n| = +\infty$. In fact

$$\sum_{n=1}^{\infty} 1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| = \sum_{n=1}^{\infty} \frac{\lambda_n + 1 - |\lambda_n - 1|}{\lambda_n + 1}.$$

There are two possible cases:

• If $0 < \lambda_n < 1, \ \forall n \in \mathbb{N}$, then $\lambda_n + 1 - |\lambda_n - 1| = 2\lambda_n$. Thus

$$\sum_{n=1}^{\infty} 1 - |\alpha_n| = \sum_{n=1}^{\infty} \frac{2\lambda_n}{\lambda_n + 1} = +\infty$$

since $\frac{2\lambda_n}{\lambda_n+1} \rightarrow 0$, when $n \rightarrow \infty$.

• If $\exists m \in \mathbb{N}$ such that $\lambda_n \ge 1, \forall n \ge m$ then $\lambda_n + 1 - |\lambda_n - 1| = 2$. Thus,

$$\sum_{n=1}^{\infty} 1 - |\alpha_n| \ge \sum_{n=m}^{\infty} \frac{2}{\lambda_n + 1} = +\infty$$

Theorem ([R, Theorem 15.23]) If $f \in H^{\infty}$ and $\alpha_1, \alpha_2, ...$ are the zeros of f in \mathbb{D} and if

$$\sum_{n=1}^{\infty} 1 - |\alpha_n| = +\infty$$

then f(z) = 0 for all $z \in \mathbb{D}$.

We deduce that $g(z) = 0, \ \forall z \in \mathbb{D}$. In particular,

$$T(t^{k}) = \int_{0}^{1} t^{k} d\mu(t) = f(k) = g\left(\frac{k-1}{k+1}\right) = 0, \quad k = 1, 2, \dots$$

Let's proof *a*):

By Weierstrass Approximation Theorem it is enough to see that X contains all the functions t^k , with k = 1, 2, 3, ...

Suppose that $\exists k_0 \in \mathbb{N}$ such that $t^{k_0} \notin X$. By Hahn-Banach Theorem exists a bounded linear functional $T : C[0,1] \longrightarrow \mathbb{R}$ such that

$$T(t^{k_0})
eq 0$$
 and $T|_{\mathsf{span}\{1,t^{\lambda_1},t^{\lambda_2},\ldots\}} \equiv 0.$

Let's proof a):

By Weierstrass Approximation Theorem it is enough to see that X contains all the functions t^k , with k = 1, 2, 3, ...

Suppose that $\exists k_0 \in \mathbb{N}$ such that $t^{k_0} \notin X$. By Hahn-Banach Theorem exists a bounded linear functional $T : C[0,1] \longrightarrow \mathbb{R}$ such that

$$T(t^{k_0}) \neq 0$$
 and $T|_{span\{1,t^{\lambda_1},t^{\lambda_2},\ldots\}} \equiv 0.$

Riesz Representation Theorem

The space of Borel regular complex measures, M(I), is the dual space of C(I) via

$$M(I) \longrightarrow C(I)^*$$
$$\mu \longmapsto \left(\varphi \mapsto \langle \varphi, \mu \rangle = \int_0^1 \varphi d\mu \right) = \langle \cdot, \mu \rangle.$$

Since T verifies the hypothesis of Riesz Representation Theorem, exists a Borel complex measure μ such that

$$T(arphi) = \int_0^1 arphi(t) d\mu(t), \quad arphi \in C[0,1],$$

Since ${\cal T}$ verifies the hypothesis of Riesz Representation Theorem, exists a Borel complex measure μ such that

$$T(arphi) = \int_0^1 arphi(t) d\mu(t), \quad arphi \in C[0,1],$$

satisfying in addition

a
$$T(t^{k_0}) = \int_0^1 t^{k_0} d\mu(t) \neq 0;$$
a $T(t^{\lambda_n}) = \int_0^1 t^{\lambda_n} d\mu(t) = 0, \quad n = 1, 2,$

Since T verifies the hypothesis of Riesz Representation Theorem, exists a Borel complex measure μ such that

$$\mathcal{T}(arphi) = \int_0^1 arphi(t) d\mu(t), \quad arphi \in C[0,1],$$

satisfying in addition

1
$$T(t^{k_0}) = \int_0^1 t^{k_0} d\mu(t) \neq 0;$$
2 $T(t^{\lambda_n}) = \int_0^1 t^{\lambda_n} d\mu(t) = 0, \quad n = 1, 2,$

By the previous proposition we have that $T(t^{k_0}) = 0$ and $T(t^{k_0}) \neq 0$. Thus $t^k \in X$ for all $k \in \mathbb{N}$. This completes the proof of a). Let's prove b). We assume

$$\sum_{n=1}^{\infty}\frac{1}{\lambda_n}<\infty.$$

Our goal is to construct a functional $T = \langle \cdot, \mu \rangle \in C[0, 1]^*$ such that $T(t^{\lambda_n}) = 0$ for all $n \in \mathbb{N}_0$ ($\lambda_0 = 0$) that does not vanish on t^{λ} for each positive λ with $\lambda \notin \{\lambda_n\}_{n \in \mathbb{N}_0}$.

Let's prove b). We assume

$$\sum_{n=1}^{\infty}\frac{1}{\lambda_n}<\infty.$$

Our goal is to construct a functional $T = \langle \cdot, \mu \rangle \in C[0,1]^*$ such that $T(t^{\lambda_n}) = 0$ for all $n \in \mathbb{N}_0$ ($\lambda_0 = 0$) that does not vanish on t^{λ} for each positive λ with $\lambda \notin \{\lambda_n\}_{n \in \mathbb{N}_0}$.

We are looking for a Borel complex measure μ in [0,1] such that

$$\int_0^1 t^z d\mu(t)$$

define a bounded holomorphic function f on $\mathbb{H}_{-1} := \{z \in \mathbb{D} : \Re(z) > -1\}$ with zeros at $\{\lambda_n\}$. Let's prove b). We assume

$$\sum_{n=1}^{\infty}\frac{1}{\lambda_n}<\infty.$$

Our goal is to construct a functional $T = \langle \cdot, \mu \rangle \in C[0,1]^*$ such that $T(t^{\lambda_n}) = 0$ for all $n \in \mathbb{N}_0$ ($\lambda_0 = 0$) that does not vanish on t^{λ} for each positive λ with $\lambda \notin \{\lambda_n\}_{n \in \mathbb{N}_0}$.

We are looking for a Borel complex measure μ in [0,1] such that

$$\int_0^1 t^z d\mu(t)$$

define a bounded holomorphic function f on $\mathbb{H}_{-1} := \{z \in \mathbb{D} : \Re(z) > -1\}$ with zeros at $\{\lambda_n\}$. We choose

$$f(z) = rac{z}{(2+z)^3} \prod_{n=1}^{\infty} rac{\lambda_n - z}{2 + \lambda_n + z}, \quad z \in \mathbb{C} \setminus \{-2 - \lambda_n\}_{n \in \mathbb{N}}.$$

Now we prove that f is a meromorphic function on \mathbb{C} with poles at $\{-2 - \lambda_n\}$. It is enough to check that

$$\sum_{n=1}^{\infty} \left| 1 - \frac{\lambda_n - z}{2 + \lambda_n + z} \right| \tag{7}$$

converges uniformly on every compact subset K on $\mathbb{C} \setminus \{-2 - \lambda_n\}_{n \in \mathbb{N}}$.

Now we prove that f is a meromorphic function on \mathbb{C} with poles at $\{-2 - \lambda_n\}$. It is enough to check that

$$\sum_{n=1}^{\infty} \left| 1 - \frac{\lambda_n - z}{2 + \lambda_n + z} \right| \tag{7}$$

converges uniformly on every compact subset K on $\mathbb{C} \setminus \{-2 - \lambda_n\}_{n \in \mathbb{N}}$.

Fix K compact set. There exists $\alpha > 0$ such that $K \subset \mathbb{H}_{-\alpha} = \{z \in \mathbb{C} : \Re(z) > -\alpha\}$. As $\sum_{n=1}^{\infty} \frac{1}{\lambda_n}$ is a convergent series of positive terms, it is easy to see that there exists $C_K > 0$ and $N \in \mathbb{N}$ such that for all n > N

$$\left|\frac{2z+2}{2+\lambda_n+z}\right| \leq \frac{C_{\mathcal{K}}}{2+\lambda_n-\alpha}.$$

Now we prove that f is a meromorphic function on \mathbb{C} with poles at $\{-2 - \lambda_n\}$. It is enough to check that

$$\sum_{n=1}^{\infty} \left| 1 - \frac{\lambda_n - z}{2 + \lambda_n + z} \right| \tag{7}$$

converges uniformly on every compact subset K on $\mathbb{C} \setminus \{-2 - \lambda_n\}_{n \in \mathbb{N}}$.

Fix K compact set. There exists $\alpha > 0$ such that $K \subset \mathbb{H}_{-\alpha} = \{z \in \mathbb{C} : \Re(z) > -\alpha\}$. As $\sum_{n=1}^{\infty} \frac{1}{\lambda_n}$ is a convergent series of positive terms, it is easy to see that there exists $C_K > 0$ and $N \in \mathbb{N}$ such that for all n > N

$$\left|\frac{2z+2}{2+\lambda_n+z}\right| \leq \frac{C_{\mathcal{K}}}{2+\lambda_n-\alpha}.$$

Hence, using the Weierstrass criterion and the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\lambda_n}$ it follows the uniform convergence of (7) on *K*.

We claim that f is bounded on \mathbb{H}_{-1} . We observe all terms in the infinite product and the factor $\frac{z}{2+z}$ are on \mathbb{D} , because they are a Möbius transform from \mathbb{H}_{-1} onto the disk. Moreover,

$$rac{1}{|2+z|^2} \leq 1, \quad orall z \in \mathbb{H}_{-1},$$

what proves our claim.

We claim that f is bounded on \mathbb{H}_{-1} . We observe all terms in the infinite product and the factor $\frac{z}{2+z}$ are on \mathbb{D} , because they are a Möbius transform from \mathbb{H}_{-1} onto the disk. Moreover,

$$rac{1}{|2+z|^2} \leq 1, \quad orall z \in \mathbb{H}_{-1},$$

what proves our claim.

Using the previous bound we deduce that $f \in L^1(\{z \in \mathbb{C} : \Re(z) = -1\})$, since

$$\int_{\mathbb{R}} |f(-1+it)| dt \leq \int_{\mathbb{R}} rac{dt}{1+t^2} = \pi$$

Our next step is to represent f using Cauchy Theorem. Given $z_0 \in \mathbb{H}_{-1}$, we will have

$$f(z_0)=\int_C\frac{f(z)}{z-z_0}dz,$$

where C is the semicircumference with center -1 and radium R > 1 + |z|, with extreme points -1 - iR, -1 + R and closed by the segment that links these points, as we can see in the figure.

If we parameterize the curve, we get

$$f(z_0) = \frac{1}{2\pi} \int_{-R}^{R} \frac{f(-1+is)}{1-is+z_0} ds + \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \frac{f(-1+Re^{i\theta})}{-1+Re^{i\theta}-z_0} Re^{i\theta} d\theta.$$

If we parameterize the curve, we get

$$f(z_0) = \frac{1}{2\pi} \int_{-R}^{R} \frac{f(-1+is)}{1-is+z_0} ds + \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \frac{f(-1+Re^{i\theta})}{-1+Re^{i\theta}-z_0} Re^{i\theta} d\theta.$$

It is easy to see using $|f(z)| \le \left|\frac{z}{2+z^3}\right|$ that if $R \to \infty$, the second term on the sum goes to 0. Therefore, we obtain the following expression for f:

$$f(z_0) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{f(-1+is)}{1-is+z_0} ds$$

for all $z_0 \in \mathbb{H}_{-1}$.

Due to the identity

$$\frac{1}{z - is + 1} = \int_0^1 t^{z - is} dt = \int_0^1 t^z e^{-is \log t} dt$$

and Fubini Theorem, we can write for each $z \in \mathbb{H}_{-1}$

$$f(z) = \int_0^1 t^z \left[\frac{1}{2\pi} \int_{\mathbb{R}} f(-1+is) e^{-is\log t} ds \right] dt.$$
(8)

Due to the identity

$$\frac{1}{z - is + 1} = \int_0^1 t^{z - is} dt = \int_0^1 t^z e^{-is \log t} dt$$

and Fubini Theorem, we can write for each $z \in \mathbb{H}_{-1}$

$$f(z) = \int_0^1 t^z \left[\frac{1}{2\pi} \int_{\mathbb{R}} f(-1 + is) e^{-is \log t} ds \right] dt.$$
 (8)

Now, if we define g(s) = f(-1 + is), it is clear that the inner integral at (8) is $\hat{g}(\log t)$, where \hat{g} represents the Fourier transform of g.

Finally, since \hat{g} is a Fourier transform of an integrable function, it follows that is a bounded, continuous function on (0, 1]. Then, setting

$$d\mu = rac{1}{2\pi} \hat{g}(\log t) dt$$

we obtain a Borel complex measure which represents f in the desired way:

$$f(z)=\int_0^1 t^z d\mu(t).$$

Finally, since \hat{g} is a Fourier transform of an integrable function, it follows that is a bounded, continuous function on (0, 1]. Then, setting

$$d\mu = rac{1}{2\pi} \hat{g}(\log t) dt$$

we obtain a Borel complex measure which represents f in the desired way:

$$f(z) = \int_0^1 t^z d\mu(t).$$

Thus, we get a functional $T = \langle \cdot, \mu \rangle$ that vanishes on span $\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots \}$, but does not vanish on t^{λ} ($\lambda \notin \{\lambda_n\}$) due to our election of f. Hence, we deduce that $t^{\lambda} \notin X = \overline{\text{span}}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots \}$, and it finishes the proof.

3. The Full Müntz Theorem in $L^2[0,1]$, C[0,1] and $L^1[0,1]$ ([BE])

Full Müntz Theorem in $L^2[0, 1]$

Let $\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than $-\frac{1}{2}$. Then, the set

$$\operatorname{span}\left\{t^{\lambda_{i}}:i\in\mathbb{N}
ight\}$$

is dense in $L^2[0,1]$ if and only if

$$\sum_{i=0}^{\infty} \frac{2\lambda_i+1}{(2\lambda_i+1)^2+1} = +\infty.$$

Let *m* be a positive integer number different of any λ_i . We consider the best approximation in $L^2[0,1]$ of t^m by elements of

 $\operatorname{span}\{t^{\lambda_0},t^{\lambda_1},\ldots,t^{\lambda_n}\}.$

Let *m* be a positive integer number different of any λ_i . We consider the best approximation in $L^2[0, 1]$ of t^m by elements of

 $\operatorname{span}\{t^{\lambda_0},t^{\lambda_1},\ldots,t^{\lambda_n}\}.$

It is well known that [R]:

$$\min_{b_i\in\mathbb{C}}\left\|t^m-\sum_{i=0}^{\infty}b_it^{\lambda_i}\right\|_{L^2[0,1]}=\frac{1}{\sqrt{2m+1}}\prod_{i=0}^n\left|\frac{m-\lambda_i}{m+\lambda_i+1}\right|.$$

Let *m* be a positive integer number different of any λ_i . We consider the best approximation in $L^2[0,1]$ of t^m by elements of

 $\operatorname{span}\{t^{\lambda_0},t^{\lambda_1},\ldots,t^{\lambda_n}\}.$

It is well known that [R]:

$$\min_{b_i\in\mathbb{C}}\left\|t^m-\sum_{i=0}^{\infty}b_it^{\lambda_i}\right\|_{L^2[0,1]}=\frac{1}{\sqrt{2m+1}}\prod_{i=0}^n\left|\frac{m-\lambda_i}{m+\lambda_i+1}\right|.$$

Then

$$t^m \in \overline{\operatorname{span}}\left\{t^{\lambda_i}: i \in \mathbb{N}\right\} \Leftrightarrow \limsup_{n \to \infty} \prod_{i=0}^n \left|\frac{m - \lambda_i}{m + \lambda_i + 1}\right| = 0.$$
 (9)

So, condition (9) is equivalent to:

$$\limsup_{n \to \infty} \prod_{i=0, \lambda_i < m}^n \left(1 - \frac{2\lambda_i + 1}{m + \lambda_i + 1} \right) = 0,$$

or

$$\limsup_{n\to\infty}\prod_{i=0,\lambda_i>m}^n\left(1-\frac{2m+1}{m+\lambda_i+1}\right)=0.$$

So, condition (9) is equivalent to:

$$\limsup_{n \to \infty} \prod_{i=0, \lambda_i < m}^n \left(1 - \frac{2\lambda_i + 1}{m + \lambda_i + 1} \right) = 0,$$

or

$$\limsup_{n\to\infty}\prod_{i=0,\lambda_i>m}^n\left(1-\frac{2m+1}{m+\lambda_i+1}\right)=0.$$

And that holds if and only if:

$$\sum_{i=0,\lambda_i < m}^{\infty} (2\lambda_i + 1) = +\infty \quad ext{or} \quad \sum_{i=0,\lambda_i > m}^{\infty} \left(rac{1}{2\lambda_i + 1}
ight) = +\infty$$

Therefore condition (9) is equivalent to:

$$\sum_{i=0}^{\infty} \frac{2\lambda_i+1}{(2\lambda_i+1)^2+1} = +\infty.$$

Therefore condition (9) is equivalent to:

$$\sum_{i=0}^{\infty} \frac{2\lambda_i+1}{(2\lambda_i+1)^2+1} = +\infty.$$

In summary, we have proved that

$$\sum_{i=0}^{\infty} \frac{2\lambda_i + 1}{(2\lambda_i + 1)^2 + 1} = +\infty \Leftrightarrow t^m \in \overline{\operatorname{span}}\left\{t^{\lambda_i} : i \in \mathbb{N}\right\}, \quad m \in \mathbb{N},$$

and by the Weierstrass Approximation Theorem the proof is finished.

The Full Müntz Theorem in C[0,1]

Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of distinct, positive real numbers. Then

 $\mathsf{span}\{1,t^{\lambda_1},t^{\lambda_2},\dots\},$

is dense in C[0,1] if and only if

$$\sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda_n^2 + 1} = +\infty.$$

We subdivide the proof in different cases, depending on how the sequence $\{\lambda_n\}$ behaves:

We subdivide the proof in different cases, depending on how the sequence $\{\lambda_n\}$ behaves:

CASE I: inf $\lambda_n > 0$
Proof.

We subdivide the proof in different cases, depending on how the sequence $\{\lambda_n\}$ behaves:

CASE I: inf $\lambda_n > 0$

CASE II: $\lim_{n \to +\infty} \lambda_n = 0.$

Proof.

We subdivide the proof in different cases, depending on how the sequence $\{\lambda_n\}$ behaves:

CASE I: inf $\lambda_n > 0$

CASE II: $\lim_{n \to +\infty} \lambda_n = 0.$

CASE III: $\{\lambda_n\} = \{\alpha_n\} \cup \{\beta_n\}$, with $\alpha_n \to 0$ and $\beta_n \to \infty$.

Proof.

We subdivide the proof in different cases, depending on how the sequence $\{\lambda_n\}$ behaves:

CASE I: inf $\lambda_n > 0$

CASE II: $\lim_{n \to +\infty} \lambda_n = 0.$ **CASE III:** $\{\lambda_n\} = \{\alpha_n\} \cup \{\beta_n\}$, with $\alpha_n \to 0$ and $\beta_n \to \infty$.

CASE IV: $\{\lambda_n\}$ has a cluster point in $(0, \infty)$.

Case I is proved.

Case I is proved. Let's prove II. It follows from $\lim_{n \to +\infty} \lambda_n = \mathbf{0},$ that

$$\sum_{n=1}^{\infty} \lambda_n = +\infty \Leftrightarrow \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda_n^2 + 1} = +\infty.$$

Case I is proved. Let's prove II. It follows from $\lim_{n \to +\infty} \lambda_n = \mathbf{0},$ that

$$\sum_{n=1}^{\infty} \lambda_n = +\infty \Leftrightarrow \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda_n^2 + 1} = +\infty.$$

 \implies Assume that $\sum_{n=1}^{\infty} \lambda_n = +\infty$.

Case I is proved. Let's prove II. It follows from $\lim_{n \to +\infty} \lambda_n = \mathbf{0},$ that

$$\sum_{n=1}^{\infty} \lambda_n = +\infty \Leftrightarrow \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda_n^2 + 1} = +\infty.$$

 $\implies \text{Assume that } \sum_{n=1}^{\infty} \lambda_n = +\infty.$ Then, $\lambda_n \to 0$ implies that

$$\sum_{n=1}^{\infty} \left(1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| \right) = +\infty;$$

Case I is proved. Let's prove II. It follows from $\lim_{n \to +\infty} \lambda_n = 0$, that

$$\sum_{n=1}^{\infty} \lambda_n = +\infty \Leftrightarrow \sum_{n=1}^{\infty} \frac{\lambda_n}{\lambda_n^2 + 1} = +\infty.$$

 $\implies \text{Assume that } \sum_{n=1}^{\infty} \lambda_n = +\infty.$ Then, $\lambda_n \to 0$ implies that

$$\sum_{n=1}^{\infty} \left(1 - \left| \frac{\lambda_n - 1}{\lambda_n + 1} \right| \right) = +\infty;$$

so we have that

$$\mathsf{span}\{1, t^{\lambda_1}, t^{\lambda_2}, ...\}$$

is dense in C[0,1] by the same argument of case $inf \lambda_n > 0$.

 $\overleftarrow{\longleftarrow} \text{Let's suppose now that } \sum_{n=1}^{\infty} \lambda_n < +\infty \text{ and we show span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\} \text{ is not dense in } C[0, 1].$

 $\fbox{Let's suppose now that } \sum_{n=1}^{\infty} \lambda_n < +\infty \text{ and we show span} \{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\} \text{ is not dense in } C[0, 1].$

We need the following inequality:

Newman's inequality

The inequality

$$||tp'(t)||_{\infty} \leq 11\left(\sum_{i=1}^{n} \lambda_i\right)||p||_{\infty}$$

holds for every $p \in \operatorname{span}\{1, t^{\lambda_1}, \cdots, t^{\lambda_n}\}.$

Then, if
$$\eta = \sum_{n=1}^{\infty} \lambda_n < +\infty$$
, we have that
 $||tp'(t)||_{\infty} \le 11\eta ||p||_{\infty}$ (10)
for every $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}.$

Then, if $\eta = \sum_{n=1}^\infty \lambda_n < +\infty$, we have that

$$\begin{split} ||tp'(t)||_{\infty} &\leq 11\eta ||p||_{\infty} \end{split} \tag{10}$$
 for every $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$.
But if (10) holds, span $\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ is not dense in $C[0, 1]$.

Then, if $\eta = \sum_{n=1}^\infty \lambda_n < +\infty,$ we have that

$$||tp'(t)||_{\infty} \leq 11\eta ||p||_{\infty}$$
(10)
for every $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$.
But if (10) holds, span $\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ is not dense in $C[0, 1]$.
Let us suppose that it is dense. If we set $f(t) = \sqrt{1-t}$, for every $m \in \mathbb{N}$
there exists $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ such that $||p - f||_{\infty} < 1/m^2$.

Then, if $\eta = \sum_{n=1}^{\infty} \lambda_n < +\infty$, we have that

$$|tp'(t)||_{\infty} \le 11\eta ||p||_{\infty} \tag{10}$$

for every $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$. But if (10) holds, $\text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ is not dense in C[0, 1]. Let us suppose that it is dense. If we set $f(t) = \sqrt{1-t}$, for every $m \in \mathbb{N}$ there exists $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ such that $||p - f||_{\infty} < 1/m^2$. It follows from this fact and Mean Value Theorem that

$$||tp'(t)||_{\infty} \geq \frac{m-2}{2}$$

Then, if $\eta = \sum_{n=1}^{\infty} \lambda_n < +\infty$, we have that

$$|tp'(t)||_{\infty} \le 11\eta ||p||_{\infty} \tag{10}$$

for every $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$. But if (10) holds, span $\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ is not dense in C[0, 1]. Let us suppose that it is dense. If we set $f(t) = \sqrt{1-t}$, for every $m \in \mathbb{N}$ there exists $p \in \text{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \cdots\}$ such that $||p - f||_{\infty} < 1/m^2$. It follows from this fact and Mean Value Theorem that

$$||tp'(t)||_{\infty} \geq \frac{m-2}{2}$$

and this clearly contradicts (10) (this counterexample is shown in [A]).

Theorem: Existence of Chebyshev Polynomials.

Let A be a compact subset of $[0, \infty)$ containing at least n + 1 points. Then there exists a unique (extended) Chebyshev polynomial

$$T_n := T_n\{\lambda_0, \lambda_1, \ldots, \lambda_n; A\},\$$

for span $\{t^{\lambda_0},\ldots,t^{\lambda_n}\}$ on A defined by

$$T_n(t) = c\left(t^{\lambda_n} - \sum_{i=0}^{n-1} a_i t^{\lambda_i}\right),$$

where the numbers $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$ are chosen to minimize

$$\left\|t^{\lambda_n}-\sum_{i=0}^{n-1}a_it^{\lambda_i}\right\|_{\infty}$$

and where $c \in \mathbb{R}$ is a normalization constant chosen so that $||T_n||_{\infty} = 1$, and the sign of c is determined by $T_n(\max A) > 0$. Theorem: Alternation Characterization. The Chebyshev polynomial

$$T_n := T_n\{\lambda_0, \lambda_1, \dots, \lambda_n; A\} \in \operatorname{span}\{t^{\lambda_0}, \dots, t^{\lambda_n}\},\$$

is uniquely characterized by the existence of an alternation set

$$\{t_0 < t_1 < \cdots < t_n\} \subset A$$

for which

$$T_n(t_j) = (-1)^{n-j} = (-1)^{n-j} ||T_n||_{\infty}, \quad j = 0, 1, \dots, n.$$

Theorem [BE, Theorem 3.4]

Suppose $\{\lambda_i\}_{i=1}^{\infty}$ is a sequence of nonnegative real numbers satisfying $\lambda_0 = 0, \ \lambda_i \ge 1$ for $i = 1, 2, \ldots$, and

$$\sum_{i=1}^{\infty} \frac{1}{\lambda_i} < +\infty.$$

Let $\varepsilon \in (0,1)$. Then there exists a constant c depending only on $\{\lambda_i\}_{i=1}^{\infty}$ and ε so that

$$||p'||_{[0,1-arepsilon]} \le c ||p||_{[0,1]}$$

for every $p \in \text{span}\{t^{\lambda_0}, t^{\lambda_1}, \dots\}$.

CASE III: $\{\lambda_i : i \in \mathbb{N}\} = \{\alpha_i : i \in \mathbb{N}\} \cup \{\beta_i : i \in \mathbb{N}\}$ with

$$\lim_{i\to\infty}\alpha_i=0 \text{ and } \lim_{i\to\infty}\beta_i=+\infty.$$

CASE III: $\{\lambda_i : i \in \mathbb{N}\} = \{\alpha_i : i \in \mathbb{N}\} \cup \{\beta_i : i \in \mathbb{N}\}$ with

$$\lim_{i\to\infty}\alpha_i=0 \text{ and } \lim_{i\to\infty}\beta_i=+\infty.$$

Note that $\sum_{i=1}^\infty rac{\lambda_i}{\lambda_i^2+1}=\infty$ is equivalent to

$$\sum_{i=1}^{\infty} \alpha_i + \sum_{i=1}^{\infty} \frac{1}{\beta_i} = +\infty.$$
(11)

CASE III: $\{\lambda_i : i \in \mathbb{N}\} = \{\alpha_i : i \in \mathbb{N}\} \cup \{\beta_i : i \in \mathbb{N}\}$ with

$$\lim_{i\to\infty}\alpha_i=0 \text{ and } \lim_{i\to\infty}\beta_i=+\infty.$$

Note that $\sum_{i=1}^{\infty} \frac{\lambda_i}{\lambda_i^2+1} = \infty$ is equivalent to

$$\sum_{i=1}^{\infty} \alpha_i + \sum_{i=1}^{\infty} \frac{1}{\beta_i} = +\infty.$$
(11)

$$\implies$$
 If (11) does not hold, then

$$\sum_{i=1}^{\infty} \alpha_i < \infty \ \text{ and } \ \sum_{i=1}^{\infty} \frac{1}{\beta_i} < \infty.$$

$$\implies$$
 If (11) does not hold, then

$$\sum_{i=1}^\infty lpha_i < \infty$$
 and $\sum_{i=1}^\infty rac{1}{eta_i} < \infty.$

Let

$$\begin{split} T_{n,\alpha} &:= T_n \{ 1, t^{\alpha_1}, \dots, t^{\alpha_n} : [0,1] \}, \\ T_{n,\beta} &:= T_n \{ 1, t^{\beta_1}, \dots, t^{\beta_n} : [0,1] \}, \\ T_{2n,\alpha,\beta} &:= T_n \{ 1, t^{\alpha_1}, \dots, t^{\alpha_n}, t^{\beta_1}, \dots, t^{\beta_n} : [0,1] \}. \end{split}$$

Newman's inequality and the **Mean Value Theorem** imply that for each $\varepsilon > 0$ exists a $k_1(\varepsilon) \in \mathbb{N}$ depending only on $\{\alpha_i\}_{i=1}^{\infty}$ and ε such that $T_{n,\alpha}$ has at most $k_1(\varepsilon)$ zeros in $[\varepsilon, 1)$ and at least $n - k_1(\varepsilon)$ zeros in $(0, \varepsilon)$. **Newman's inequality** and the **Mean Value Theorem** imply that for each $\varepsilon > 0$ exists a $k_1(\varepsilon) \in \mathbb{N}$ depending only on $\{\alpha_i\}_{i=1}^{\infty}$ and ε such that $T_{n,\alpha}$ has at most $k_1(\varepsilon)$ zeros in $[\varepsilon, 1)$ and at least $n - k_1(\varepsilon)$ zeros in $(0, \varepsilon)$.

[BE, Theorem 3.4] and the **Mean Value Theorem** imply that for every $\varepsilon > 0$ exists a $k_2(\varepsilon) \in \mathbb{N}$ depending only on $\{\beta_i\}_{i=1}^{\infty}$ and ε such that $T_{n,\beta}$ has at most $k_2(\varepsilon)$ zeros in $(0, 1 - \varepsilon]$ and at least $n - k_2(\varepsilon)$ zeros in $(1 - \varepsilon, 1)$.

Newman's inequality and the **Mean Value Theorem** imply that for each $\varepsilon > 0$ exists a $k_1(\varepsilon) \in \mathbb{N}$ depending only on $\{\alpha_i\}_{i=1}^{\infty}$ and ε such that $T_{n,\alpha}$ has at most $k_1(\varepsilon)$ zeros in $[\varepsilon, 1)$ and at least $n - k_1(\varepsilon)$ zeros in $(0, \varepsilon)$.

[BE, Theorem 3.4] and the **Mean Value Theorem** imply that for every $\varepsilon > 0$ exists a $k_2(\varepsilon) \in \mathbb{N}$ depending only on $\{\beta_i\}_{i=1}^{\infty}$ and ε such that $T_{n,\beta}$ has at most $k_2(\varepsilon)$ zeros in $(0, 1 - \varepsilon]$ and at least $n - k_2(\varepsilon)$ zeros in $(1 - \varepsilon, 1)$.

Now, counting the zeros of $T_{n,\alpha} - T_{2n,\alpha,\beta}$ and $T_{n,\beta} - T_{2n,\alpha,\beta}$, we can deduce that for every $\varepsilon > 0$ exists $k(\varepsilon) \in \mathbb{N}$ depending only on $\{\lambda_i\}_{i=1}^{\infty}$ and ε , such that $T_{2n,\alpha,\beta}$ has at most $k(\varepsilon)$ zeros in $[\varepsilon, 1 - \varepsilon]$.

Let
$$\varepsilon := \frac{1}{4}$$
 and $k := k(\frac{1}{4})$.

Let
$$\varepsilon := \frac{1}{4}$$
 and $k := k(\frac{1}{4})$. Pick $k + 4$ points
$$\frac{1}{4} < \eta_0 < \eta_1 < \cdots < \eta_{k+3} < \frac{3}{4},$$

Let
$$\varepsilon := \frac{1}{4}$$
 and $k := k(\frac{1}{4})$. Pick $k + 4$ points
$$\frac{1}{4} < \eta_0 < \eta_1 < \cdots < \eta_{k+3} < \frac{3}{4},$$

and a function $f \in C[0,1]$ so that f(t) = 0 for all $t \in \left[0, \frac{1}{4}\right] \cup \left[\frac{3}{4}, 1\right]$, while

$$f(\eta_i) := 2(-1)^i, \ \ i = 0, 1, \dots, k+3.$$

Let
$$\varepsilon := \frac{1}{4}$$
 and $k := k(\frac{1}{4})$. Pick $k + 4$ points
$$\frac{1}{4} < \eta_0 < \eta_1 < \cdots < \eta_{k+3} < \frac{3}{4},$$

and a function $f \in C[0,1]$ so that f(t) = 0 for all $t \in [0,\frac{1}{4}] \cup [\frac{3}{4},1]$, while

$$f(\eta_i) := 2(-1)^i, \quad i = 0, 1, \dots, k+3.$$

Assume that there exists a $p\in span\{1,t^{\lambda_1},t^{\lambda_2},\dots\}$ so that

$$||f - p||_{[0,1]} < 1.$$

Let
$$\varepsilon := \frac{1}{4}$$
 and $k := k(\frac{1}{4})$. Pick $k + 4$ points
$$\frac{1}{4} < \eta_0 < \eta_1 < \cdots < \eta_{k+3} < \frac{3}{4},$$

and a function $f \in C[0,1]$ so that f(t) = 0 for all $t \in [0,\frac{1}{4}] \cup [\frac{3}{4},1]$, while

$$f(\eta_i) := 2(-1)^i, \quad i = 0, 1, \dots, k+3.$$

Assume that there exists a $p\in span\{1,t^{\lambda_1},t^{\lambda_2},\dots\}$ so that

$$||f - p||_{[0,1]} < 1.$$

Then $p - T_{2n,\alpha,\beta}$ has at least 2n + 1 zeros in (0, 1).

$$p-\mathit{T}_{2\mathit{n},lpha,eta}\in \mathsf{span}\{1,t^{\lambda_1},\ldots,t^{\lambda_{2\mathit{n}}}\},$$

$$p - T_{2n,\alpha,\beta} \in \operatorname{span}\{1, t^{\lambda_1}, \dots, t^{\lambda_{2n}}\},$$

which can have at most 2n zeros in [0, 1].

$$p - T_{2n,\alpha,\beta} \in \operatorname{span}\{1, t^{\lambda_1}, \dots, t^{\lambda_{2n}}\},$$

which can have at most 2n zeros in [0, 1].

$$p - T_{2n,\alpha,\beta} \in \operatorname{span}\{1, t^{\lambda_1}, \dots, t^{\lambda_{2n}}\},\$$

which can have at most 2n zeros in [0,1]. This contradiction shows that

$$\operatorname{span}\{1, t^{\lambda_1}, t^{\lambda_2}, \dots\},\$$

is not dense in C[0,1].

CASE IV: Assume that $\{\lambda_n\}$ has a cluster point in $(0, \infty)$.
CASE IV: Assume that $\{\lambda_n\}$ has a cluster point in $(0, \infty)$.

Then there exists a subsequence $\{\lambda_{n_k}\}$ such that $\inf_{k \in \mathbb{N}} \lambda_{n_k} > 0$, and it follows from case II.

Full Müntz Theorem in $L^1[0, 1]$

Suppose $\{\lambda_i\}_{i=0}^{\infty}$ is a sequence of distinct real numbers greater than -1. Then

$$\operatorname{\mathsf{span}}\left\{t^{\lambda_{i}}:i\in\mathbb{N}\cup\left\{\mathsf{0}
ight\}
ight\},$$

is dense in $L^1[0,1]$ if and only if

$$\sum_{i=0}^{\infty} \frac{\lambda_i + 1}{(\lambda_i + 1)^2 + 1} = +\infty.$$

 \implies Assume that

span $\left\{t^{\lambda_i}: i \in \mathbb{N} \cup \{0\}\right\}$,

is dense in $L^1[0,1]$.

 \implies Assume that

span $\left\{t^{\lambda_i}: i \in \mathbb{N} \cup \{0\}\right\}$,

is dense in $L^1[0,1]$.

Let $m \in \mathbb{Z}^+$ be fixed. Let $\varepsilon > 0$.

 \implies Assume that

$$\mathsf{span}\left\{t^{\lambda_{i}}:i\in\mathbb{N}\cup\left\{\mathsf{0}
ight\}
ight\},$$

is dense in $L^1[0,1]$.

Let $m \in \mathbb{Z}^+$ be fixed. Let $\varepsilon > 0$. Choose a

 $p\in {
m span}\{t^{\lambda_0},t^{\lambda_1},\dots\},$

 \implies Assume that

$$\mathsf{span}\left\{t^{\lambda_{i}}:i\in\mathbb{N}\cup\left\{\mathsf{0}
ight\}
ight\},$$

is dense in $L^1[0,1]$.

Let $m \in \mathbb{Z}^+$ be fixed. Let $\varepsilon > 0$. Choose a

$$p \in {\sf span}\{t^{\lambda_0}, t^{\lambda_1}, \dots\},$$

such that

$$||t^m - p||_{\infty} < \varepsilon.$$

$$q(t) := \int_0^t p(s) ds \in \operatorname{span} \{ t^{\lambda_0+1}, t^{\lambda_1+1}, \dots \}.$$

$$q(t):=\int_0^t p(s)ds\in \operatorname{span}\{t^{\lambda_0+1},t^{\lambda_1+1},\dots\}.$$

Then

$$\left|\left|\frac{t^{m+1}}{m+1}-q\right|\right|_{\infty}<\varepsilon.$$

$$q(t):=\int_0^t p(s)ds\in \operatorname{span}\{t^{\lambda_0+1},t^{\lambda_1+1},\dots\}.$$

Then

$$\left|\frac{t^{m+1}}{m+1}-q\right|\Big|_{\infty}<\varepsilon.$$

So the Weierstrass Approximation Theorem yields that

$$\mathsf{span}\{1,t^{\lambda_0+1},t^{\lambda_0+1},\dots\},$$

is dense in C[0, 1].

$$q(t):=\int_0^t p(s)ds\in {
m span}\{t^{\lambda_0+1},t^{\lambda_1+1},\dots\}.$$

Then

$$\left|\frac{t^{m+1}}{m+1}-q\right|\Big|_{\infty}<\varepsilon.$$

So the Weierstrass Approximation Theorem yields that

$$\operatorname{span}\{1, t^{\lambda_0+1}, t^{\lambda_0+1}, \dots\},\$$

is dense in C[0, 1]. Using the Full Müntz Theorem in C[0, 1],

$$\sum_{i=0}^{\infty} \frac{\lambda_i + 1}{(\lambda_i + 1)^2 + 1} = +\infty.$$

 $'' \Leftarrow=''$ Assume that

$$\sum_{i=0}^\infty rac{\lambda_i+1}{(\lambda_i+1)^2+1}=+\infty.$$

 $'' \Leftarrow=''$ Assume that

$$\sum_{i=0}^\infty rac{\lambda_i+1}{(\lambda_i+1)^2+1} = +\infty.$$

By the Hahn-Banach Theorem and the Riesz Representation Theorem

$$\mathsf{span}\{t^{\lambda_0},t^{\lambda_1},\dots\}$$

is not dense in $L^1[0,1]$ if and only if exists a $0 \neq h \in L^\infty[0,1]$ satisfying

$$\int_0^1 t^{\lambda_i} h(t) dt = 0; \quad i = 0, 1, \ldots$$

$$f(z):=\int_0^1 t^z h(t)dt.$$

$$f(z):=\int_0^1 t^z h(t)dt.$$

Then

$$g(z):=f\left(\frac{1+z}{1-z}-1\right)$$

$$f(z):=\int_0^1 t^z h(t)dt.$$

Then

$$g(z):=f\left(\frac{1+z}{1-z}-1\right)$$

is a bounded analytic function on the open unit disk satisfying

$$g\left(\frac{\lambda_n}{\lambda_n+2}\right)=f(\lambda_n)=0.$$

$$f(z):=\int_0^1 t^z h(t)dt$$

Then

$$g(z):=f\left(\frac{1+z}{1-z}-1\right)$$

is a bounded analytic function on the open unit disk satisfying

$$g\left(\frac{\lambda_n}{\lambda_n+2}\right)=f(\lambda_n)=0.$$

Note that $\sum_{i=0}^{\infty} \frac{\lambda_i + 1}{(\lambda_i + 1)^2 + 1} = +\infty$. implies

$$\sum_{n=1}^{\infty} \left(1 - \left| \frac{\lambda_n}{\lambda_n + 2} \right| \right) = +\infty.$$

Hence Blaschke's Theorem ([R, Theorem 15.23]) yields that g = 0 on the open unit disk.

$$f(n) = \int_0^1 t^n h(t) dt = 0; \quad n = 0, 1, \dots$$

$$f(n) = \int_0^1 t^n h(t) dt = 0; \quad n = 0, 1, \dots$$

Now the Weierstrass Approximation Theorem yields

$$\int_0^1 u(t)h(t)dt = 0,$$

for every $u \in C[0,1]$.

$$f(n) = \int_0^1 t^n h(t) dt = 0; \quad n = 0, 1, \dots$$

Now the Weierstrass Approximation Theorem yields

$$\int_0^1 u(t)h(t)dt = 0,$$

for every $u \in C[0,1]$. which contradicts the fact that $h \neq 0$.

$$f(n) = \int_0^1 t^n h(t) dt = 0; \quad n = 0, 1, \dots$$

Now the Weierstrass Approximation Theorem yields

$$\int_0^1 u(t)h(t)dt = 0$$

for every $u \in C[0,1]$. which contradicts the fact that $h \neq 0$.

So span{ $t^{\lambda_0}, t^{\lambda_1}, \dots$ } is dense in $L^1[0, 1]$.

4. The Full Müntz Theorem in $L^{p}[0,1]$ ([0])

The Full Müntz Theorem in $L^{p}[0, 1]$

Let $1 and <math>\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than -1/p. Then, the collection of finite linear combinations of functions $\{t^{\lambda_0}, t^{\lambda_1}, t^{\lambda_2}, \ldots\}$ is dense in $L^p[0, 1]$ if and only if

$$\sum_{n=0}^{\infty} \frac{\lambda_i + 1/p}{(\lambda_i + 1/p)^2 + 1} = +\infty.$$
 (12)

4. The Full Müntz Theorem in $L^{p}[0,1]$ ([0])

The Full Müntz Theorem in $L^p[0,1]$

Let $1 and <math>\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than -1/p. Then, the collection of finite linear combinations of functions $\{t^{\lambda_0}, t^{\lambda_1}, t^{\lambda_2}, \ldots\}$ is dense in $L^p[0, 1]$ if and only if

$$\sum_{n=0}^{\infty} \frac{\lambda_i + 1/p}{(\lambda_i + 1/p)^2 + 1} = +\infty.$$
 (12)

To prove this theorem we will use the following lemma:

Lemma

Suppose $\{\mu_i\}_{i=0}^{\infty}$ is a sequence of distinct positive real numbers such that span $\{t^{\mu_i-1/r}\}_{i=0}^{\infty}$ is dense in $L^r[0,1]$. Then, span $\{t^{\mu_i-1/s}\}_{i=0}^{\infty}$ is dense in $L^s[0,1]$ for every s > r and span $\{1, t^{\mu_0}, t^{\mu_1}, \ldots\}$ is dense in C[0,1].

Proof.
Let
$$X = L^{r}[0,1]$$
, $Y = L^{s}[0,1]$, $A = \operatorname{span}\{t^{\mu_{i}-1/r}\}_{i=0}^{\infty}$.

Proof. Let $X = L^r[0,1]$, $Y = L^s[0,1]$, $A = \operatorname{span}\{t^{\mu_i - 1/r}\}_{i=0}^{\infty}$. For the first part, we consider the operator $J : L^r[0,1] \to L^s[0,1]$ defined by:

$$(Jarphi)(t)=t^{-(1/r'+1/s)}\int_0^t arphi(s)ds, \quad (t\in [0,1], \ arphi\in L^r[0,1])$$

where $\frac{1}{r} + \frac{1}{r'} = 1$.

Proof. Let $X = L^r[0,1]$, $Y = L^s[0,1]$, $A = \operatorname{span}\{t^{\mu_i - 1/r}\}_{i=0}^{\infty}$. For the first part, we consider the operator $J : L^r[0,1] \to L^s[0,1]$ defined by:

$$(J\varphi)(t) = t^{-(1/r'+1/s)} \int_0^t \varphi(s) ds, \quad (t \in [0,1], \ \varphi \in L^r[0,1])$$

where $\frac{1}{r} + \frac{1}{r'} = 1$. We have for every $n \in \mathbb{N}$ that:

$$(J\psi_n)(t) = t^n, \quad \psi_n(t) = (n+1/r'+1/s)t^{n+1/s-1/r},$$

Proof. Let $X = L^r[0,1]$, $Y = L^s[0,1]$, $A = \operatorname{span}\{t^{\mu_i - 1/r}\}_{i=0}^{\infty}$. For the first part, we consider the operator $J : L^r[0,1] \to L^s[0,1]$ defined by:

$$(Jarphi)(t)=t^{-(1/r'+1/s)}\int_0^t arphi(s)ds, \quad (t\in [0,1], \ arphi\in L^r[0,1])$$

where $\frac{1}{r} + \frac{1}{r'} = 1$. We have for every $n \in \mathbb{N}$ that:

$$(J\psi_n)(t) = t^n, \quad \psi_n(t) = (n+1/r'+1/s)t^{n+1/s-1/r},$$

then, by the Weierstrass Approximation Theorem, J(X) is dense in Y and consequently, $J(A) = \text{span}\{t^{\mu_i - 1/s}\}_{i=0}^{\infty}$ is dense in $L^r[0, 1]$.

For the second part, we consider the operator $J: L^r[0,1] \rightarrow L^s[0,1]$ defined by:

$$(Jarphi)(t)=t^{-1/r'}\int_0^t arphi(s)ds, \quad orall t\in (0,1], \qquad (Jarphi)(0)=0,$$

where $\frac{1}{r} + \frac{1}{r'} = 1$.

For the second part, we consider the operator $J: L^r[0,1] \to L^s[0,1]$ defined by:

$$(Jarphi)(t)=t^{-1/r'}\int_0^t arphi(s)ds, \quad orall t\in (0,1], \qquad (Jarphi)(0)=0,$$

where $\frac{1}{r} + \frac{1}{r'} = 1$. A similar argument implies that span $\{1, t^{\mu_0}, t^{\mu_1}, \dots\}$ is dense in C[0, 1].

Proof of the Theorem. Firstly, let $\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than -1/p satisfying (12).

Proof of the Theorem. Firstly, let $\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than -1/p satisfying (12). We consider $\{v_i = \lambda_i - 1/p'\}_{i=0}^{\infty}$, where $\frac{1}{p} + \frac{1}{p'} = 1$, is a sequence of real

numbers greater than -1 and satisfying:

$$\sum_{i=0}^{\infty}rac{
u_i+1}{(
u_i+1)^2+1}.$$

Proof of the Theorem. Firstly, let $\{\lambda_i\}_{i=0}^{\infty}$ be a sequence of distinct real numbers greater than -1/p satisfying (12). We consider $\{v_i = \lambda_i - 1/p'\}_{i=0}^{\infty}$, where $\frac{1}{p} + \frac{1}{p'} = 1$, is a sequence of real numbers greater than -1 and satisfying:

$$\sum_{i=0}^{\infty}rac{v_i+1}{(v_i+1)^2+1}$$

By the Full Müntz Theorem in $L^1[0, 1]$, the set

$$\operatorname{span}\{t^{v_i}\}_{i=0}^{\infty} = \operatorname{span}\{t^{\lambda_i - 1/p'}\}_{i=0}^{\infty}$$

is dense in $L^1[0,1]$. Choosing $\mu_i = \lambda_i + 1/p$ and applying the lemma we will have that

$$\operatorname{span} \{t^{\mu_i - 1/p}\}_{i=0}^{\infty} = \operatorname{span} \{t^{\lambda_i}\}_{i=0}^{\infty}$$

is dense in $L^p[0,1]$ for p > 1.

For the reciprocal, suppose that span $\{t^{\lambda_i}\}_{i=0}^{\infty}$ is dense in $L^p[0,1]$.

For the reciprocal, suppose that span $\{t^{\lambda_i}\}_{i=0}^{\infty}$ is dense in $L^p[0, 1]$. Defining $\mu_i = \lambda_i + 1/p$, the set

$$\operatorname{span}\{t^{\mu_i-1/p}\}_{i=0}^{\infty}$$

is dense in $L^p[0,1]$, and by the lemma span $\{1, t^{\mu_i}\}_{i=0}^{\infty}$ is dense in C[0,1].

For the reciprocal, suppose that span $\{t^{\lambda_i}\}_{i=0}^{\infty}$ is dense in $L^p[0, 1]$. Defining $\mu_i = \lambda_i + 1/p$, the set

$$\operatorname{span}\{t^{\mu_i-1/p}\}_{i=0}^{\infty}$$

is dense in $L^p[0,1]$, and by the lemma span $\{1, t^{\mu_i}\}_{i=0}^{\infty}$ is dense in C[0,1]. It is enough to apply The Full Müntz Theorem in C[0,1] to obtain:

$$\sum_{i=0}^{\infty} \frac{\lambda_i + 1/p}{(\lambda_i + 1/p)^2 + 1} = \sum_{i=0}^{\infty} \frac{\mu_i}{\mu_i^2 + 1} = +\infty$$

5. An application of the Müntz-Szász Theorem ([LLPZ]) Definition

We define the *finite continuous Cesàro operator* C_1 on the complex Banach space $L^p[0, 1]$ for 1 by the expression:

$$(C_1 f)(t) := rac{1}{t} \int_0^t f(s) \, ds \qquad (t \in [0,1], \ f \in L^p[0,1]).$$
5. An application of the Müntz-Szász Theorem ([LLPZ]) Definition

We define the *finite continuous Cesàro operator* C_1 on the complex Banach space $L^p[0,1]$ for 1 by the expression:

$$(C_1 f)(t) := rac{1}{t} \int_0^t f(s) \, ds \qquad (t \in [0,1], \ f \in L^p[0,1]).$$

Definition

Let T be an operator on a complex Banach space X.

- The *point spectrum* of *T* is the set of those $\lambda \in \mathbb{C}$ for which there exists a nonzero vector $x \in X$ such that $Tx = \lambda x$.
- We say that T has rich point spectrum provided that int σ_p(T) ≠ Ø, and that for every open disc D ⊂ σ_p(T), the family of eigenvectors

$$\bigcup_{z\in D} \ker(T-z)$$

is a total set.

Lemma

Let T be a bounded linear operator on a complex Banach space X and let us suppose that there is an analytic mapping h: int $\sigma_p(T) \to X$ verifying:

(i)
$$h(z) \in \ker(T-z) \setminus \{0\}$$
 for all $z \in \operatorname{int} \sigma_p(T)$,

(ii) $\{h(z) : z \in int \sigma_p(T)\}$ is a total subset of X.

Then T has rich point spectrum.

Lemma

Let T be a bounded linear operator on a complex Banach space X and let us suppose that there is an analytic mapping h: int $\sigma_p(T) \to X$ verifying:

(i)
$$h(z) \in \ker(T-z) \setminus \{0\}$$
 for all $z \in \operatorname{int} \sigma_p(T)$,

(ii) $\{h(z) : z \in int \sigma_p(T)\}$ is a total subset of X.

Then T has rich point spectrum.

Using this we will prove the following result:

Theorem

The finite continuous Cesàro operator C_1 on $L^p[0,1]$ has rich point spectrum.

It is known that $\sigma_p(C_1) = D(p'/2, p'/2)$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, each $z \in D(p'/2, p'/2)$ is a simple eigenvalue of C_1 and a corresponding eigenfunction is given by $h_z(t) = t^{(1-z)/z}, \forall t \in [0, 1]$.

It is known that $\sigma_p(C_1) = D(p'/2, p'/2)$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, each $z \in D(p'/2, p'/2)$ is a simple eigenvalue of C_1 and a corresponding eigenfunction is given by $h_z(t) = t^{(1-z)/z}, \forall t \in [0, 1]$. So $h_{(\cdot)} : \sigma_p(C_1) \to L^p[0, 1]$ is analytic and $h_z \in \ker(C_1 - z) \setminus \{0\}$.

It is known that $\sigma_p(C_1) = D(p'/2, p'/2)$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, each $z \in D(p'/2, p'/2)$ is a simple eigenvalue of C_1 and a corresponding eigenfunction is given by $h_z(t) = t^{(1-z)/z}, \forall t \in [0, 1]$. So $h_{(\cdot)} : \sigma_p(C_1) \to L^p[0, 1]$ is analytic and $h_z \in \ker(C_1 - z) \setminus \{0\}$. It suffices to consider the sequence $\{z_i\}$ defined by:

$$z_i = \frac{i+1}{i+2}p', \qquad \forall i \in \mathbb{N} \cup \{0\}.$$

We have that the sequence $\lambda_i = (1 - z_i)/z_i$ is greater than -1/p and satisfies condition (12) and therefore span $\{t^{\lambda_i}\}_{i=0}^{\infty}$ is dense in $L^p[0, 1]$ and, consequently,

$$\{h_z : z \in D(p'/2, p'/2)\}$$

is total in $L^p[0,1]$.

It is known that $\sigma_p(C_1) = D(p'/2, p'/2)$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, each $z \in D(p'/2, p'/2)$ is a simple eigenvalue of C_1 and a corresponding eigenfunction is given by $h_z(t) = t^{(1-z)/z}, \forall t \in [0, 1]$. So $h_{(\cdot)} : \sigma_p(C_1) \to L^p[0, 1]$ is analytic and $h_z \in \ker(C_1 - z) \setminus \{0\}$. It suffices to consider the sequence $\{z_i\}$ defined by:

$$z_i = rac{i+1}{i+2}p', \qquad \forall i \in \mathbb{N} \cup \{0\}.$$

We have that the sequence $\lambda_i = (1 - z_i)/z_i$ is greater than -1/p and satisfies condition (12) and therefore span $\{t^{\lambda_i}\}_{i=0}^{\infty}$ is dense in $L^p[0, 1]$ and, consequently,

$$\{h_z : z \in D(p'/2, p'/2)\}$$

is total in $L^{p}[0,1]$. The result now follows from the previous lemma.

Bibliography

[A] Almira, J. M. (2007). *Müntz type theorems I.* Surveys in Approximation Theory, 3, 152-194.

[BE] Borwein, P., and Erdélyi, T. (1996). The full Müntz theorem in C[0,1] and $L^1[0,1]$. Journal of the London Mathematical Society, 54(1), 102-110.

[CMOR] Cascales, B., Mira, J. M., Orihuela, J., and Raja, M. (2012). *Análisis funcional (Vol. 1).* Ediciones Electolibris.

[EMMS] Eceizabarrena, D., Mas, A., Mengual, F., and Soria, M. (2017) *El teorema de Müntz-Szász sobre la aproximación de funciones continuas.* TEMat

[LLPZ] Lacruz, M., León-Saavedra, F., Petrovic, S., and Zabeti, O.

(2015). Extended eigenvalues for Cesaro operators. Journal of

Mathematical Analysis and Applications, 429(2), 623-657.

[O] Operstein, V. (1996). *Full Müntz Theorem in Lp[0, 1].* journal of approximation theory, 85(2), 233-235.

[R] Rudin, W. (1987). *Real and complex analysis*. Tata McGraw-Hill Education.

Index

- 1. The Weierstrass Approximation Theorem ([CMOR])
- 2. Müntz-Szász Theorem ([EMMS, R])
- 3. The Full Müntz Theorem in $L^2[0,1]$, C[0,1] and $L^1[0,1]$ ([BE])
- 4. The Full Müntz Theorem in $L^{p}[0,1]$ ([0])
- 5. An application of the Müntz-Szász Theorem ([LLPZ])

Bibliography