En busca de la linealidad en Matemáticas

M. CUETO, E. GÓMEZ, J. LLORENTE, E. MARTÍNEZ, D. RODRÍGUEZ, E. SÁEZ VIII Escuela taller de Análisis Funcional

・ロン ・回と ・ヨン ・ヨン

BILBAO, 9 MARZO 2018

Taller IV LINEABILITY

2 Everywhere differentiable nowhere monotone functions

Taller IV LINEABILITY

・ロト ・回ト ・ヨト ・ヨト

E

San

Index

- 2 Everywhere differentiable nowhere monotone functions
- 3 Everywhere surjective functions
- 4 Additivity

・ロト ・回ト ・ヨト ・ヨト

E

Sar

Definition (Aron, Gurariy, Seoane, 2004)

- We say that a subset M of a linear space E is λ-lineable if there exists a λ-dimensional subspace V of E such that V ⊂ M ∪ {0}. If V is infinite-dimensional, we simply say that M is lineable.
- A subset *M* of functions on ℝ is said to be **spaceable** if *M* ∪ {0} contains a *closed* infinite dimensional subspace.

(日) (同) (E) (E) (E)

San

Index

2 Everywhere differentiable nowhere monotone functions

3 Everywhere surjective functions

4 Additivity

Taller IV LINEABILITY

・ロト ・回ト ・ヨト ・ヨト

Э

Theorem (Aron, Gurariy, Seoane, 2004)

The set $\mathcal{DNM}(\mathbb{R})$ of differentiable functions on \mathbb{R} which are nowhere monotone is lineable in $\mathcal{C}(\mathbb{R})$.

Let $f : \mathbb{R} \to \mathbb{R}$ be a positive function which is integrable on each finite subinterval. We say that f is H-fat $(0 < H < \infty)$ if for each a < b,

$$\frac{1}{b-a} \cdot \int_{a}^{b} f(t)dt \leq H \cdot \min\left\{f(a), f(b)\right\}$$
(1)

 $H_f = \inf(H)$ in (1) will be called the **fatness** of f. We say that f is **fat** if it is H-fat for some $H \in (0, \infty)$. A family \mathcal{F} of such functions $\{f\}$ will be called **uniformly fat** if $H_{\mathcal{F}} = \sup_{f \in \mathcal{F}}(H_f) < \infty$.

イロト イポト イヨト イヨト 三日

Let $f : \mathbb{R} \to \mathbb{R}$ be a positive function which is integrable on each finite subinterval. We say that f is H-fat $(0 < H < \infty)$ if for each a < b,

$$\frac{1}{b-a} \cdot \int_{a}^{b} f(t)dt \leq H \cdot \min\left\{f(a), f(b)\right\}$$
(1)

 $H_f = \inf(H)$ in (1) will be called the **fatness** of f. We say that f is **fat** if it is H-fat for some $H \in (0, \infty)$. A family \mathcal{F} of such functions $\{f\}$ will be called **uniformly fat** if $H_{\mathcal{F}} = \sup_{f \in \mathcal{F}}(H_f) < \infty$.

Definition

A positive continuous even function φ on \mathbb{R} that is decreasing on \mathbb{R}^+ is called a scaling function.

・ロト ・回ト ・ヨト ・ヨト

Given a scaling function φ , if for each b > 0

$$rac{1}{b}\cdot\int_{0}^{b}arphi(t) dt\leq extsf{K}\cdotarphi(b),$$

then φ is fat and $H_{\varphi} \leq 2K$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given a scaling function φ , if for each b > 0

$$rac{1}{b}\cdot\int_{0}^{b}arphi(t) dt\leq extsf{K}\cdotarphi(b),$$

then φ is fat and $H_{\varphi} \leq 2K$.

Proof.

$$\bullet -b < a \le 0. \text{ Then}$$
$$\frac{1}{b-a} \cdot \int_{a}^{b} \varphi(t) dt \le \frac{2}{b} \cdot \int_{0}^{b} \varphi(t) dt \le 2K \cdot \varphi(b).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given a scaling function φ , if for each b > 0

$$rac{1}{b}\cdot\int_{0}^{b}arphi(t)dt\leq extsf{K}\cdotarphi(b),$$

then φ is fat and $H_{\varphi} \leq 2K$.

Proof.

•
$$-b < a \le 0$$
. Then
 $\frac{1}{b-a} \cdot \int_{a}^{b} \varphi(t) dt \le \frac{2}{b} \cdot \int_{0}^{b} \varphi(t) dt \le 2K \cdot \varphi(b).$

Q 0 < a < b. Making a proper linear substitution we have t(x) ≥ x on [0, b]. Since φ is decreasing, φ(t(x)) ≤ φ(x). Therefore

$$\frac{1}{b-a} \cdot \int_{a}^{b} \varphi(t) dt = \frac{1}{b} \cdot \int_{0}^{b} \varphi(t(x)) dx \leq \frac{1}{b} \int_{0}^{b} \varphi(x) dx \leq K \cdot \varphi(b).$$
Taller IV LINEABILITY

Example

The scaling function

$$arphi(t) = rac{1}{\sqrt{1+|t|}}$$

verifies $H_{\varphi} \leq 4$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧ ● ● ● ● ● ●

Example

The scaling function

$$arphi(t) = rac{1}{\sqrt{1+|t|}}$$

verifies $H_{\varphi} \leq 4$.

Definition (φ -wavelet)

Given a scaling function φ , let $L(\varphi)$ denote the set of functions of the form

$$\Psi(x) = \sum_{j=1}^n c_j \cdot \varphi(\lambda_j(x - lpha_j)) \quad ext{where} \quad c_j, \lambda_j > 0, \quad ext{and} \quad lpha_j \in \mathbb{R}.$$

・ロン ・雪 ・ ・ 同 ・ ・ 同・

Э

Definition (φ -wavelet)

Given a scaling function φ , let $L(\varphi)$ denote the set of functions of the form

$$\Psi(x) = \sum_{j=1}^n c_j \cdot arphi(\lambda_j(x-lpha_j)) \quad ext{where} \quad c_j, \lambda_j > 0, \quad ext{and} \quad lpha_j \in \mathbb{R}.$$

Proposition

If a scaling function φ is fat, then $L(\varphi)$ is uniformly fat. Moreover, $H_{L(\varphi)} = H_{\varphi}$.

・ロン ・四 と ・ 回 と ・ 回 と

Proposition (flexibility of $L(\varphi)$)

Choose an arbitrary scaling function φ , $n \in \mathbb{N}$, n distinct real numbers $\{\alpha_j\}_{j=1}^n$, and intervals $\{I_j = (y_j, \tilde{y_j})\}_{j=1}^n$, where $0 < y_j < \tilde{y_j}$ for each j = 1, 2, ..., n. Then there exists $\psi \in L(\varphi)$ such that the following two conditions are satisfied:

•
$$\psi(\alpha_j) \in I_j$$
 for $j = 1, 2, \ldots, n$.

2
$$\psi(x) < \max_{1 \le j \le n} \widetilde{y}_j$$
 for all $x \in \mathbb{R}$.

Let $\sum_{n=1}^{\infty} \Psi_n(x)$ be a formal series of \mathcal{C}^1 -functions on \mathbb{R} , such that for some $x_0 \in \mathbb{R}$, $\sum_{n=1}^{\infty} \Psi_n(x_0)$ converges. For each n, let $\Psi'_n = \psi_n$ and suppose that $\{\psi_n : n \in \mathbb{N}\}$ is a uniformly fat sequence of positive functions, with $\sum_{n=1}^{\infty} \psi_n(a)$ converging to s, say, for some a. Then

- $F(x) \equiv \sum_{n=1}^{\infty} \Psi_n(x)$ is uniformly convergent on each bounded subset of \mathbb{R} .
- 2 F'(a) exists and F'(a) = s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $0 = y_0 < y_1 < y_2 < \cdots < y_n < \cdots \rightarrow 1$. Let $S_0 = \{\alpha_j^0\}_{j=1}^\infty$ be a countable set of distinct real numbers and, for each $i \in \mathbb{N}$, let $S_i = \{\alpha_j^{(i)}\}_{j=1}^{m_i}$ be a finite set of distinct real numbers. Suppose further that the sets $\{S_i\}_{i=0}^\infty$ are pairwise disjoint. Then, there exists a differentiable function F on \mathbb{R} such that **1** $F'(\alpha_j^{(i)}) = y_j$ for all $j = 1, 2, \ldots, m_i$ and $i = 1, 2, \ldots$ **2** $F'(\alpha_j^{(0)}) = 1$ for all $j \in \mathbb{N}$. **3** $0 < F'(x) \le 1$, for all $x \in \mathbb{R}$.

Taller IV LINEABILITY

San

Proof. For each *i* and each interval $I_i = (y_{i-1}, y_i)$, consider a strictly increasing sequence $(y_{i,j})$ such that $(y_{i,j}) \in I_i$ and $\lim_{j\to\infty} y_{i,j} = y_i$. Let φ be a fat scaling function on \mathbb{R} .

San

Proof. For each *i* and each interval $I_i = (y_{i-1}, y_i)$, consider a strictly increasing sequence $(y_{i,j})$ such that $(y_{i,j}) \in I_i$ and $\lim_{j\to\infty} y_{i,j} = y_i$. Let φ be a fat scaling function on \mathbb{R} . By the previous proposition there exists $f_1 = \psi_1 \in L(\varphi)$ such that:

11. $\psi_1(\alpha_j^{(1)}) \in (y_{1,0}, y_{1,1})$ for $j = 1, 2, ..., m_1$. 12. $\psi_1(\alpha_1^0) \in (y_{1,0}, y_{1,1})$, and 13. $\psi_1(x) < y_{1,1}$ for all $x \in \mathbb{R}$.

na a

Proof. For each *i* and each interval $I_i = (y_{i-1}, y_i)$, consider a strictly increasing sequence $(y_{i,j})$ such that $(y_{i,j}) \in I_i$ and $\lim_{j\to\infty} y_{i,j} = y_i$. Let φ be a fat scaling function on \mathbb{R} . By the previous proposition there exists $f_1 = \psi_1 \in L(\varphi)$ such that:

11.
$$\psi_1(\alpha_j^{(1)}) \in (y_{1,0}, y_{1,1})$$
 for $j = 1, 2, \dots, m_1$.

I2.
$$\psi_1(\alpha_1^0) \in (y_{1,0}, y_{1,1})$$
, and

I3.
$$\psi_1(x) < y_{1,1}$$
 for all $x \in \mathbb{R}$.

By the same argument, we can choose $\psi_2 \in L(\varphi)$ such that if $f_2 = \psi_1 + \psi_2$, then the following hold:

II1.
$$f_2(\alpha_j^{(1)}) \in (y_{1,1}, y_{1,2})$$
, for $j = 1, 2, ..., m_1$.
 $f_2(\alpha_j^{(2)}) \in (y_{2,1}, y_{2,2})$, for $j = 1, 2, ..., m_2$.
II2. $f_2(\alpha_j^0) \in (y_{2,1}, y_{2,2})$ for $j = 1, 2$, and

II3. $f_2(x) < y_{2,2}$, for all $x \in \mathbb{R}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Continuing in this fashion we obtain a sequence (f_n) , where $f_n = \sum_{i=1}^n \psi_i$, n = 1, 2, ..., and where each $\psi_i \in L(\varphi)$ is such that the following conditions hold:

(ロ) (部) (E) (E) E

Continuing in this fashion we obtain a sequence (f_n) , where $f_n = \sum_{i=1}^n \psi_i$, n = 1, 2, ..., and where each $\psi_i \in L(\varphi)$ is such that the following conditions hold:

N1.
$$f_n(\alpha_j^{(1)}) \in (y_{1,n-1}, y_{1,n})$$
, for $j = 1, 2, ..., m_1$.
 $f_n(\alpha_j^{(2)}) \in (y_{2,n-1}, y_{2,n})$, for $j = 1, 2, ..., m_2$.
 \vdots
 $f_n(\alpha_j^{(n)}) \in (y_{n,n-1}, y_{n,n})$, for $j = 1, 2, ..., m_n$.
N2. $f_n(\alpha_j^0) \in (y_{n,n-1}, y_{n,n})$ for $j = 1, 2, ..., n$.
N3. $f_n(x) < y_{n,n}$, for all $x \in \mathbb{R}$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Continuing in this fashion we obtain a sequence (f_n) , where $f_n = \sum_{i=1}^n \psi_i$, n = 1, 2, ..., and where each $\psi_i \in L(\varphi)$ is such that the following conditions hold:

N1.
$$f_n(\alpha_j^{(1)}) \in (y_{1,n-1}, y_{1,n})$$
, for $j = 1, 2, ..., m_1$.
 $f_n(\alpha_j^{(2)}) \in (y_{2,n-1}, y_{2,n})$, for $j = 1, 2, ..., m_2$.
 \vdots
 $f_n(\alpha_j^{(n)}) \in (y_{n,n-1}, y_{n,n})$, for $j = 1, 2, ..., m_n$.
N2. $f_n(\alpha_j^0) \in (y_{n,n-1}, y_{n,n})$ for $j = 1, 2, ..., n$.
N3. $f_n(x) < y_{n,n}$, for all $x \in \mathbb{R}$.
Since $f_n(x) \le 1$ and $\psi_n(x) > 0$ for all x , the series
 $\psi(x) = \sum_{n=1}^{\infty} \psi_n(x)$ converges for all $x \in \mathbb{R}$.
It follows from the previous theorem that the function
 $F(x) = \int_0^{\infty} \psi(x) dx$ satisfies all the assertions in the statement of
the theorem.

・ロン ・雪 と ・ ヨ と

3

San

Let A^+ , A^- , A^0 be pairwise disjoint countable sets in \mathbb{R} . There exists a differentiable function F on \mathbb{R} such that $F'(x) \leq 1$ for all $x \in \mathbb{R}$ and such that:

F'(x) > 0, x ∈ A⁺.
 F'(x) < 0, x ∈ A⁻.
 F'(x) = 0, x ∈ A⁰.

イロト イポト イヨト イヨト 三日

San

Let A^+ , A^- , A^0 be pairwise disjoint countable sets in \mathbb{R} . There exists a differentiable function F on \mathbb{R} such that $F'(x) \leq 1$ for all $x \in \mathbb{R}$ and such that:

9 F'(x) > 0, x ∈ A⁺. **9** F'(x) < 0, x ∈ A⁻. **9** F'(x) = 0, x ∈ A⁰.

Proof.

• H'(x) = 1 for $x \in A^+ \cup A^0$, H'(x) < 1 for $x \in A^-$, and $0 < H'(x) \le 1$ for $x \in \mathbb{R}$.

(日) (同) (E) (E) (E)

Let A^+ , A^- , A^0 be pairwise disjoint countable sets in \mathbb{R} . There exists a differentiable function F on \mathbb{R} such that $F'(x) \leq 1$ for all $x \in \mathbb{R}$ and such that:

9 F'(x) > 0, x ∈ A⁺. **9** F'(x) < 0, x ∈ A⁻. **9** F'(x) = 0, x ∈ A⁰.

Proof.

- H'(x) = 1 for $x \in A^+ \cup A^0$, H'(x) < 1 for $x \in A^-$, and $0 < H'(x) \le 1$ for $x \in \mathbb{R}$.
- 2 G'(x) = 1 for $x \in A^- \cup A^0$, G'(x) < 1 for $x \in A^+$, and $0 < G'(x) \le 1$ for $x \in \mathbb{R}$.

(日) (同) (E) (E) (E)

San

Let A^+ , A^- , A^0 be pairwise disjoint countable sets in \mathbb{R} . There exists a differentiable function F on \mathbb{R} such that $F'(x) \leq 1$ for all $x \in \mathbb{R}$ and such that:

9 F'(x) > 0, x ∈ A⁺. **9** F'(x) < 0, x ∈ A⁻. **9** F'(x) = 0, x ∈ A⁰.

Proof.

- H'(x) = 1 for $x \in A^+ \cup A^0$, H'(x) < 1 for $x \in A^-$, and $0 < H'(x) \le 1$ for $x \in \mathbb{R}$.
- 2 G'(x) = 1 for $x \in A^- \cup A^0$, G'(x) < 1 for $x \in A^+$, and $0 < G'(x) \le 1$ for $x \in \mathbb{R}$.

The function F(x) = H(x) - G(x) satisfies the conditions of the theorem.

Theorem (Aron, Gurariy, Seoane, 2004)

The set $\mathcal{DNM}(\mathbb{R})$ is lineable in $C(\mathbb{R})$.

(ロ) (部) (注) (注) (注)

Theorem (Aron, Gurariy, Seoane, 2004)

The set $\mathcal{DNM}(\mathbb{R})$ is lineable in $C(\mathbb{R})$.

Proof. Let's consider the sequence on triples of pairwise disjoint sets $\{A_k^+, A_k^-, A_k^0\}$ with the following properties:

- $\bullet \quad \text{Each of the three sets in each triple is dense in } \mathbb{R}.$
- Each of the three sets in the triple {A⁺_k, A⁻_k, A⁰_k} is a subset of A⁰_{k-1}.

By the previous theorem , for each k there exists an everywhere differentiable function $f_k(x)$ on \mathbb{R} such that

- 1 $f'_k(x) > 0, x \in A_k^+$. 2 $f'_k(x) < 0, x \in A_k^-$.
- 3 $f'_k(x) = 0, x \in A^0_k$.

Obviously each f_k is nowhere monotone and the sequence $\{f_k\}_1^\infty$ is linearly independent.

Let us show that if $f = \sum_{k=1}^{n} \alpha_k f_k$, with $\{\alpha_k\}_1^n$ not all zero, then f is nowhere monotone. Without loss, we may suppose that $\alpha_n \neq 0$. On A_n^+ all f'_k vanish for k < n, and so $f' = \alpha_n f'_n$, which implies that f is nowhere monotone. This proves the lineability of $\mathcal{DNM}(\mathbb{R})$.

・ロット (四) (日) (日)

Theorem (Gurariy, 1966)

If all elements of a subspace E of C[0,1] are differentiable on [0,1], then E is finite dimensional.

Theorem (Gurariy, 1966)

If all elements of a subspace E of C[0, 1] are differentiable on [0, 1], then E is finite dimensional.

Proposition

For finite a, b the set $\mathcal{DNM}[a, b]$ is lineable and not spaceable in C[a, b].

・ロン ・回 と ・ 回 と ・ 回 と

Index

2 Everywhere differentiable nowhere monotone functions

3 Everywhere surjective functions

4 Additivity

Taller IV LINEABILITY

・ロト ・回ト ・ヨト ・ヨト

E

DQC

Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that f is **everywhere surjective** (denoted $f \in ES$) if $f(I) = \mathbb{R}$ for every non-trivial interval $I \subset \mathbb{R}$.

イロト イポト イヨト イヨト 三日

na Cr

There exists a vector space $\Lambda \subset \mathbb{R}^{\mathbb{R}}$ enjoying the following two properties: (i) Every non-zero element of Λ is an onto function, and (ii) dim $(\Lambda) = 2^{\mathfrak{c}}$.

na Cr

$$H_{\mathcal{C}}(y, x_1, x_2, x_3, \dots) = y \cdot \prod_{i=1}^{\infty} \chi_{\mathcal{C}}(x_i).$$

$$H_{\mathcal{C}}(y, x_1, x_2, x_3, \dots) = y \cdot \prod_{i=1}^{\infty} \chi_{\mathcal{C}}(x_i).$$

The strategy is to show the following:

• $\forall C \subset \mathbb{R}, H_C$ is onto.

(日) (四) (三) (三) (三)

na Cr

$$H_{\mathcal{C}}(y, x_1, x_2, x_3, \dots) = y \cdot \prod_{i=1}^{\infty} \chi_{\mathcal{C}}(x_i).$$

The strategy is to show the following:

•
$$\forall C \subset \mathbb{R}, H_C$$
 is onto.

2 The family $\{H_C : C \subset \mathbb{R}\}$ is linearly independent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シヘヘ

$$H_{\mathcal{C}}(y, x_1, x_2, x_3, \dots) = y \cdot \prod_{i=1}^{\infty} \chi_{\mathcal{C}}(x_i).$$

The strategy is to show the following:

•
$$\forall C \subset \mathbb{R}, H_C$$
 is onto.

- **2** The family $\{H_C : C \subset \mathbb{R}\}$ is linearly independent.
- Every $0 \neq g \in span(\{H_C : C \subset \mathbb{R}\})$ is onto.

▲ロト ▲周ト ▲臣ト ▲臣ト 三臣 - のへの

$$H_{\mathcal{C}}(y, x_1, x_2, x_3, \dots) = y \cdot \prod_{i=1}^{\infty} \chi_{\mathcal{C}}(x_i).$$

The strategy is to show the following:

 $\ \, \bullet C \subset \mathbb{R}, \ H_C \ \text{is onto}.$

2 The family $\{H_C : C \subset \mathbb{R}\}$ is linearly independent.

• Every $0 \neq g \in span(\{H_C : C \subset \mathbb{R}\})$ is onto.

Thus, we have that $dim(span\{H_C : C \subset \mathbb{R}\}) = 2^{\mathfrak{c}}$. Since there exists a bijection between \mathbb{R} and $\mathbb{R}^{\mathbb{N}}$, we can construct the vector space that we are looking for.

(日) (同) (E) (E) (E)

Theorem (Aron, Gurariy, Seoane, 2004) The set $\{f \in \mathbb{R}^{\mathbb{R}} : f(I) = \mathbb{R} \text{ for every } I \subset \mathbb{R}\}$

is 2^c-lineable.

Taller IV LINEABILITY

Index

- 2 Everywhere differentiable nowhere monotone functions
- 3 Everywhere surjective functions

・ロン ・回 と ・ ヨ と ・ ヨ と

E

Sar

Let $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$. The **additivity** of \mathcal{F} is defined as the following cardinal number:

 $\mathcal{A}(\mathcal{F}) = \min(\{\mathit{card}(F) : F \subset \mathbb{R}^{\mathbb{R}}, \varphi + F \nsubseteq \mathcal{F}, \forall \varphi \in \mathbb{R}^{\mathbb{R}}\} \cup \{(2^c)^+\})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Let $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$. The **additivity** of \mathcal{F} is defined as the following cardinal number:

$$\mathcal{A}(\mathcal{F}) = \min(\{\mathit{card}(F) : F \subset \mathbb{R}^{\mathbb{R}}, \varphi + F \nsubseteq \mathcal{F}, \forall \varphi \in \mathbb{R}^{\mathbb{R}}\} \cup \{(2^c)^+\})$$

Proposition

Let $\mathcal{F}, \mathcal{G} \subset \mathbb{R}^{\mathbb{R}}$. The additivity verifies the following properties:

$$1 \leq \mathcal{A}(\mathcal{F}) \leq (2^{\mathfrak{c}})^+,$$

$${\small {\small 2}} {\small {\small 0}} {\displaystyle {\rm ff}} \ {\cal F} \subset {\cal G} \ {\displaystyle {\rm then}} \ {\cal A}({\cal F}) \leq {\cal A}({\cal G}),$$

$${f 0}\ {\cal A}({\cal F})=1$$
 if and only if ${\cal F}=\emptyset$,

$${f 0} \ \ {\cal A}({\cal F})=(2^{\mathfrak c})^+$$
 if and only if ${\cal F}=\mathbb{R}^{\mathbb{R}},$

$${f 5}\,\,\,{\cal A}({\cal F})=2$$
 if and only if ${\cal F}-{\cal F}
eq {\Bbb R}^{\Bbb R}$.

イロト イヨト イヨト イヨト

Э

Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that:

- *f* is perfectly everywhere surjective (*f* ∈ *PES*) if *f*(*P*) = ℝ
 for every perfect set *P* ⊂ ℝ.
- f is a Jones function (f ∈ J) if C ∩ f ≠ Ø for every closed
 C ⊂ ℝ² with π_x(C) (i.e., projection of C on the first coordinate) has cardinality continuum c.

(日) (同) (E) (E) (E)

(ロ) (部) (E) (E) E

DQC

Proof. Let $F = C(\mathbb{R})$. Since $|C(\mathbb{R})| = \mathfrak{c}$, we shall see that $h + C(\mathbb{R}) \not\subset PES \setminus J$ for every $h \in \mathbb{R}^{\mathbb{R}}$. Suppose $h + C(\mathbb{R}) \subset PES \setminus J$ for some $h \in \mathbb{R}^{\mathbb{R}}$.

San

Proof. Let $F = C(\mathbb{R})$. Since $|C(\mathbb{R})| = \mathfrak{c}$, we shall see that $h + C(\mathbb{R}) \not\subset PES \setminus J$ for every $h \in \mathbb{R}^{\mathbb{R}}$. Suppose $h + C(\mathbb{R}) \subset PES \setminus J$ for some $h \in \mathbb{R}^{\mathbb{R}}$. Then, clearly, $h \in h + C(\mathbb{R}) \subset PES \setminus J$ and, thus, $h \notin J$. Therefore, $\exists C \subset \mathbb{R}^2$ closed such that $|\pi_x(C)| = \mathfrak{c}$ and $C \cap h = \emptyset$.

(日) (同) (E) (E) (E)

Proof. Let $F = C(\mathbb{R})$. Since $|C(\mathbb{R})| = \mathfrak{c}$, we shall see that $h + C(\mathbb{R}) \not\subset PES \setminus J$ for every $h \in \mathbb{R}^{\mathbb{R}}$. Suppose $h + C(\mathbb{R}) \subset PES \setminus J$ for some $h \in \mathbb{R}^{\mathbb{R}}$. Then, clearly, $h \in h + C(\mathbb{R}) \subset PES \setminus J$ and, thus, $h \notin J$. Therefore, $\exists C \subset \mathbb{R}^2$ closed such that $|\pi_x(C)| = \mathfrak{c}$ and $C \cap h = \emptyset$. The function $\gamma : \pi_x(C) \to \mathbb{R}$ given by $\gamma(x) = \inf\{y : (x, y) \in C\}$ is Borel. Thus, $\exists P \subset \pi_x(C)$ compact perfect such that $\gamma \upharpoonright P$ is continuous [M. Morayne, 1985].

Proof. Let $F = C(\mathbb{R})$. Since $|C(\mathbb{R})| = \mathfrak{c}$, we shall see that $h + C(\mathbb{R}) \not\subset PES \setminus J$ for every $h \in \mathbb{R}^{\mathbb{R}}$. Suppose $h + C(\mathbb{R}) \subset PES \setminus J$ for some $h \in \mathbb{R}^{\mathbb{R}}$. Then, clearly, $h \in h + C(\mathbb{R}) \subset PES \setminus J$ and, thus, $h \notin J$. Therefore, $\exists C \subset \mathbb{R}^2$ closed such that $|\pi_x(C)| = \mathfrak{c}$ and $C \cap h = \emptyset$. The function $\gamma : \pi_x(C) \to \mathbb{R}$ given by $\gamma(x) = \inf\{y : (x, y) \in C\}$ is Borel. Thus, $\exists P \subset \pi_{\star}(C)$ compact perfect such that $\gamma \upharpoonright P$ is continuous [M. Morayne, 1985]. By Tietze's Extension Theorem, $\exists f \in C(\mathbb{R})$ extension of $\gamma \upharpoonright P$. However, $0 \notin (h - f)(P)$, since h is disjoint with $C \supset \gamma \upharpoonright P$. Therefore $h - f \notin PES$ and we are done.

・ロン ・ 日 ・ ・ 田 ・ ・ 日 ・

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

(日) (四) (三) (三) (三)

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ star-like, that is, $\alpha \mathcal{F} \subset \mathcal{F}$ for all $\alpha \in \mathbb{R}$. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

San

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ star-like, that is, $\alpha \mathcal{F} \subset \mathcal{F}$ for all $\alpha \in \mathbb{R}$. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

Proof. Obviously, \mathcal{F} contains a linear space (namely, {0}) and, using Zorn's Lemma, we obtain that there exists a maximal linear space X contained in \mathcal{F} . We have $card(X) = max\{dim(X), c\}$.

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ star-like, that is, $\alpha \mathcal{F} \subset \mathcal{F}$ for all $\alpha \in \mathbb{R}$. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

Proof. Obviously, \mathcal{F} contains a linear space (namely, {0}) and, using Zorn's Lemma, we obtain that there exists a maximal linear space X contained in \mathcal{F} . We have $card(X) = max\{dim(X), c\}$. If the statement does not hold, we shall have $card(X) < \mathcal{A}(\mathcal{F})$ and,

San

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ star-like, that is, $\alpha \mathcal{F} \subset \mathcal{F}$ for all $\alpha \in \mathbb{R}$. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

Proof. Obviously, \mathcal{F} contains a linear space (namely, {0}) and, using Zorn's Lemma, we obtain that there exists a maximal linear space X contained in \mathcal{F} . We have $card(X) = max\{dim(X), \mathfrak{c}\}$. If the statement does not hold, we shall have $card(X) < \mathcal{A}(\mathcal{F})$ and, by the previous result, there exists $g \in \mathcal{F} \setminus X$ such that $g + X \subset \mathcal{F}$.

San

Let $\mathcal{F}, G \subsetneq \mathbb{R}^{\mathbb{R}}$ such that $G - G \subset G$ and $\aleph_0 < card(G) < \mathcal{A}(\mathcal{F})$ then there exists $z \in \mathcal{F} \setminus G$ such that $z + G \subset \mathcal{F}$.

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ star-like, that is, $\alpha \mathcal{F} \subset \mathcal{F}$ for all $\alpha \in \mathbb{R}$. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

Proof. Obviously, \mathcal{F} contains a linear space (namely, $\{0\}$) and, using Zorn's Lemma, we obtain that there exists a maximal linear space X contained in \mathcal{F} . We have $card(X) = max\{dim(X), c\}$. If the statement does not hold, we shall have $card(X) < \mathcal{A}(\mathcal{F})$ and, by the previous result, there exists $g \in \mathcal{F} \setminus X$ such that $g + X \subset \mathcal{F}$. Define Y = [g] + X, where [g] denotes the linear span of g. Using that \mathcal{F} is star-like, it is easy to see that $Y \subset \mathcal{F}$, in plain contradiction with the maximality of X.

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ be a star-like with $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$. Then \mathcal{F} is lineable.

▲日▼▲□▼▲Ⅲ▼▲Ⅲ▼ ● ●

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ be a star-like with $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$. Then \mathcal{F} is lineable.

Theorem (Gámez, Muñoz, Seoane, 2010)

$$\begin{aligned} \mathcal{A}(J) &= e_{\mathfrak{c}} \text{ where } \\ e_{\mathfrak{c}} &= \min\{ \mathsf{card}(F) : F \subset \mathbb{R}^{\mathbb{R}}, (\forall \varphi \in \mathbb{R}^{\mathbb{R}}) (\exists f \in F) (\mathsf{card}(f \cap \varphi) < \mathfrak{c}) \} \end{aligned}$$

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ be a star-like with $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$. Then \mathcal{F} is lineable.

Theorem (Gámez, Muñoz, Seoane, 2010)

$$\begin{aligned} \mathcal{A}(J) &= e_{\mathfrak{c}} \text{ where } \\ e_{\mathfrak{c}} &= \min\{ card(F) : F \subset \mathbb{R}^{\mathbb{R}}, (\forall \varphi \in \mathbb{R}^{\mathbb{R}}) (\exists f \in F) (card(f \cap \varphi) < \mathfrak{c}) \} \\ \text{ and } \mathfrak{c} &< e_{\mathfrak{c}} \leq 2^{\mathfrak{c}}. \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Let $\mathcal{F} \subsetneq \mathbb{R}^{\mathbb{R}}$ be a star-like with $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$. Then \mathcal{F} is lineable.

$$\begin{array}{l} \mathcal{A}(J) = e_{\mathfrak{c}} \text{ where} \\ e_{\mathfrak{c}} = \min\{ card(F) : F \subset \mathbb{R}^{\mathbb{R}}, (\forall \varphi \in \mathbb{R}^{\mathbb{R}}) (\exists f \in F) (card(f \cap \varphi) < \mathfrak{c}) \} \\ \text{and } \mathfrak{c} < e_{\mathfrak{c}} \leq 2^{\mathfrak{c}}. \end{array}$$

Theorem (Gámez, 2011)

J is $2^{\mathfrak{c}}$ -lineable.

(ロ) (部) (E) (E) E

 $\lambda(M) = \max\{\kappa : M \cup \{0\} \text{ contains a vector space of dimension } \kappa\}.$

Э

 $\lambda(M) = \max\{\kappa : M \cup \{0\} \text{ contains a vector space of dimension } \kappa\}.$

Definition

Let M be a subset of some vector space W. The **lineability** cardinality number of M is defined as

 $\mathcal{L}(M) = \min\{\kappa : M \cup \{0\} \text{ contains no vector space of dimension } \kappa\}.$

If $\lambda(M)$ exists, then $\mathcal{L}(M) = (\lambda(M))^+$.

(日) (同) (E) (E) (E)

Theorem (Bartoszewicz, Głab, 2013)

Let $2 \le \kappa \le \mu$ and let \mathbb{K} be a field with $|\mathbb{K}| = \mu$. Also, let V be a \mathbb{K} -vector space with $dim(V) = 2^{\mu}$ and $1 < \lambda \le (2^{\mu})^+$. There exists a star-like family $\mathcal{F} \subset V$ such that:

1
$$\kappa \leq \mathcal{A}(\mathcal{F}) \leq \kappa^+$$
.
2 $\mathcal{L}(\mathcal{F}) = \lambda$.

Taller IV LINEABILITY

References

- Aron, R.M.; Bernal, L.; Pellegrino, D.M.; Seoane, J.B. Lineability: the search for linearity in mathematics. Monographs and Research Notes in Mathematics. CRC Press (2016).
- ② Aron, R.M.; Gurariy, V. I.; Seoane, J.B. Lineability and spaceability of sets of functions on ℝ. Proc. Amer. Math. Soc. 133 (2005) 795–803.
- Ciesielski, K.C.; Gámez, J.L; Natkaniec, T.; Seoane, J.B.; On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity. Topology Appl. 235 (2018), 73–82.
- Gámez, J.L.; Muñoz, G.A.; Seoane, J.B. Lineability and additivity in ℝ^ℝ.
 J. Math. Anal. Appl. 369 (2010), no. 1, 265–272.

Gurariy, V.I.
 Subspaces and bases in spaces of continuous functions.
 Dokl. Akad. Nauk SSSR 167 (1966) 971–973.

THANK YOU FOR YOUR ATTENTION!!!

Taller IV

LINEABILITY

E