Linear Dynamics: Somewhere dense orbits are everywhere dense!

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos

VIII Escuela-Taller de la Red de Análisis Funcional BCAM, Bilbao

Theorem of Bourdon-Feldman, 2003

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

イロト イ団ト イヨト イヨ

Topological vector space

Definition

A topological vector space (t.v.s) is a vector space X over $\mathbb{K} = \mathbb{C}$ or \mathbb{R} endowed with a Hausdorff topology such that

$$+: X imes X o X$$

 $(x, y) \mapsto x + y$

$$egin{aligned} &\cdot:\mathbb{K} imes X o X\ &(\lambda,x)\mapsto\lambda\cdot x \end{aligned}$$

are continuous maps.

A (10) > A (10) > A (10)

Definitions and notation

Notation

Let $T : X \to X$ an operator (i.e, a continuous and linear map), and let $x \in X$. We denote the orbit of x under T the set $Orb(x, T) = \{x, Tx, T^2x, T^3x, ...\} = \{T^kx ; k \in \mathbb{N}_0\}$

• • • • • • •

Definitions and notation

Notation

Let $T : X \to X$ an operator (i.e, a continuous and linear map), and let $x \in X$. We denote the orbit of x under T the set $Orb(x, T) = \{x, Tx, T^2x, T^3x, ...\} = \{T^kx ; k \in \mathbb{N}_0\}$

Definition

Let *X* be a topological vector space, and let $T : X \to X$ be an operator. We say that *T* is hypercyclic if there exists some $x \in X$ whose orbit under *T* is dense in *X*, i.e, $\overline{Orb(x, T)} = X$. We denote HC(T) the set of all vectors $x \in X$ such that $\overline{Orb(x, T)} = X$.

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Definitions and notation

Notation

Let $T : X \to X$ an operator (i.e, a continuous and linear map), and let $x \in X$. We denote the orbit of x under T the set $Orb(x, T) = \{x, Tx, T^2x, T^3x, ...\} = \{T^kx ; k \in \mathbb{N}_0\}$

Definition

Let *X* be a topological vector space, and let $T : X \to X$ be an operator. We say that *T* is hypercyclic if there exists some $x \in X$ whose orbit under *T* is dense in *X*, i.e, $\overline{Orb(x, T)} = X$. We denote HC(T) the set of all vectors $x \in X$ such that $\overline{Orb(x, T)} = X$.

It is clear that if T is hypercyclic, then X is separable.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definitions and notation

A priori, a weaker property than hypercyclicity is the property of admitting a somewhere dense orbit.

Definition

A set is called somewhere dense if its closure contains a non empty open set.

Definitions and notation

A priori, a weaker property than hypercyclicity is the property of admitting a somewhere dense orbit.

Definition

A set is called somewhere dense if its closure contains a non empty open set.

Obviously, if $x \in HC(T)$, then Orb(x, T) is somewhere dense. Our goal is to show that under very few conditions (*X* is a t.v.s and $T: X \to X$ is an operator), these two notions are equivalent.

不同 とうきょうき

Some properties

Property 1

A set *U* is a neighbourhood of $x \in X$ if and only if $\exists W$ 0-neighbourhood such that $x + W \subset U$.

(4) (5) (4) (5)

Some properties

Property 1

A set *U* is a neighbourhood of $x \in X$ if and only if $\exists W$ 0-neighbourhood such that $x + W \subset U$.

Proof: We will prove it using a stronger result. That is, given $\lambda \in \mathbb{K} \setminus \{0\}$ and $y \in X$, the maps

$$egin{array}{ll} M_\lambda : X o X \ x \mapsto \lambda x \end{array}$$

$$egin{array}{ll} T_y:X o X\ x\mapsto x+y \end{array}$$

are homeomorphisms.

Some properties

The result follows from the facts that the maps + and \cdot are continuous, and so M_{λ} , $M_{\frac{1}{\lambda}}$, T_{y} and T_{-y} are continuous, bijective and $M_{\lambda}^{-1} = M_{\frac{1}{\lambda}}$, $T_{y}^{-1} = T_{-y}$. From this, we obtain the property because a set *S* is open if and only if x + S is open ($\forall x \in X$).

Some properties

Property 2

 $\forall x \in X, \forall W \text{ 0-neighbourhood}, \exists \lambda > 0 \text{ such that } x \in \lambda W.$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

< ロ > < 同 > < 回 > < 回 > < 回 > <

Some properties

Property 2

 $\forall x \in X, \forall W \text{ 0-neighbourhood}, \exists \lambda > 0 \text{ such that } x \in \lambda W.$

Proof: It follows from the continuity of the scalar product map. For every $x \in X$, $\cdot_x : \mathbb{K} \to X$ is a continuous map. Then we find $\mu \in \mathbb{K} \setminus \{0\}$ small enough with $\cdot_x(\mu) \in W$. We just need to take $\lambda = \frac{1}{\mu}$ to obtain $x \in \lambda W$.

A (10) A (10) A (10)

Some properties

Property 3

Let $L \subset X$ be a closed subspace. Then, the quotient space $X/L = \{x + L : x \in X\} = \{[x] : x \in X\}$ (where $x \sim y \Leftrightarrow x - y \in L$) is a t.v.s with the quotient topology (so it is Hausdorff).

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Some properties

Property 3

Let $L \subset X$ be a closed subspace. Then, the quotient space $X/L = \{x + L : x \in X\} = \{[x] : x \in X\}$ (where $x \sim y \Leftrightarrow x - y \in L$) is a t.v.s with the quotient topology (so it is Hausdorff).

Proof: We see that X/L is Hausdorff by showing that [0] is a closed set in X/L. This is because

$$[0] = \bigcap_{W \in \mathcal{U}_0} q(W) = \bigcap_{W \in \mathcal{U}_0} (W + L) = \overline{L} = L,$$

where the U_0 is an arbitrary basis of 0-neigbourhoods in X.

Let *X* be a topological vector space and let *T* be an operator on *X*. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

Let *X* be a topological vector space and let *T* be an operator on *X*. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

Problem (Herrero, 1992)

If an operator T admits a finite family of orbits whose union is dense in X, can we extract a single orbit which is dense in X?

A (10) > A (10) > A (10)

Let X be a topological vector space and let T be an operator on X. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

Problem (Herrero, 1992)

If an operator T admits a finite family of orbits whose union is dense in X, can we extract a single orbit which is dense in X?

Theorem (Costakis-Peris, 2000)

Let X be a topological vector space, T an operator on X and $x_1, ..., x_n \in X$. If $\bigcup_{j=1}^{n} \operatorname{Orb}(x_j, T)$ is dense in X, then there is some $i \in \{x_1, ..., x_n\}$ such that $\operatorname{Orb}(x_i, T)$ is dense in X

Let X be a topological vector space and let T be an operator on X. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

Problem (Herrero, 1992)

If an operator T admits a finite family of orbits whose union is dense in X, can we extract a single orbit which is dense in X?

Theorem (Costakis-Peris, 2000)

Let *X* be a topological vector space, *T* an operator on *X* and $x_1, ..., x_n \in X$. If $\bigcup_{j=1}^{n} \operatorname{Orb}(x_j, T)$ is dense in *X*, then there is some $i \in \{x_1, ..., x_n\}$ such that $\operatorname{Orb}(x_i, T)$ is dense in *X*

Problem (Peris, 2001)

If an operator T admits a somewhere dense orbit in X, should it be everywhere dense?

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos

Theorem (Costakis-Peris, 2000)

Let *X* be a topological vector space, *T* an operator on *X* and $x_1, ..., x_n \in X$. If $\bigcup_{j=1}^{n} \operatorname{Orb}(x_j, T)$ is dense in *X*, then there is some $i \in \{x_1, ..., x_n\}$ such that $\operatorname{Orb}(x_i, T)$ is dense in *X*

A (10) A (10) A (10)

Theorem (Costakis-Peris, 2000)

Let *X* be a topological vector space, *T* an operator on *X* and $x_1, ..., x_n \in X$. If $\bigcup_{j=1}^{n} \operatorname{Orb}(x_j, T)$ is dense in *X*, then there is some $i \in \{x_1, ..., x_n\}$ such that $\operatorname{Orb}(x_i, T)$ is dense in *X*

$$X = \overline{\bigcup_{i=1}^{n} \operatorname{Orb}(x_i, T)} = \bigcup_{i=1}^{n} \overline{\operatorname{Orb}(x_i, T)}$$

A (10) A (10) A (10)

Let *X* be a topological vector space and let *T* be an operator on *X*. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

Let *X* be a topological vector space and let *T* be an operator on *X*. Then $HC(T) = HC(T^p)$, for any $p \in \mathbb{N}$.

$$\operatorname{Orb}(x,T) = \bigcup_{j=0}^{p-1} \operatorname{Orb}(T^j x, T^p)$$

(i) If $y \in D(x) \Rightarrow D(y) \subset D(x)$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

イロト イ団ト イヨト イヨト

æ

(i) If $y \in D(x) \Rightarrow D(y) \subset D(x)$

•
$$D(x) = \overline{\operatorname{Orb}(x, T)}$$
 is *T*-invariant.

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

イロト イ団ト イヨト イヨト

æ

(i) If $y \in D(x) \Rightarrow D(y) \subset D(x)$

• $D(x) = \overline{\operatorname{Orb}(x, T)}$ is *T*-invariant.

$$T(\overline{\operatorname{Orb}(x,T)}) \subset \overline{T(\operatorname{Orb}(x,T))} \subset \overline{\operatorname{Orb}(x,T)}$$

•
$$y \in D(x) \Rightarrow \operatorname{Orb}(y, T) \subset \overline{\operatorname{Orb}(x, T)} \Rightarrow \overline{\operatorname{Orb}(y, T)} \subset \overline{\operatorname{Orb}(x, T)}$$

< □ > < 同 > < 回 > < 回 > .

(ii)

$U(x) = U(T^k x), \forall k \in \mathbb{N}$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

イロン イ理 とく ヨン イヨン

(ii)

$$U(x) = U(T^k x), \forall k \in \mathbb{N}$$

$$\overline{\operatorname{Orb}(x,T)} = \{x, Tx, ..., T^{k-1}x\} \cup \overline{\operatorname{Orb}(T^kx,T)}$$

We write

$$\overline{\operatorname{Orb}(x,T)} = \{x_1,\ldots,x_m\} \cup \overline{\operatorname{Orb}(T^kx,T)}$$

with $x_i \notin \overline{\operatorname{Orb}(T^k x, T)}$, for any $i = 1, \ldots, m$.

• Thus we have, by taking interiors,

$$U(x) = int(\overline{\operatorname{Orb}(x,T)}) = int(\{x_1,\ldots,x_m\} \cup \overline{\operatorname{Orb}(T^kx,T)})$$
$$= int(\overline{\operatorname{Orb}(T^kx,T)}) = U(T^kx).$$

(iii)

If $R : X \to X$ is a continuous map and R conmutes with T, then $R(D(x)) \subset D(Rx)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

(iii)

If $R: X \to X$ is a continuous map and R conmutes with T, then $R(D(x)) \subset D(Rx)$

$$R(\overline{\operatorname{Orb}(x,T)}) \subseteq \overline{R(\operatorname{Orb}(x,T))} = \overline{\{Rx,RTx,RT^2x,\ldots\}}$$
$$= \overline{\{Rx,TRx,T^2Rx,\ldots\}} = \overline{\operatorname{Orb}(Rx,T)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma 1

Lemma 1

Let *T* be an operator on a topological vector space *X*. If *T* admits a somewhere dense orbit then, for any nonzero polynomial *p*, the operator p(T) has dense range.

A (10) A (10) A (10)

Lemma 1

Lemma 1

Let *T* be an operator on a topological vector space *X*. If *T* admits a somewhere dense orbit then, for any nonzero polynomial *p*, the operator p(T) has dense range.

Complex case:

•
$$\exists a, \lambda_1, \ldots, \lambda_d \in \mathbb{C} : p(T) = a(T - \lambda_1 I) \cdots (T - \lambda_d I).$$

A (10) A (10) A (10)

Lemma 1

Lemma 1

Let *T* be an operator on a topological vector space *X*. If *T* admits a somewhere dense orbit then, for any nonzero polynomial *p*, the operator p(T) has dense range.

Complex case:

•
$$\exists a, \lambda_1, \ldots, \lambda_d \in \mathbb{C} : p(T) = a(T - \lambda_1 I) \cdots (T - \lambda_d I).$$

• Let $\lambda \in \mathbb{C}$ and $L = \overline{(T - \lambda I)(X)}$. Suppose $L \neq X$.

Lemma 1

Lemma 1

Let *T* be an operator on a topological vector space *X*. If *T* admits a somewhere dense orbit then, for any nonzero polynomial *p*, the operator p(T) has dense range.

Complex case:

•
$$\exists a, \lambda_1, \ldots, \lambda_d \in \mathbb{C} : p(T) = a(T - \lambda_1 I) \cdots (T - \lambda_d I).$$

- Let $\lambda \in \mathbb{C}$ and $L = \overline{(T \lambda I)(X)}$. Suppose $L \neq X$.
- Let $q: X \to X/L$ be the quotient map.

< ロ > < 同 > < 回 > < 回 >

Lemma 1

Lemma 1

Let *T* be an operator on a topological vector space *X*. If *T* admits a somewhere dense orbit then, for any nonzero polynomial *p*, the operator p(T) has dense range.

Complex case:

•
$$\exists a, \lambda_1, \ldots, \lambda_d \in \mathbb{C} : p(T) = a(T - \lambda_1 I) \cdots (T - \lambda_d I).$$

- Let $\lambda \in \mathbb{C}$ and $L = \overline{(T \lambda I)(X)}$. Suppose $L \neq X$.
- Let $q: X \to X/L$ be the quotient map.
- Let $S: X/L \to X/L$, $S[x] = \lambda[x] \ \forall x \in X$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Lemma 1

• $q((T - \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!
- $q((T \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$
- There exists $x \in X$ such that Orb(x, T) is somewhere dense.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$q((T - \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$$

• There exists $x \in X$ such that Orb(x, T) is somewhere dense.

•
$$\operatorname{Orb}([\underline{x}], \underline{S}) = \{\underline{S}^n[\underline{x}] : n \in \mathbb{N}_0\} = \{[\underline{T}^n \underline{x}] : n \in \mathbb{N}_0\} = q(\operatorname{Orb}(\underline{x}, T))$$

 $\Rightarrow q(\operatorname{Orb}(\underline{x}, T)) \subset q(\operatorname{Orb}(\underline{x}, T)) = \operatorname{Orb}([\underline{x}], \underline{S}).$

•
$$q((T - \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$$

- There exists x ∈ X such that Orb(x, T) is somewhere dense.
- $\operatorname{Orb}([\underline{x}], \underline{S}) = \{\underline{S}^n[\underline{x}] : n \in \mathbb{N}_0\} = \{[\underline{T}^n \underline{x}] : n \in \mathbb{N}_0\} = q(\operatorname{Orb}(\underline{x}, T))$ $\Rightarrow q(\operatorname{Orb}(\underline{x}, T)) \subset q(\operatorname{Orb}(\underline{x}, T)) = \operatorname{Orb}([\underline{x}], \underline{S}).$
- $Orb([x], S) = \{\lambda^n[x] : n \in \mathbb{N}_0\}$ is somewhere dense.

A (10) A (10)

•
$$q((T - \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$$

- There exists x ∈ X such that Orb(x, T) is somewhere dense.
- $\operatorname{Orb}([\underline{x}], \underline{S}) = \{\underline{S}^n[\underline{x}] : n \in \mathbb{N}_0\} = \{[\underline{T}^n \underline{x}] : n \in \mathbb{N}_0\} = q(\operatorname{Orb}(\underline{x}, T))$ $\Rightarrow q(\operatorname{Orb}(\underline{x}, T)) \subset \overline{q}(\operatorname{Orb}(\underline{x}, T)) = \operatorname{Orb}([\underline{x}], \underline{S}).$
- $Orb([x], S) = \{\lambda^n[x] : n \in \mathbb{N}_0\}$ is somewhere dense.

•
$$\{\lambda^n[x] : n \in \mathbb{N}_0\} \subset \operatorname{span}\{[x]\} \simeq \mathbb{C}.$$

• There exists $z \in \mathbb{C}$ such that $\{\lambda^n z : n \in \mathbb{N}_0\}$ is somewhere dense.

< 回 > < 三 > < 三 >

•
$$q((T - \lambda I)x) = 0 \Rightarrow q(Tx) = \lambda q(x) = Sq(x) \Rightarrow q \circ T = S \circ q.$$

- There exists x ∈ X such that Orb(x, T) is somewhere dense.
- $\operatorname{Orb}([\underline{x}], \underline{S}) = \{ S^n[\underline{x}] : n \in \mathbb{N}_0 \} = \{ [\underline{T}^n \underline{x}] : n \in \mathbb{N}_0 \} = q(\operatorname{Orb}(\underline{x}, T))$ $\Rightarrow q(\operatorname{Orb}(\underline{x}, T)) \subset \overline{q(\operatorname{Orb}(\underline{x}, T))} = \operatorname{Orb}([\underline{x}], \underline{S}).$
- $Orb([x], S) = \{\lambda^n[x] : n \in \mathbb{N}_0\}$ is somewhere dense.
- $\{\lambda^n[x] : n \in \mathbb{N}_0\} \subset \operatorname{span}\{[x]\} \simeq \mathbb{C}.$
- There exists $z \in \mathbb{C}$ such that $\{\lambda^n z : n \in \mathbb{N}_0\}$ is somewhere dense.
- Contradiction.

< 回 > < 三 > < 三 >

Lemma 1

Real case:

If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.

Real case:

- If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.
- It suffices to show that $\tilde{T} \lambda I$ has dense range for all $\lambda \in \mathbb{C}$. Let $L = \overline{(\tilde{T} \lambda I)(X)}$ and suppose that $L \neq \tilde{X}$.

< 回 > < 三 > < 三

Real case:

- If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.
- It suffices to show that $\tilde{T} \lambda I$ has dense range for all $\lambda \in \mathbb{C}$. Let $L = \overline{(\tilde{T} \lambda I)(X)}$ and suppose that $L \neq \tilde{X}$.
- $\exists x \in X$ such that $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in $X \Rightarrow \{T^n x + iT^m x : n, m \in \mathbb{N}_0\}$ is somewhere dense in \tilde{X} .

Real case:

- If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.
- It suffices to show that $\tilde{T} \lambda I$ has dense range for all $\lambda \in \mathbb{C}$. Let $L = \overline{(\tilde{T} \lambda I)(X)}$ and suppose that $L \neq \tilde{X}$.
- $\exists x \in X$ such that $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in $X \Rightarrow \{T^n x + iT^m x : n, m \in \mathbb{N}_0\}$ is somewhere dense in \tilde{X} .
- $q(\{T^nx + iT^mx : n, m \in \mathbb{N}_0\}) = \{q(T^nx) + iq(T^mx) : n, m \in \mathbb{N}_0\}$ = $\{\lambda^n[x] + i\lambda^m[x] : n, m \in \mathbb{N}_0\} = \{(\lambda^n + i\lambda^m)[x] : n, m \in \mathbb{N}_0\}$ is somewhere dense in $\tilde{X}/L \Rightarrow \tilde{X}/L \simeq \mathbb{C}$.

Real case:

- If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.
- It suffices to show that $\tilde{T} \lambda I$ has dense range for all $\lambda \in \mathbb{C}$. Let $L = \overline{(\tilde{T} \lambda I)(X)}$ and suppose that $L \neq \tilde{X}$.
- $\exists x \in X$ such that $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in $X \Rightarrow \{T^n x + iT^m x : n, m \in \mathbb{N}_0\}$ is somewhere dense in \tilde{X} .
- $q(\{T^nx + iT^mx : n, m \in \mathbb{N}_0\}) = \{q(T^nx) + iq(T^mx) : n, m \in \mathbb{N}_0\}$ = $\{\lambda^n[x] + i\lambda^m[x] : n, m \in \mathbb{N}_0\} = \{(\lambda^n + i\lambda^m)[x] : n, m \in \mathbb{N}_0\}$ is somewhere dense in $\tilde{X}/L \Rightarrow \tilde{X}/L \simeq \mathbb{C}$.
- We consider $|q|: X \to \mathbb{R}_0^+$. Since $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in X, $|q|(\{T^n x : n \in \mathbb{N}_0\}) = \{|\lambda|^n | [x]| : n \in \mathbb{N}_0\}$ is somewhere dense in \mathbb{R}_0^+ .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Real case:

- If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the complexifications of X and T.
- It suffices to show that $\tilde{T} \lambda I$ has dense range for all $\lambda \in \mathbb{C}$. Let $L = \overline{(\tilde{T} \lambda I)(X)}$ and suppose that $L \neq \tilde{X}$.
- $\exists x \in X$ such that $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in $X \Rightarrow \{T^n x + iT^m x : n, m \in \mathbb{N}_0\}$ is somewhere dense in \tilde{X} .
- $q({T^nx + iT^mx : n, m \in \mathbb{N}_0}) = {q(T^nx) + iq(T^mx) : n, m \in \mathbb{N}_0}$ = ${\lambda^n[x] + i\lambda^m[x] : n, m \in \mathbb{N}_0} = {(\lambda^n + i\lambda^m)[x] : n, m \in \mathbb{N}_0}$ is somewhere dense in $\tilde{X}/L \Rightarrow \tilde{X}/L \simeq \mathbb{C}$.
- We consider $|q|: X \to \mathbb{R}_0^+$. Since $\{T^n x : n \in \mathbb{N}_0\}$ is somewhere dense in X, $|q|(\{T^n x : n \in \mathbb{N}_0\}) = \{|\lambda|^n | [x]| : n \in \mathbb{N}_0\}$ is somewhere dense in \mathbb{R}_0^+ .
- Contradiction.

イベト イモト イモト

Lemma 2

Lemma 2

If Orb(x, T) is somewhere dense, then the set $\{p(T)x; p \neq 0 \text{ a polynomial}\}$ is connected and dense in X.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma 2

Lemma 2

If Orb(x, T) is somewhere dense, then the set $\{p(T)x; p \neq 0 \text{ a polynomial}\}$ is connected and dense in *X*.

Proof: The set $A := \{p(T)x; p \neq 0 \text{ a polynomial}\}$ is path connected. Take p, q nonzero polynomials such that p is not multiple of q then the path

$$tp(T)x + (1-t)q(T)x, t \in [0,1],$$

is contained in A. If p is multiple of q, we take a polynomial r that is not multiple of q.

... Observe that \overline{A} is a subspace of X. The element 0 is in \overline{A} since for every 0-neighbourhood W we can find a polynomial p_W such that

 $p_W(T)x \in W$.

Since $A \cup \{0\}$ is a subspace of X we have that \overline{A} is a subspace of X since

$$\overline{A\cup\{0\}}=\overline{A}\cup\{0\}=\overline{A}.$$

... Observe that \overline{A} is a subspace of X. The element 0 is in \overline{A} since for every 0-neighbourhood W we can find a polynomial p_W such that

 $p_W(T)x \in W$.

Since $A \cup \{0\}$ is a subspace of X we have that \overline{A} is a subspace of X since

$$\overline{A\cup\{0\}}=\overline{A}\cup\{0\}=\overline{A}.$$

Moreover $\overline{\operatorname{Orb}(x,T)} \subseteq \overline{A}$.

... Using the hypothesis, there is some $x_0 \in X$ and a 0-neighbourhood W such that $x_0 + W \subset \overline{A}$.

A (10) A (10) A (10)

... Using the hypothesis, there is some $x_0 \in X$ and a 0-neighbourhood W such that $x_0 + W \subset \overline{A}$. Thus, for any $y \in X$, there is a scalar λ with $y \in \lambda W$.

• • • • • • •

... Using the hypothesis, there is some $x_0 \in X$ and a 0-neighbourhood W such that $x_0 + W \subset \overline{A}$. Thus, for any $y \in X$, there is a scalar λ with $y \in \lambda W$. Then, since $\lambda x_0 \in \overline{A}$ and $\lambda(x_0 + W) \subset \overline{A}$ we have that

$$\mathbf{y} \in \lambda(\mathbf{x}_0 + \mathbf{W}) - \lambda \mathbf{x}_0 \subset \overline{\mathbf{A}}.$$

... Using the hypothesis, there is some $x_0 \in X$ and a 0-neighbourhood W such that $x_0 + W \subset \overline{A}$. Thus, for any $y \in X$, there is a scalar λ with $y \in \lambda W$. Then, since $\lambda x_0 \in \overline{A}$ and $\lambda(x_0 + W) \subset \overline{A}$ we have that

$$y \in \lambda(x_0 + W) - \lambda x_0 \subset \overline{A}.$$

Therefore $\overline{A} = X$.

Bourdon-Feldman Theorem

Theorem

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

A (10) A (10) A (10)

Bourdon-Feldman Theorem

Theorem

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

• Step 1. $T(X \setminus U(x)) \subset X \setminus U(x)$.

A (10) A (10) A (10)

Bourdon-Feldman Theorem

Theorem

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

- Step 1. $T(X \setminus U(x)) \subset X \setminus U(x)$.
- Step 2. For any $z \in X \setminus U(x)$, $D(z) \subset X \setminus U(x)$.

A (10) > A (10) > A (10)

Bourdon-Feldman Theorem

Theorem

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

- Step 1. $T(X \setminus U(x)) \subset X \setminus U(x)$.
- Step 2. For any $z \in X \setminus U(x)$, $D(z) \subset X \setminus U(x)$.
- Step 3. For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$.

Bourdon-Feldman Theorem

Theorem

Let *T* be an operator on a topological vector space *X* and $x \in X$. If Orb(x, T) is somewhere dense in *X*, then it is dense in *X*.

- Step 1. $T(X \setminus U(x)) \subset X \setminus U(x)$.
- Step 2. For any $z \in X \setminus U(x)$, $D(z) \subset X \setminus U(x)$.
- Step 3. For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$.
- Step 4. D(x) = X.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Step 1

$T(X \setminus U(x)) \subset X \setminus U(x)$

We show, equivalently, that $T^{-1}(U(x)) \subset U(x)$.

- There exists $m \in \mathbb{N}_0$ such that $x_m := T^m x \in U(x)$.
- Let $y \in T^{-1}(U(x))$, and let V be an arbitrary neighbourhood of y.
- $A := \{q(T)x_m : q \neq 0 \text{ a polynomial}\}$ is dense in *X*, which implies that there is $p \neq 0$ polynomial such that $p(T)x_m \in V \cap T^{-1}(U(x)).$

We will show $p(T)x_m \in V \cap D(x)$. Note that

$$p(T)x_m \in p(T)(U(x)) = p(T)(U(T^{m+1}x)) \subset p(T)(D(T^{m+1}x)),$$
 (1)

and

$$p(T)(D(T^{m+1}x)) \subset D(p(T)T^{m+1}x) = D(Tp(T)x_m).$$
(2)

By (1) and (2), we have

$$p(T)x_m \in D(Tp(T)x_m).$$

Since

$$p(T)x_m \in T^{-1}(U(x)) \Rightarrow Tp(T)x_m \in U(x) \subset D(x),$$

which implies

$$p(T)x_m \in D(x) \Rightarrow p(T)x_m \in V \cap D(x).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Since *V* is an arbitrary neighbourhood of *y* and D(x) is closed, we deduce that $y \in D(x)$. Also, U(x) is open and *T* is continuous, which yields $T^{-1}(U(x)) \subset U(x)$.

Since *V* is an arbitrary neighbourhood of *y* and D(x) is closed, we deduce that $y \in D(x)$. Also, U(x) is open and *T* is continuous, which yields $T^{-1}(U(x)) \subset U(x)$.

Step 2

For any $z \in X \setminus U(x)$, $D(z) \subset X \setminus U(x)$.

By Step 1, $X \setminus U(x)$ is *T*-invariant, and we have that $T^m z \in X \setminus U(x)$ for all $m \in \mathbb{N}_0$. Therefore $Orb(z, T) \subset X \setminus U(x)$. Since $X \setminus U(x)$ is closed, we deduce that

 $D(z) \subset X \setminus U(x).$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Proof

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

イロト イポト イヨト イヨト

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

• There exists some $y \in X$ such that $p(T)y \in U(x)$.

< ロ > < 同 > < 三 > < 三 > -

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

- There exists some $y \in X$ such that $p(T)y \in U(x)$.
- $p(T)(D(x)) \subseteq D(p(T)x) \subseteq X \setminus U(x).$

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

- There exists some $y \in X$ such that $p(T)y \in U(x)$.
- $p(T)(D(x)) \subseteq D(p(T)x) \subseteq X \setminus U(x).$
- $y \in X \setminus D(x)$.

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

- There exists some $y \in X$ such that $p(T)y \in U(x)$.
- $p(T)(D(x)) \subseteq D(p(T)x) \subseteq X \setminus U(x).$
- $y \in X \setminus D(x)$.
- There exists some polynomial $q \neq 0$ such that

$$q(T)x \in X \setminus D(x)$$
 & $p(T)q(T)x \in U(x)$

Step 3

For any polynomial $p \neq 0$, $p(T)x \in X \setminus \partial D(x)$

Suppose that $p(T)x \in \partial D(x)$ for some polynomial $p \neq 0$.

- There exists some $y \in X$ such that $p(T)y \in U(x)$.
- $p(T)(D(x)) \subseteq D(p(T)x) \subseteq X \setminus U(x).$
- $y \in X \setminus D(x)$.
- There exists some polynomial $q \neq 0$ such that

$$q(T)x \in X \setminus D(x)$$
 & $p(T)q(T)x \in U(x)$

• $q(T)p(T)x \in q(T)(D(x)) \subseteq D(q(T)x) \subseteq X \setminus U(x)$. Which is a contradiction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof

Step 4

$$D(x) = X$$

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!

<ロ> <問> <問> < 回> < 回> 、
Step 4

$$D(x) = X$$

We recall that the set

$$A = \{p(T)x : p \neq 0 \text{ is a polynomial}\}$$

is connected and dense in X.

3

Step 4

$$D(x) = X$$

We recall that the set

$$A = \{p(T)x : p \neq 0 \text{ is a polynomial}\}\$$

is connected and dense in X. We know by Step 3 that

 $A \subseteq U(x) \cup (X \setminus D(x)),$

where U(x) and $X \setminus D(x)$ are open disjoint sets.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Step 4

$$D(x) = X$$

We recall that the set

$$A = \{p(T)x : p \neq 0 \text{ is a polynomial}\}$$

is connected and dense in X. We know by Step 3 that

 $A \subseteq U(x) \cup (X \setminus D(x)),$

where U(x) and $X \setminus D(x)$ are open disjoint sets.

• $A \cap U(x) \neq \emptyset$.

< ロ > < 同 > < 三 > < 三 > -

э.

Step 4

$$D(x) = X$$

We recall that the set

$$A = \{p(T)x : p \neq 0 \text{ is a polynomial}\}\$$

is connected and dense in X. We know by Step 3 that

 $A \subseteq U(x) \cup (X \setminus D(x)),$

where U(x) and $X \setminus D(x)$ are open disjoint sets.

- $A \cap U(x) \neq \emptyset$.
- $X \setminus D(x) = \emptyset$.

Which implies that D(x) = X, as desired.

イロト イ団ト イヨト イヨト

Bibliography

S .	.I. Ansari,	Hypercyclic	and cyclic	vectors, J.	Funct.	Anal.	128	(1995), 374–383	
------------	-------------	-------------	------------	-------------	--------	-------	-----	-----------------	--

P.S. Bourdon and N.S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. **52** (2003), no. 3, 811–819.

G. Costakis, On a conjecture of D. Herrero concerning hypercyclic operators, C.R. Acad. Sci. Paris **330** (2000), 179–182.

K.-G. Grosse-Erdmann and A. Peris Manguillot, *Linear Chaos*. Universitext. Springer, London, 2011. http://dx.doi.org/10.1007/978-1-4471-2170-1

A. Peris, Multihypercyclic operators are hypercyclic, Math. Z. **236** (2001), 779–786.

J. Wengenroth, Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc. **131** (2003), no. 6, 1759–1761.