Averaging operators, fixed points and partial differential equations

José G. Llorente

Universitat Autònoma de Barcelona (currently visiting BCAM)

XV Encuentro de la Red de Análisis Funcional y Aplicaciones.

BCAM (Bilbao), 7-8 de Marzo de 2019

Discrete games

$E \subset \partial G$

House moves randomly the token Player I wins when reaching *E* Player II wins when reaching $\partial G \setminus E$ $u(z) = \mathbb{P}_z(\text{Player 1 wins}) = \mathbb{P}_z(E)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$u(z) = rac{1}{4} \sum_{i=1}^4 u(z_i)$$
 (Usual MVP)

Discrete games

$E \subset \partial G$

Toss a fair coin to decide who moves Player I wins when reaching EPlayer II wins when reaching ∂G

$$u(z) = \mathbb{P}_z($$
 Player 1 wins $) = \mathbb{P}_z(E)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$u(z) = \frac{1}{2} \Big(\max_{i} u(z_i) + \min_{i} u(z_i) \Big)$$

Discrete games

$E \subset \partial G$

Combine Game 2 with probability $\boldsymbol{\alpha}$

and Game 1 with probability 1 – α

$$u(z) = \mathbb{P}_{z}($$
 Player 1 wins $) = \mathbb{P}_{z}(E)$

$$u(z) = \frac{\alpha}{2} \left(\max_{i} u(z_i) + \min_{i} u(z_i) \right) + \frac{1-\alpha}{4} \sum_{i=1}^{4} u(z_i)$$

PDE's and MVP's on graphs

$$u: G \to \mathbb{R}$$
 is harmonic iff $u(z) = rac{1}{4} \sum_{i=1}^{4} u(z_i), \ (z \in G)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Birkhoff (graph laplacian).
- Electrical networks.
- Discretization of PDE's.
- Image processing, image interpolation.

Harmonic functions

Rewrite the **discrete MVP** in terms of the horizontal and vertical second differences:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$u(x + h, y) + u(x - h, y) - 2u(x, y) + u(x, y + h) + u(x, y - h) - 2u(x, y) = 0$$

Harmonic functions

$$u(x + h, y) + u(x - h, y) - 2u(x, y) + u(x, y + h) + u(x, y - h) - 2u(x, y) = 0$$

Now, remind that if $f : \mathbb{R} \to \mathbb{R}$, then

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}$$

Harmonic functions

$$u(x + h, y) + u(x - h, y) - 2u(x, y) + u(x, y + h) + u(x, y - h) - 2u(x, y) = 0$$

Dividing by h^2 and taking limits as $h \rightarrow 0$ we formally obtain the Laplace equation in two variables

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Harmonic functions and the direct MVP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The direct Mean Value Property (Gauss, 1840)

Let *u* be harmonic in a domain $\Omega \subset \mathbb{R}^n$. Then for any ball $\overline{B}(x, r) \subset \Omega$, we have

•
$$u(x) = \int_{\partial B(x,r)}^{u}$$
 (Spherical MVP)
• $u(x) = \int_{B(x,r)}^{u}$ (Volume MVP)

The converse MVP

The basic converse MVP question

Given $u : \Omega : \rightarrow \mathbb{R}$, what sort of MVP does imply that u is harmonic in Ω ?

Different directions

- Requirements on u and Ω .
- How many radia?
- Asymptotic version of the MVP.
- Contributions due to Cauchy, Darboux, Volterra, Vitali, Fréchet, Koebe, Sierpinski, Littlewood, Tonelli, Privalov, Banach...

Theorem (Koebe, 1906).

Let $u \in C(\Omega)$. If for each $x \in \Omega$ there is a sequence $r_n(x) \to 0$ such that u satisfies the MVP at x (volume or spherical) with radius $r_n(x)$ for all n, then u is harmonic in Ω .

Converse MVP results

One radius theorem (Volterra 1909, Kellogg 1928).

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $u \in \mathcal{C}(\overline{\Omega})$. Suppose that for each $x \in \Omega$ there is a single radius r(x), with $0 < r(x) \le dist(x, \partial\Omega)$ such that u satisfies the MVP (either volume or spherical) at x with radius r(x). Then u is harmonic in Ω .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Averaging operators

Averaging Operators

Let $\Omega \subset \mathbb{R}^n$ be bounded and $r : \Omega \to \mathbb{R}_+$ such that $0 < r(x) \le dist(x, \partial \Omega)$ for each $x \in \Omega$. Define the averaging operator T_0 associated to r as follows

$$T_0u(x)=\int_{B(x,r(x))}u$$

Remarks

- If *r* is continuous then $T_0 : \mathcal{C}(\overline{\Omega}) \to \mathcal{C}(\overline{\Omega})$.
- Volterra-Kellogg Theorem is equivalent to saying that if u ∈ C(Ω) is a fixed point of T₀ then u is harmonic in Ω.

Lebesgue's approach to the Dirichlet Problem

Let $\Omega \subset \mathbb{R}^n$, bounded and regular. Choose $r(x) = dist(x, \partial \Omega)$ for $x \in \Omega$ and let T_0 be the corresponding averaging operator.

Theorem (Lebesgue, 1912)

Let $f \in \mathcal{C}(\partial \Omega)$ and $u_0 \in \mathcal{C}(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$. Then

 $\{T_0^k u_0\} \to \widetilde{u}$ uniformly in $\overline{\Omega}$ as $k \to \infty$

where \tilde{u} is the solution to the Dirichlet Problem

$$\begin{cases} \triangle u = 0 & \text{in } \Omega \\ u = f & \text{on } \partial \Omega \end{cases}$$

Lebesgue's approach to the Dirichlet Problem

Remarks

• $T_0 : C(\overline{\Omega}) :\to C(\overline{\Omega})$ is linear and non-expanding:

$$||T_0u - T_0v||_{\infty} \leq ||u - v||_{\infty} , \ (u, v \in \mathcal{C}(\overline{\Omega}))$$

- If $\{T_0^k u_0\} \to \tilde{u}$ uniformly in $\overline{\Omega}$ then \tilde{u} is a **fixed point** of T_0 , therefore **harmonic** by Volterra-Kellogg.
- For $f \in C(\partial \Omega)$, put

$$\mathcal{K}_f = \{ u \in \mathcal{C}(\overline{\Omega}) : u|_{\partial\Omega} = f \}$$

Then \mathcal{K}_f is closed in $\mathcal{C}(\overline{\Omega})$ and $T_0(\mathcal{K}_f) \subset \mathcal{K}_f$. To solve **Dirichlet Problem** with boundary data *f* is equivalent to seek a **fixed point** of T_0 in \mathcal{K}_f .

A nonlinear scenario

The *p*-laplace operator

For 1 , define

$$\Delta_p u = div(|\nabla u|^{p-2}\nabla u)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A nonlinear scenario

The *p*-laplace operator

For $1 < \rho < \infty$, define

$$\Delta_{p} u = div(|\nabla u|^{p-2}\nabla u)$$

- Euler-Lagrange equation associated to *p*-energy.
- (Weak) solutions are called *p*-harmonic functions.
- *p*-harmonic functions solve the Dirichlet Problem with continuous boundary data (in regular domains).
- *p*-harmonic functions are C^{1,α} for some 0 < α < 1, not C² in general.

Two relevant questions

1. Is there a "natural" **stochastic process** associated to the *p*-laplacian?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. Is there a "natural" MVP related to the *p*-laplacian?

A nonlinear scenario

Two relevant questions

1. Is there a "natural" **stochastic process** associated to the *p*-laplacian?

(ロ) (同) (三) (三) (三) (○) (○)

2. Is there a "natural" MVP related to the *p*-laplacian?

Question 2: two main keys

- A representation of Δ_p in terms of Δ and Δ_{∞} .
- Averaging Taylor formula.

Representing Δ_{ρ} in terms of Δ and Δ_{∞}

Assume $u \in C^2(\Omega)$. Then, away from the critical set:

$$\Delta_{\rho} u = |\nabla u|^{\rho-2} \Big(\Delta u + (\rho-2) \frac{\Delta_{\infty} u}{|\nabla u|^2} \Big)$$

where

$$\Delta_{\infty} u = \sum_{i,j} u_{x_i} u_{x_j} u_{x_i,x_j} = \langle (Hu) \nabla u, \nabla u \rangle$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is the so called infinity laplacian.

Let $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega)$, $x \in \Omega$, $h \in B(0, r)$. Denote by Hu(x) the **hessian** matrix of *u* at *x*. By Taylor:

$$u(x + h) = u(x) + \langle \nabla u(x), h \rangle + \frac{1}{2} \langle Hu(x)h, h \rangle + o(r^2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $\Omega \subset \mathbb{R}^n$, $u \in C^2(\Omega)$, $x \in \Omega$, $h \in B(0, r)$. Denote by Hu(x) the **hessian** matrix of *u* at *x*. By Taylor:

$$u(x+h) = u(x) + \langle \nabla u(x), h \rangle + \frac{1}{2} \langle Hu(x)h, h \rangle + o(r^2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Average over the ball B(0, r) in two different ways:

•
$$\int_{B(x,r)} u$$
 (usual average)
• $\frac{1}{2} (\sup_{B(x,r)} u + \inf_{B(x,r)} u)$ (mid-range average)

Usual averages

By elementary computation

$$\int_{B(x,r)} u = u(x) + \frac{\Delta u(x)}{2(n+2)}r^2 + o(r^2)$$

Therefore

$$\int_{B(x,r)} u = u(x) + \frac{\Delta u(x)}{2(n+2)}r^2 + o(r^2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mid-range averages

From Taylor:

$$u(x + r\frac{\nabla u(x)}{|\nabla u(x)|}) = u(x) + r|\nabla u(x)| + \frac{\Delta_{\infty} u(x)}{2|\nabla u(x)|^2}r^2 + o(r^2)$$
$$u(x - r\frac{\nabla u(x)}{|\nabla u(x)|}) = u(x) - r|\nabla u(x)| + \frac{\Delta_{\infty} u(x)}{2|\nabla u(x)|^2}r^2 + o(r^2)$$

where

$$\Delta_{\infty} u = \langle (Hu) \nabla u, \nabla u \rangle = \sum_{i,j} u_{x_i} u_{x_j} u_{x_i, x_j}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Mid-range averages

Suppose

$$\sup_{B(x,r)} u \approx u \left(x + r \frac{\nabla u(x)}{|\nabla u(x)|} \right), \quad \inf_{B(x,r)} u \approx u \left(x - r \frac{\nabla u(x)}{|\nabla u(x)|} \right)$$

Then

$$\frac{1}{2} \Big(\sup_{B(x,r)} u + \inf_{B(x,r)} u \Big) = u(x) + \frac{\Delta_{\infty} u(x)}{2 |\nabla u(x)|^2} r^2 + o(r^2)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion

If $u \in C^2(\Omega)$, $x \in \Omega$ and $\nabla u(x) \neq 0$ then

$$\int_{B(x,r)} u = u(x) + \frac{\Delta u(x)}{2(n+2)}r^2 + o(r^2)$$

$$\frac{1}{2} \Big(\sup_{B(x,r)} u + \inf_{B(x,r)} u \Big) = u(x) + \frac{\Delta_{\infty} u(x)}{2|\nabla u(x)|^2}r^2 + o(r^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusion

If $u \in C^2(\Omega)$, $x \in \Omega$ and $\nabla u(x) \neq 0$ then

$$\int_{B(x,r)} u = u(x) + \frac{\Delta u(x)}{2(n+2)}r^2 + o(r^2)$$

$$\frac{1}{2} \Big(\sup_{B(x,r)} u + \inf_{B(x,r)} u \Big) = u(x) + \frac{\Delta_{\infty} u(x)}{2|\nabla u(x)|^2}r^2 + o(r^2)$$

and, having in mind the representation

$$\Delta_{p} u = |\nabla u|^{p-2} \left(\Delta u + (p-2) \frac{\Delta_{\infty} u}{|\nabla u|^{2}} \right)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Conclusion

If $u \in \mathcal{C}^2(\Omega)$, $x \in \Omega$ and $\nabla u(x) \neq 0$ then

$$\int_{B(x,r)} u = u(x) + \frac{\Delta u(x)}{2(n+2)}r^2 + o(r^2)$$

$$\frac{1}{2} \Big(\sup_{B(x,r)} u + \inf_{B(x,r)} u \Big) = u(x) + \frac{\Delta_{\infty} u(x)}{2|\nabla u(x)|^2}r^2 + o(r^2)$$

we finally obtain that $\Delta_{\rho}u(x) = 0$ iff

$$u(x) = \frac{\alpha}{2} (\sup_{B(x,r)} u + \inf_{B(x,r)} u) + (1 - \alpha) \oint_{B(x,r)} u + o(r^2)$$

where $\alpha = \frac{p-2}{p+n}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Recent approaches

- ► Optimal lipschitz extensions and ∆_∞ (Aronsson, 60's, Archer-LeGruyer...)
- Image processing (Caselles- Morel-Sbert 86...)
- Stochastic games (Peres-Shramm-Sheffield-Wilson 2009, Peres-Sheffield 2008, Manfredi-Parviainen-Rossi 2010-13)

(ロ) (同) (三) (三) (三) (○) (○)

- Asymptotic MVP (Manfredi-Parviainen-Rossi 2010, Lindqvist-Manfredi 2018, Arroyo-Llorente 2018).
- One radius MVP (Arroyo-Llorente 2015, 2018).

A nonlinear one-radius MVP

- $\Omega \subset \mathbb{R}^n$ bounded.
- r : Ω → ℝ₊ continuous such that 0 < r(x) ≤ dist(x, ∂Ω) for each x ∈ Ω.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A nonlinear one-radius MVP

A nonlinear averaging operator

Define $T_{\alpha}: \mathcal{C}(\overline{\Omega}) \to \mathcal{C}(\overline{\Omega})$ by

$$T_{\alpha}u(x) = \frac{\alpha}{2} \Big(\sup_{B(x,r(x))} u + \inf_{B(x,r(x))} u \Big) + (1-\alpha) \oint_{B(x,r(x))} u$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A nonlinear one-radius MVP

$$T_{\alpha}u(x) = \frac{\alpha}{2} \Big(\sup_{B(x,r(x))} u + \inf_{B(x,r(x))} u \Big) + (1-\alpha) \oint_{B(x,r(x))} u$$

Remarks

No Volterra-Kellogg unless α = 0. Fixed points of T_α and p-harmonic functions are different classes.

(日) (日) (日) (日) (日) (日) (日)

•
$$T_{\alpha}$$
 is not linear, unless $\alpha = 0$.

- T_{α} is non-expanding: $||T_{\alpha}u T_{\alpha}v||_{\infty} \leq ||u v||_{\infty}$.
- If $f \in \mathcal{C}(\partial \Omega)$ and $\mathcal{K}_f = \{u \in \mathcal{C}(\overline{\Omega}) : u|_{\partial \Omega} = f\}$ then $T_{\alpha}(\mathcal{K}_f) \subset \mathcal{K}_f$.

The Dirichlet Problem for T_{α}

Problem

Let $\Omega \subset \mathbb{R}^n$ bounded, $r : \Omega \to \mathbb{R}_+$ continuous, with $0 < r(x) \leq dist(x, \partial \Omega)$ for $x \in \Omega$ and $\alpha \in [0, 1]$.

Which assumptions on Ω , r and α imply that the **Dirichlet Problem**

$$\begin{cases} T_{\alpha}u = u & \text{in } \Omega \\ u = f & \text{on } \partial \Omega \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

has a unique solution in $\mathcal{C}(\overline{\Omega})$?

The Dirichlet Problem for T_{α}

Previous results

- $\alpha = 0$ (classical case).
- $\alpha = 1$. Archer-LeGruyer (1998).
- 0 ≤ α < 1, r(x) ≡ ε (Manfredi-Parviainen-Rossi, Luiro-Saksman).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Dirichlet Problem for T_{α}

Theorem (Arroyo-Llorente, 2015, 2018)

Let $\Omega \subset \mathbb{R}^n$ be strictly convex, and $0 \le \alpha < 1$. Suppose that $r : \Omega \to \mathbb{R}_+$ is continuous and

$$\delta_1 \operatorname{dist}(x, \partial \Omega) \leq r(x) \leq \delta_2 \operatorname{dist}(x, \partial \Omega)$$

where $0 < \delta_1 \leq \delta_2 < 1 - \alpha$. Then the Dirichlet Problem

$$\begin{cases} T_{\alpha}u = u & \text{in } \Omega \\ u = f & \text{on } \partial \Omega \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

has a unique solution in $\mathcal{C}(\overline{\Omega})$.

Existence: key steps

• Given $f \in \mathcal{C}(\partial \Omega)$, choose $u_0 \in \mathcal{C}(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Given $f \in C(\partial \Omega)$, choose $u_0 \in C(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$.
- Key point: to show that $\{T_{\alpha}^{k}u_{0}\}$ is equicontinuous in $\overline{\Omega}$.

- Given $f \in \mathcal{C}(\partial \Omega)$, choose $u_0 \in \mathcal{C}(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$.
- Key point: to show that $\{T_{\alpha}^{k}u_{0}\}$ is equicontinuous in $\overline{\Omega}$.
- ► Local equicontinuity. Archer-LeGruyer estimates for T₁ + local estimates for T₀.

Existence: key steps

- Given $f \in \mathcal{C}(\partial \Omega)$, choose $u_0 \in \mathcal{C}(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$.
- Key point: to show that $\{T_{\alpha}^{k}u_{0}\}$ is equicontinuous in $\overline{\Omega}$.
- ► Local equicontinuity. Archer-LeGruyer estimates for T₁ + local estimates for T₀.
- ▶ Boundary equicontinuity. Invariant convexity trick: to show that $co(G_{T_{\alpha}^{k}u}) \subset co(G_{u})$, where G_{u} stands for the graph of u.

Existence: key steps

- Given $f \in \mathcal{C}(\partial \Omega)$, choose $u_0 \in \mathcal{C}(\overline{\Omega})$ such that $u_0|_{\partial \Omega} = f$.
- Key point: to show that $\{T_{\alpha}^{k}u_{0}\}$ is equicontinuous in $\overline{\Omega}$.
- ► Local equicontinuity. Archer-LeGruyer estimates for T₁ + local estimates for T₀.
- ▶ Boundary equicontinuity. Invariant convexity trick: to show that $co(G_{T_{\alpha}^{k}u}) \subset co(G_{u})$, where G_{u} stands for the graph of u.
- Final argument showing that non-expansiveness of T_α actually implies that {T^k_α} converges to a fixed point.

Further comments and directions

- Relax the strict convexity assumption.
- Seek a more direct argument towards uniform convergence of the iterates {*T*^k_α*u*₀}.
- Existence in metric measure spaces.
- If $r_{\varepsilon}(x) = \varepsilon r(x)$, suppose that $T_{\alpha}u_{\varepsilon} = u_{\varepsilon}$, where $u_{\varepsilon} \in C(\overline{\Omega})$ and $u_{\varepsilon}|_{\partial\Omega} = f \in C(\partial\Omega)$. Is it true that $u_{\varepsilon} \to u$ uniformly in $\overline{\Omega}$ as $\epsilon \to 0$, where $\Delta_{\rho}u = 0$ in Ω ?
- Asymptotic MVP for the *p*-laplacian in higher dimensions.