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Definition

Let L1[−1, 1] be the set of the 2-periodic functions f so that∫ 1
−1 |f (t)| dt <∞.

Given f , g ∈ L1[−1, 1], the convolution of f and g is the function

f ∗ g(x) =

∫ 1

−1
f (t)g(x − t) dt
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Lemma

Let f , g ∈ L1[−1, 1].

If f is k times differentiable (k ≥ 0), with dk f
dxk

continuous,
then f ∗ g is k times differentiable, with
dk

dxk
(f ∗ g)(x) = (d

k f
dxk
∗ g)(x).

If f is Lipschitz, then f ∗ g is Lipschitz.

If f , g ∈ L2[−1, 1], then f ∗ g is continuous.

There exist nowhere differentiable functions f , g so that f ∗ g
is differentiable.

The previous examples, and some others in the same way, gives the
idea that the convolution takes “the best” properties from its
parent functions

.

Results in this line have given the convolution
operator the label of smoothening.
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With some more requirements over f ′ the property of
differentiability can be extended to the convolution.

Theorem

Let f , g ∈ L1[−1, 1]. If f is differentiable with bounded derivative,
then f ∗ g is differentiable, with (f ∗ g)′(x) = (f ′ ∗ g)(x).

Theorem

(from Wikipedia)

Let f , g ∈ L1[−1, 1]. If f is differentiable with integrable derivative,
then f ∗ g is differentiable, with (f ∗ g)′(x) = (f ′ ∗ g)(x).

What if we just ask differentiability?
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First idea

Take a function with unbounded derivative.

f (x) = x2 sin
( 1

x3

)
g(x) = sin

( 1

x3

)
f ∗ g not differentiable?

Pablo Jiménez Rodŕıguez Differentiability of the convolution



First idea

Take a function with unbounded derivative.

f (x) = x2 sin
( 1

x3

)

g(x) = sin
( 1

x3

)
f ∗ g not differentiable?
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



First idea

Take a function with unbounded derivative.

f (x) = x2 sin
( 1

x3

)
g(x) = sin

( 1

x3

)

f ∗ g not differentiable?
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First idea

Take a function with unbounded derivative.

f (x) = x2 sin
( 1

x3

)
g(x) = sin

( 1

x3

)
f ∗ g not differentiable?

f ∗ g(x) =

∫ 1

−1
t2 sin

( 1

t3

)
sin
( 1

(x − t)3

)
dt

f ∗ g(0) =

∫ 1

−1
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( 1

t3

)
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( 1

(−t)3

)
dt =

∫ 1
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Second idea

Let’s see if there is anything we can do to simplify calculations...
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



Second idea

Let’s see if there is anything we can do to simplify calculations...
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Second idea

Let’s see if there is anything we can do to simplify calculations...

Definition

For each i ≥ 1, divide the interval
[
1
2i
, 1
2i−1

]
into 27i sub-intervals

of the same length

.

For each k = 0, 1, . . . , 27i−1 − 1, consider φi ,k
and ψi ,k two C∞−hat functions so that

supp φi ,k ⊆
(

1

2i
+

2k + 1

28i
,

1

2i
+

2k + 2

28i

)
,

supp ψi ,k ⊆
(

1

2i
+

2k

28i
,

1

2i
+

2k + 1

28i

)
,

φi ,k(x) = 1 for
1

2i
+

8k + 5

28i+2
≤ x ≤ 1

2i
+

8k + 7

28i+2
and

ψi ,k(x) = 1 for
1

2i
+

8k + 1

28i+2
≤ x ≤ 1

2i
+

8k + 3

28i+2
.
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



Second idea

Let’s see if there is anything we can do to simplify calculations...

Definition

For each i ≥ 1, divide the interval
[
1
2i
, 1
2i−1

]
into 27i sub-intervals

of the same length. For each k = 0, 1, . . . , 27i−1 − 1, consider φi ,k
and ψi ,k two C∞−hat functions so that

supp φi ,k ⊆
(

1

2i
+

2k + 1

28i
,

1

2i
+

2k + 2

28i

)
,

supp ψi ,k ⊆
(

1

2i
+

2k

28i
,

1

2i
+

2k + 1

28i

)
,

φi ,k(x) = 1 for
1

2i
+

8k + 5

28i+2
≤ x ≤ 1

2i
+

8k + 7

28i+2
and

ψi ,k(x) = 1 for
1

2i
+

8k + 1

28i+2
≤ x ≤ 1

2i
+

8k + 3

28i+2
.
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Second idea

Let’s see if there is anything we can do to simplify calculations...

Definition

Define

f (x) = x2
∞∑
i=1

27i−1−1∑
k=0

φi ,k(x),

g(x) = x2
∞∑
j=1

27j−1−1∑
l=0

ψj ,l(x)

Theorem

The functions f and g defined above are differentiable functions
for which f ∗ g is not differentiable at 0.
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Theorem

There exist differentiable functions f and g so that f ∗ g(x) is not
differentiable at x = 0.

Remark 1

In fact, for the differentiable functions f and g in the previous
theorem, one can prove that f ′ ∗ g(x) is well-defined for every
−1 < x < 1.
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Theorem

There exist differentiable functions f and g so that f ∗ g(x) is not
differentiable at x = 0.

Remark 2

Can we make f = g for the previous theorem?

(f + g) ∗ (f + g) = f ∗ f + f ∗ g + g ∗ f + g ∗ g
= f ∗ f + 2f ∗ g + g ∗ g

f ∗ g =
1

2
[(f + g) ∗ (f + g)− (f ∗ f + g ∗ g)]

In particular, there exists a differentiable function h so that h ∗ h is
not differentiable at 0.
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



Theorem

There exist differentiable functions f and g so that f ∗ g(x) is not
differentiable at x = 0.

Remark 2

Can we make f = g for the previous theorem?

(f + g) ∗ (f + g) = f ∗ f + f ∗ g + g ∗ f + g ∗ g
= f ∗ f + 2f ∗ g + g ∗ g

f ∗ g =
1

2
[(f + g) ∗ (f + g)− (f ∗ f + g ∗ g)]

In particular, there exists a differentiable function h so that h ∗ h is
not differentiable at 0.
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How many of such functions can we
find?

What algebraic structure does this
problem admit?
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Theorem

There exist two algebras A and B generated by two respective
non-numerable sets of differentiable functions so that, if
f ∈ A \ {0} and g ∈ B \ {0}, then f ∗ g is not differentiable at 0.

Theorem

There exist two closed cones V and W generated by two
respective non-numerable sets of differentiable functions so that, if
f ∈ V \ {0} and g ∈W \ {0}, then f ∗ g is not differentiable at 0.
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For the algebras, consider

fλ(x) = |x |λ
∞∑
i=1

2i
2−i−1−1∑
k=0

φλi ,k(|x |) and

gλ(x) = |x |λ
∞∑
i=1

2i
2−i−1−1∑
k=0

ψλi ,k(|x |),

Theorem

There exist two closed cones V and W generated by two
respective non-numerable sets of differentiable functions so that, if
f ∈ V \ {0} and g ∈W \ {0}, then f ∗ g is not differentiable at 0.
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For the algebras, consider

fλ(x) = |x |λ
∞∑
i=1

2i
2−i−1−1∑
k=0

φλi ,k(|x |) and

gλ(x) = |x |λ
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i=1

2i
2−i−1−1∑
k=0

ψλi ,k(|x |),

Theorem (V.I. Gurariy)

If V ⊆ D[−1, 1] is a closed vector space, then V is of finite
dimension.
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What about more points?
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



Pablo Jiménez Rodŕıguez Differentiability of the convolution



There exist differentiable functions f and g so that f ∗ g is not
differentiable on a Perfect set

(of zero measure)
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Any positive result?

Theorem

Let f be a differentiable function,
∆f = {x ∈ [−1, 1] : f ′ is locally unbounded}.

If f and g are
differentiable functions and x /∈ ∆f + ∆g , then f ∗ g is
differentiable at x and (f ∗ g)′(x) = (f ′ ∗ g)(x).
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Some open questions.

1 Let f and g be differentiable functions. How big can the set
where f ∗ g is not differentiable be?

A dense set? Of positive
measure? The whole [−1, 1]?

2 What are the weakest conditions over f ′ to ensure that f ∗ g
is differentiable?

3 If f and g are such that f ∗ g is differentiable at x and
f ′ ∗ g(x) is well-defined, is it (f ∗ g)′(x) = f ′ ∗ g(x)?
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Pablo Jiménez Rodŕıguez Differentiability of the convolution



Some open questions.

1 Let f and g be differentiable functions. How big can the set
where f ∗ g is not differentiable be? A dense set? Of positive
measure? The whole [−1, 1]?

2 What are the weakest conditions over f ′ to ensure that f ∗ g
is differentiable?

3 If f and g are such that f ∗ g is differentiable at x and
f ′ ∗ g(x) is well-defined, is it (f ∗ g)′(x) = f ′ ∗ g(x)?
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Thank you for your attention!!
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