Geometric characterisations of $\ell^1(\Gamma)$

Antonio Zarauz Moreno

XIV Encuentro de la Red de Análisis Funcional y Aplicaciones

March 10, 2018

Outline

Characterisation using segments

haracterisation using renormings

Notation

- \mathbb{K} : \mathbb{R} or \mathbb{C} .
- $\mathbb{T} = \{\lambda \in \mathbb{K} \colon |\lambda| = 1\}.$
- $(X, \|\cdot\|_X)$: Banach space.
- $B_{(X,\|\cdot\|_X)}$: Closed unit ball of $(X,\|\cdot\|_X)$.
- $\mathsf{E}_{(X,\|\cdot\|_X)}$: Extreme points of $\mathsf{B}_{(X,\|\cdot\|_X)}$.

First definitions

First we introduce some definitions to deal with the problem.

Definition

Let X be a vector space and $A \subset X$. A is said to be **convex** if $(1-t)A + tA \subset A$ for every $t \in [0, 1]$.

First definitions

First we introduce some definitions to deal with the problem.

Definition

Let X be a vector space and $A \subset X$. A is said to be **convex** if $(1-t)A + tA \subset A$ for every $t \in [0,1]$.

Particular subsets of the previous ones lie in the next definition.

Definition

A subset F of a convex set A is called a face of A if:

- F is convex.
- So For every $x \in F$ and $y, z \in A$ with $x = \frac{1}{2}(y + z)$, we have that $y, z \in F$. In particular, zero-dimensional faces are extreme points.

Figure: Example of convex set

Figure: Extreme points

Figure: One-dimensional faces

Finite dimensional spaces

Let X be a finite-dimensional normed space $(\dim(X) = n)$. Thanks to Minkowski's theorem,

$$\mathsf{B}_X = \mathsf{co}(\mathsf{E}_X)$$

If $x \in E_X$, it is easy to show that $\mathbb{T}x \subset E_x$, hence the group \mathbb{T} acts transitively on E_X . Since the unit ball of a normed space is absorbing, in particular $|E_X/\sim| \ge n$.

Finite dimensional spaces

Let X be a finite-dimensional normed space $(\dim(X) = n)$. Thanks to Minkowski's theorem,

$$\mathsf{B}_X = \mathsf{co}(\mathsf{E}_X)$$

If $x \in E_X$, it is easy to show that $\mathbb{T}x \subset E_x$, hence the group \mathbb{T} acts transitively on E_X . Since the unit ball of a normed space is absorbing, in particular $|E_X/\sim| \ge n$.

Infinite-dimensional spaces: Preserving the equation

Theorem (Krein-Milman)

Let X be a **locally convex space** and let A be a nonempty compact convex subset of X. Then, $A = \overline{co}(E_A)$.

Infinite-dimensional spaces: Preserving the equation

Theorem (Krein-Milman)

Let X be a **locally convex space** and let A be a nonempty compact convex subset of X. Then, $A = \overline{co}(E_A)$.

Theorem (Lindenstrauss, Troyanski)

Let A be a weakly compact convex set in a Banach space X. Then, A is the closed convex hull of its strongly exposed points.

Infinite-dimensional spaces: Preserving the equation

Theorem (Krein-Milman)

Let X be a **locally convex space** and let A be a nonempty compact convex subset of X. Then, $A = \overline{co}(E_A)$.

Theorem (Lindenstrauss, Troyanski)

Let A be a weakly compact convex set in a Banach space X. Then, A is the closed convex hull of its strongly exposed points.

Theorem (Namioka, Phelps)

Let A be a norm-closed convex bounded set in a **separable dual space** X^* . Then, A is the norm-closed convex hull of its strongly exposed points.

 $a \in A$

$$a = \sum_{k=1}^{n} \lambda_k e_k$$

$$a = \sum_{k=1}^{n} \lambda_k e_k = \sum_{k=1}^{n} \int_{\mathcal{A}} \lambda_k \delta_{e_k}$$

$$a = \sum_{k=1}^{n} \lambda_k e_k = \sum_{k=1}^{n} \int_{\mathcal{A}} \lambda_k \delta_{e_k} = \int_{\mathcal{A}} d\mu$$

$$a = \sum_{k=1}^{n} \lambda_k e_k = \sum_{k=1}^{n} \int_A \lambda_k \delta_{e_k} = \int_A d\mu \Rightarrow$$

$$a = \sum_{k=1}^{n} \lambda_k e_k = \sum_{k=1}^{n} \int_A \lambda_k \delta_{e_k} = \int_A d\mu \Rightarrow f(a) = \int_A f d\mu, \quad \forall f \in X^*$$

$$\mathsf{a} = \sum_{k=1}^n \lambda_k \mathsf{e}_k = \sum_{k=1}^n \int_A \lambda_k \delta_{\mathsf{e}_k} = \int_A d\mu \Rightarrow f(\mathsf{a}) = \int_A f \, d\mu, \quad \forall f \in X^*$$

Theorem (Krein-Milman revisited)

Suppose that A is a metrizable compact convex subset of a locally convex space X, and that $x_0 \in A$. Then there is a probability measure on A which represents x_0 and is supported by the closure of the extreme points of A.

$$\mathsf{a} = \sum_{k=1}^n \lambda_k \mathsf{e}_k = \sum_{k=1}^n \int_A \lambda_k \delta_{\mathsf{e}_k} = \int_A d\mu \Rightarrow f(\mathsf{a}) = \int_A f \, d\mu, \quad \forall f \in X^*$$

Theorem (Krein-Milman revisited)

Suppose that A is a metrizable compact convex subset of a locally convex space X, and that $x_0 \in A$. Then there is a probability measure on A which represents x_0 and is supported by the closure of the extreme points of A.

Theorem (Choquet)

Suppose that A is a metrizable compact convex subset of a locally convex space X, and that $x_0 \in A$. Then there is a probability measure on A which represents x_0 and is supported by the **extreme points** of A.

Antonio Zarauz Moreno

Minkowski's functional

Theorem

Let X be a locally convex space. The map $p_A : X \to \mathbb{R}^+_0$ given by

$$p_A(x) = \inf \{\lambda \in \mathbb{R}_0^+ : x \in \lambda A\}$$

defines a norm over X if and only if there exists a bounded 0-neighbourhood in X.

Minkowski's functional

Theorem

Let X be a locally convex space. The map $p_A : X \to \mathbb{R}^+_0$ given by

$$p_A(x) = \inf \{\lambda \in \mathbb{R}_0^+ \colon x \in \lambda A\}$$

defines a norm over X if and only if there exists a bounded 0-neighbourhood in X.

Problem

Given a vector space X, is there any norm for which B_X has a minimum number of extreme points?

Problem

Given a vector space X, is there any norm for which B_X has a minimum number of extreme points?

For infinite-dimensional spaces, the lack of compactness of B_X imposes the additional hypothesis $B_X = \overline{co}(E_X)$.

Problem

Given a vector space X, is there any norm for which B_X has a minimum number of extreme points?

For infinite-dimensional spaces, the lack of compactness of B_X imposes the additional hypothesis $B_X = \overline{co}(E_X)$.

Problem (Infinite-dimensional setting)

Given a vector space X, is there any norm for which B_X has a "minimum number" of extreme points such that $B_X = \overline{co}(E_X)$?

Outline

Characterisation using segments

haracterisation using renormings

Let X be a normed space. X has the (*)-property if, for every $x, y \in E_X / \sim$, $S_{x,y}$ is a face of B_X .

Let X be a normed space. X has the (*)-property if, for every $x, y \in E_X / \sim$, $S_{x,y}$ is a face of B_X .

• Rotund spaces.

Let X be a normed space. X has the (*)-property if, for every $x, y \in E_X / \sim$, $S_{x,y}$ is a face of B_X .

- Rotund spaces.
- $c_0(\Gamma)$, $L^1([0,1])$.

Let X be a normed space. X has the (*)-property if, for every $x, y \in E_X / \sim$, $S_{x,y}$ is a face of B_X .

- Rotund spaces.
- c₀(Γ), L¹([0,1]).
- $H^1(\mathbb{D}), \ \ell^{\infty}_{\mathbb{C}}(\Gamma).$

Let X be a Banach space with the (*)-property and satisfying $B_X = \overline{co}(E_X)$. Then, there exists a set Γ such that $X \cong \ell^1(\Gamma)$.

Let X be a Banach space with the (*)-property and satisfying $B_X = \overline{co}(E_X)$. Then, there exists a set Γ such that $X \cong \ell^1(\Gamma)$.

Corollary

Under the hypothesis of the previous theorem, if E_X / \sim is also countable, then $X \cong \ell^1(\mathbb{N})$.

Let X be a Banach space with the (*)-property and satisfying $B_X = \overline{co}(E_X)$. Then, there exists a set Γ such that $X \cong \ell^1(\Gamma)$.

Corollary

Under the hypothesis of the previous theorem, if E_X / \sim is also countable, then $X \cong \ell^1(\mathbb{N})$.

Corollary

Let X be a finite-dimensional normed space $(\dim(X) = n)$ with the (*)-property. Then, $X \cong \ell_n^1$.

Outline

Characterisation using segm

Characterisation using renormings

Let $(X, \|\cdot\|_X)$ be a normed space. $\|\cdot\|_X$ has the minimal vertices property if the following conditions hold:

•
$$B_{(X,\|\cdot\|_X)} = \overline{co} \left(E_{(X,\|\cdot\|_X)} \right).$$

• If $\|\|\cdot\|\|$ is an equivalent norm with $B_{(X,\|\|\cdot\|\|)} = \overline{co} \left(E_{(X,\|\|\cdot\|\|)} \right)$ and $E_{(X,\|\|\cdot\|\|)} \subset E_{(X,\|\cdot\|_X)}$, then $E_{(X,\|\|\cdot\|\|)} = E_{(X,\|\cdot\|_X)}$.

Let $(X, \|\cdot\|_X)$ be a normed space. $\|\cdot\|_X$ has the minimal vertices property if the following conditions hold:

•
$$B_{(X,\|\cdot\|_X)} = \overline{co} \left(E_{(X,\|\cdot\|_X)} \right).$$

• If $\|\|\cdot\|\|$ is an equivalent norm with $B_{(X,\|\|\cdot\|\|)} = \overline{co} \left(E_{(X,\|\|\cdot\|\|)} \right)$ and $E_{(X,\|\|\cdot\|\|)} \subset E_{(X,\|\cdot\|_X)}$, then $E_{(X,\|\|\cdot\|\|)} = E_{(X,\|\cdot\|_X)}$.

Proposition

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

• Suppose that $\|\cdot\|$ is an equivalent norm in $\ell^1(\Gamma)$ satisfying $B_{(\ell^1(\Gamma),\|\cdot\|)} = \overline{co} \left(E_{(\ell^1(\Gamma),\|\cdot\|)} \right)$ and $E_{(\ell^1(\Gamma),\|\cdot\|)} \subset E_{(\ell^1(\Gamma),\|\cdot\|_X)}$.

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

- Suppose that $\|\cdot\|$ is an equivalent norm in $\ell^1(\Gamma)$ satisfying $B_{(\ell^1(\Gamma), \|\cdot\|)} = \overline{co} \left(E_{(\ell^1(\Gamma), \|\cdot\|)} \right)$ and $E_{(\ell^1(\Gamma), \|\cdot\|)} \subset E_{(\ell^1(\Gamma), \|\cdot\|_X)}$.
- If the inclusion were strict, there would exist λ ∈ T and n ∈ N such that λe_n ∉ E_{(ℓ¹(Γ), ||·||)}.

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

- Suppose that $\|\cdot\|$ is an equivalent norm in $\ell^1(\Gamma)$ satisfying $B_{(\ell^1(\Gamma), \|\cdot\|)} = \overline{co} \left(E_{(\ell^1(\Gamma), \|\cdot\|)} \right)$ and $E_{(\ell^1(\Gamma), \|\cdot\|)} \subset E_{(\ell^1(\Gamma), \|\cdot\|_X)}$.
- If the inclusion were strict, there would exist λ ∈ T and n ∈ N such that λe_n ∉ E_{(ℓ¹(Γ), ||·||)}.
- \bullet Using that $\mathsf{B}_{(\ell^1(\Gamma),||\!|\cdot|\!|\!|)}$ is a balanced set, we get that

 $\mathbb{T}x \cap \mathsf{B}_{(\ell^1(\Gamma), || \cdot ||)} = \emptyset$

which means that $\mathbb{D}x \cap B_{(\ell^1(\Gamma), \|\cdot\|)} = \{0\}$ in light of the linear independence of $E_{\ell^1(\Gamma)} / \sim$.

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

- Suppose that $\|\cdot\|$ is an equivalent norm in $\ell^1(\Gamma)$ satisfying $B_{(\ell^1(\Gamma), \|\cdot\|)} = \overline{co} \left(E_{(\ell^1(\Gamma), \|\cdot\|)} \right)$ and $E_{(\ell^1(\Gamma), \|\cdot\|)} \subset E_{(\ell^1(\Gamma), \|\cdot\|_X)}$.
- If the inclusion were strict, there would exist λ ∈ T and n ∈ N such that λe_n ∉ E_{(ℓ¹(Γ), ||·||)}.
- \bullet Using that $\mathsf{B}_{(\ell^1(\Gamma),||\!|\cdot|\!|\!|)}$ is a balanced set, we get that

 $\mathbb{T}x \cap \mathsf{B}_{(\ell^1(\Gamma), || \cdot ||)} = \emptyset$

which means that $\mathbb{D}x \cap B_{(\ell^1(\Gamma), \|\cdot\|)} = \{0\}$ in light of the linear independence of $\mathsf{E}_{\ell^1(\Gamma)} / \sim$.

• Since both norms are equivalent, there exists C > 1 with $|||x||| \le C ||x||_X = C \Leftrightarrow \frac{1}{C}x \in B_{(X, |||\cdot|||)}.$

 $\ell^1(\Gamma)$ satisfies the minimal vertices property.

- Suppose that $\|\cdot\|$ is an equivalent norm in $\ell^1(\Gamma)$ satisfying $B_{(\ell^1(\Gamma), \|\cdot\|)} = \overline{co} \left(E_{(\ell^1(\Gamma), \|\cdot\|)} \right)$ and $E_{(\ell^1(\Gamma), \|\cdot\|)} \subset E_{(\ell^1(\Gamma), \|\cdot\|_X)}$.
- If the inclusion were strict, there would exist λ ∈ T and n ∈ N such that λe_n ∉ E_{(ℓ¹(Γ), ||·||)}.
- \bullet Using that $\mathsf{B}_{(\ell^1(\Gamma),||\!|\cdot|\!|\!|)}$ is a balanced set, we get that

 $\mathbb{T}x \cap \mathsf{B}_{(\ell^1(\Gamma), || \cdot ||)} = \emptyset$

which means that $\mathbb{D}x \cap B_{(\ell^1(\Gamma), \|\cdot\|)} = \{0\}$ in light of the linear independence of $\mathsf{E}_{\ell^1(\Gamma)} / \sim$.

- Since both norms are equivalent, there exists C > 1 with $|||x||| \le C ||x||_X = C \Leftrightarrow \frac{1}{C}x \in B_{(X, |||\cdot|||)}.$
- Thanks to the fact that $\mathbb{D}x \cap B_{(X, \|\cdot\|)} = \{0_X\}$, we have that $x = 0_X$.

Thanks for your attention!