A CHARACTERIZATION OF THE DENSITY PROPERTY FOR TRANSLATION INVARIANT BASES

XV Encuentro de la Red de Análisis Funcional y Aplicaciones Bilbao, 7 - 8 de marzo de 2019

Ioannis Parissis

(joint work with Paul A. Hagelstein)

Universidad del País Vasco/Euskal Herriko Unibertsitatea

Friday 8th March, 2019

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 1 / 18

DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.

- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- A few words about the proof

- 4 間 1 - 4 目 1 - 4 目 1

DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.

2 The density property for translation invariant bases

3 A counterexample to a centered de Guzmán conjecture

I A FEW WORDS ABOUT THE PROOF

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 2 / 18

A (1) > A (2) > A

DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.

- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- A few words about the proof

4 B 5 4

DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.

- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- 4 A FEW WORDS ABOUT THE PROOF

4 E 6 4

Contents

DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.

2 The density property for translation invariant bases

3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE

4 FEW WORDS ABOUT THE PROOF

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 3 / 18

(4) (3) (4) (4) (4)

A basis B is a collection of open bounded sets in Rⁿ. Some important examples of bases are:
We say that B differentiates a class of functions X if

$\int_{B} f := \frac{1}{|B|} \int_{B} f(y) dy \xrightarrow[\text{Berg Berg}]{} f(x), \quad \text{for non } x \in \mathbb{R}^{n}, \\ \underset{(\text{diam}(B) \to 0)}{\text{diam}(b) \to 0}$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is boundberg invariant:

 $x + \lambda B \in \mathfrak{B}$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in \mathfrak{B}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection \mathfrak{Q} consisting of all *cubes* in \mathbb{R}^n with sides // axes.
 - The collection \mathfrak{b} consisting of all *Euclidean balls* in \mathbb{R}^n .
- The collection R consisting of all *rectangles* in Rⁿ with sides // axes.
 We say that B differentiates a class of functions X if for every

 $f \in X$ we have that

$f_{B}^{\ell} f := \frac{1}{|B|} \int_{B} f(y) dy \xrightarrow{\text{Bar}, Bar}_{\text{disc}(b) \to 0} f(x), \quad \text{for a.e. } x \in \mathbb{R}^{n}.$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} \coloneqq \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is boundbacy invariant:

 $x + \lambda B \in \mathcal{B}$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in \mathcal{B}$.

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all *Euclidean balls* in \mathbb{R}^n
- The collection ℜ consisting of all *rectangles* in ℝⁿ with sides *∥* axes.
 We say that 𝔅 differentiates a class of functions X if for every the set of the

$\int_{B} f(z) = \frac{1}{|B|} \int_{B} f(y) dy \xrightarrow[-3mm]{\text{Barr, BCB}}_{\text{Ham}} f(x), \quad \text{for a.e. } x \in \mathbb{R}^{n}.$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} \coloneqq \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is boundbacy invariant:

$x + \lambda B \in \mathcal{B}$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in \mathcal{B}$.

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
- The collection ℜ consisting of all *rectangles* in ℝⁿ with sides *∥* axes.
 We say that 𝔅 differentiates a class of functions X if for every the second seco

$\int_{B} f \approx \frac{1}{|B|} \int_{B} f(y) dy \xrightarrow[Back and Back and B$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} \coloneqq \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis 3 we many times require additional structure. The basis 3 is boundbery invariant:

 $x + \lambda B \in S$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in S$.

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.

• We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathbb{R}]{} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$ $\underset{\text{diam}(B) \to 0}{\overset{\text{diam}(B) \to 0}{}}$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} \coloneqq \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis 3 we many times require additional structure. The basis 3 is bomothecy invariant:

 $x + \lambda B \in \mathcal{B}$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in \mathcal{B}$.

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection \mathfrak{Q} consisting of all *cubes* in \mathbb{R}^n with sides $/\!\!/$ axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every

 $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathfrak{B}]{}_{\operatorname{diam}(B) \to 0} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis 3 we many times require additional structure. The basis 3 is boundbery invariant:

 $x + \lambda B \in \mathcal{B}$ $\forall x \in \mathbb{R}^{n}$, $\lambda > 0$, $B \in \mathcal{B}$.

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection \mathfrak{Q} consisting of all *cubes* in \mathbb{R}^n with sides $/\!\!/$ axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[\text{$B \ni x, B \in \mathfrak{B}$}]{} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} \coloneqq \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure.

 $x \in \mathcal{B} \in \mathcal{B}$ $\forall x \in \mathbb{R}^n$, $\lambda > 0$, $B \in \mathcal{B}$

ヘロト 人間ト 人目下 人口ト

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathfrak{B}]{\text{diam}(B) \to 0}} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is homothecy invariant:

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathfrak{B}]{\text{diam}(B) \to 0}} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is homothecy invariant:

 $x + \lambda B \in \mathfrak{B} \quad \forall x \in \mathbb{R}^n, \quad \lambda > 0, \quad B \in \mathfrak{B}.$

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 4 / 18

(日) (四) (三) (三) (三)

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathfrak{B}]{\text{diam}(B) \to 0}} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is homothecy invariant:

 $x + \lambda B \in \mathfrak{B} \quad \forall x \in \mathbb{R}^n, \quad \lambda > 0, \quad B \in \mathfrak{B}.$

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

《日》 《國》 《臣》 《臣》 三臣

- A basis \mathfrak{B} is a collection of open bounded sets in \mathbb{R}^n . Some important examples of bases are:
 - The collection $\mathfrak Q$ consisting of all cubes in $\mathbb R^n$ with sides // axes.
 - The collection \mathfrak{b} consisting of all Euclidean balls in \mathbb{R}^n .
 - The collection \mathfrak{R} consisting of all *rectangles* in \mathbb{R}^n with sides // axes.
- We say that \mathfrak{B} differentiates a class of functions X if for every $f \in X$ we have that

$$\int_B f \coloneqq \frac{1}{|B|} \int_B f(y) dy \xrightarrow[B \ni x, B \in \mathfrak{B}]{\text{diam}(B) \to 0}} f(x), \quad \text{for a.e. } x \in \mathbb{R}^n.$$

- We say that \mathfrak{B} is a *density basis* if \mathfrak{B} differentiates the class $X^{\text{dens}} := \{1_E : E \subseteq \mathbb{R}^n, 0 < |E| < \infty\}.$
- If we are working with an abstract basis \mathfrak{B} we many times require additional structure. The basis \mathfrak{B} is homothecy invariant:

$$x + \lambda B \in \mathfrak{B} \quad \forall x \in \mathbb{R}^n, \quad \lambda > 0, \quad B \in \mathfrak{B}.$$

IOANNIS PARISSIS

(4回) (三) (三)

 The differentiation properties of B are controlled by the mapping properties of the corresponding maximal operator:

• The typical estimate we are looking for is of the type $M_2 : D \to D^{p,m}$ for some $1 \le p < \infty$

DENSITY PROPERTY FOR TI BASES

UPV/EHU 5 / 18

(ロ) (四) (三) (三) (三)

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

The non-centered maximal function of f with respect to $\mathfrak B$

$$M_{\mathfrak{B}}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B} \\ B \ni x}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}).$$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$

When does B differentiate L^{oo}?

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 5 / 18

(4回) (日) (日)

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

THE NON-CENTERED MAXIMAL FUNCTION OF f with RESPECT TO \mathfrak{B} $M_{\mathfrak{B}}f(x) \coloneqq \sup_{B \in \mathfrak{B}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\operatorname{loc}}(\mathbb{R}^{n}).$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$ and then \mathfrak{B} differentiates L

When does B differentiate L^{oo}?

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 5 / 18

- ▲母 ▶ ▲目 ▶ ▲目 ◆ ○ ● ●

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

The non-centered maximal function of f with respect to \mathfrak{B}

$$M_{\mathfrak{B}}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B} \\ B \ni x}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}).$$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$ and then \mathfrak{B} differentiates L^p .

QUESTION

When does \mathfrak{B} differentiate L^{∞} ? Off of the control of the normalized on \mathcal{W} for normalized

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 5 / 18

・ 「 ト ・ ヨ ト ・ ヨ ト

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

The non-centered maximal function of f with respect to \mathfrak{B}

$$M_{\mathfrak{B}}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B} \\ B \ni x}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}).$$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$ and then \mathfrak{B} differentiates L^p .

QUESTION

When does \mathfrak{B} differentiate L^{∞} ? OK if $M_{\mathfrak{B}}$ is bounded on L^{p} for some $p < \infty$.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 5 / 18

(本部) (本語) (本語) (語)

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

The non-centered maximal function of f with respect to \mathfrak{B}

$$M_{\mathfrak{B}}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B} \\ B \ni x}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}).$$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$ and then \mathfrak{B} differentiates L^p .

QUESTION

When does \mathfrak{B} differentiate L^{∞} ? OK if $M_{\mathfrak{B}}$ is bounded on L^{p} for some $p < \infty$.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

ヘロト 人間ト 人目下 人口ト

• The differentiation properties of \mathfrak{B} are controlled by the mapping properties of the corresponding maximal operator:

The non-centered maximal function of f with respect to \mathfrak{B}

$$M_{\mathfrak{B}}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B} \\ B \ni x}} \int_{B} |f(y)| dy, \quad x \in \bigcup_{B \in \mathfrak{B}} B, \quad f \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}).$$

• The typical estimate we are looking for is of the type $M_{\mathfrak{B}}: L^p \to L^{p,\infty}$ for some $1 \leq p < \infty$ and then \mathfrak{B} differentiates L^p .

QUESTION

When does \mathfrak{B} differentiate L^{∞} ? OK if $M_{\mathfrak{B}}$ is bounded on L^{p} for some $p < \infty$.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

 ↓
 ■
 √
 0
 0

 UPV/EHU
 5 / 18

ヘロト 人間ト 人目下 人口ト

There exists differentiation bases
³
⁶ which differentiate L[∞] (so they are density bases) but do not differentiate L^p for any p < ∞ (Hayes '50s and also subsequent slides).

We call $C_{2}(\alpha)$ the halo function of \mathfrak{B} .

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 6 / 18

(日) (同) (三) (三) (三)

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The BUSEMANN-FELLER THEOREM (1939) If 3 is a homotheory invariant basis then 3 is a density basis if and only if for all $a \in (0,1)$ $C_{0}(a) = \sum_{i=1}^{n} [a \in \mathbb{R}^{n} \circ d(a \lfloor a(r) \to a)] < +\infty.$

• We call $C_{\mathfrak{B}}(\alpha)$ the halo function of \mathfrak{B} . Note that $\mathcal{O}(\alpha) < \infty$ is antonomically activitied for all α if $\mathcal{M}_{\mathfrak{B}}$ is weak-type (α, p) for some $p < \infty$

(ロ) (四) (三) (三)

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

THE BUSEMANN-FELLER THEOREM (1939)

If \mathfrak{B} is a homothecy invariant basis then \mathfrak{B} is a density basis if and only if for all $\alpha \in (0, 1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

• We call $C_{\mathfrak{B}}(\alpha)$ the *halo function of* \mathfrak{B} . Note that $C(\alpha) < \infty$ is automatically satisfied for all α if $M_{\mathfrak{B}}$ is weak-type (p, p) for some $p < \infty$

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If \mathfrak{B} is a homothecy invariant basis then \mathfrak{B} is a density basis if and only if for all $\alpha \in (0, 1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

• We call $C_{\mathfrak{B}}(\alpha)$ the *halo function of* \mathfrak{B} . Note that $C(\alpha) < \infty$ is automatically satisfied for all α if $M_{\mathfrak{B}}$ is weak-type (α, p) for some $p < \infty$

米部ト 米国ト 米国

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If \mathfrak{B} is a homothecy invariant basis then \mathfrak{B} is a density basis if and only if for all $\alpha \in (0, 1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

• We call $C_{\mathfrak{B}}(\alpha)$ the halo function of \mathfrak{B} .

<回> < 回> < 回> < 回

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If $\mathfrak B$ is a homothecy invariant basis then $\mathfrak B$ is a density basis if and only if for all $\alpha\in(0,1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

• We call $C_{\mathfrak{B}}(\alpha)$ the halo function of \mathfrak{B} . Note that $C(\alpha) < \infty$ is automatically satisfied for all α if $M_{\mathfrak{B}}$ is weak-type (p, p) for some $p < \infty$.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 6 / 18

(4回) (日) (日)

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If $\mathfrak B$ is a homothecy invariant basis then $\mathfrak B$ is a density basis if and only if for all $\alpha\in(0,1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

We call C_B(α) the halo function of B. Note that C(α) < ∞ is automatically satisfied for all α if M_B is weak-type (p, p) for some p < ∞.

IOANNIS PARISSIS

(4回) (日) (日)

The Busemann-Feller theorem

• There exists differentiation bases \mathfrak{B} which differentiate L^{∞} (so they are density bases) but do not differentiate L^p for any $p < \infty$ (Hayes '50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If $\mathfrak B$ is a homothecy invariant basis then $\mathfrak B$ is a density basis if and only if for all $\alpha\in(0,1)$

$$C_{\mathfrak{B}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha\}| < +\infty.$$

• We call $C_{\mathfrak{B}}(\alpha)$ the halo function of \mathfrak{B} . Note that $C(\alpha) < \infty$ is automatically satisfied for all α if $M_{\mathfrak{B}}$ is weak-type (p, p) for some $p < \infty$.

IOANNIS PARISSIS

・ 日本 ・ 日本 ・ 日本

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis B which is translation invariant but not necessarily scale invariant.

・白い ・ モ ・ ・ モ ・

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but not necessarily scale invariant. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but descree the boundedness properties of the

Question: (M. de Guzman, 1975)

11.25 is just drambabien invariant is it true that 25 is a density basis it and only if there exists (anall) res thanch that for all res (0,1) we have

 $\sum_{k=1}^{l} \left\{ \frac{1}{2} \left\{ 1 \leq e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \leq e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \leq e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{$

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but *not* necessarily *scale invariant*. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but destroy the boundedness properties of $M_{\mathfrak{B}}$.

QUESTION: (M. de Guzman, 1975)

(1) 25 is just dramalation, invariant, is it true that 25 is a dennity basis if any provide the provided provided (and b) provided and that for all true (0, 1) and have

 $= \frac{1}{2} \left[\left\{ 1 \ge e^{-\frac{1}{2} \left\{ \frac{1}{2} \le e^{-\frac{1}{2} \left\{ \frac{1}{2} \ge e^{-\frac{1}{2} \left\{ \frac{1}{2} \le e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \left\{ \frac{1}{2} \le e^{-\frac{1}{2} \left\{ \frac{1}{2} \le e^{-\frac{1}{2} \left\{ \frac{1}{2} \le e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} \left\{ \frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2} e^{-\frac{1}{2$

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but not necessarily scale invariant. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but destroy the boundedness properties of $M_{\mathfrak{B}}$.

Question: (M. de Guzman, 1975)

If 2i should the probability of the second the second transmitted that 2i is a density basis of 162 (1.6) 2×3 (1.6)

TRANSLATION INVARIANT BASES

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but not necessarily scale invariant. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but destroy the boundedness properties of $M_{\mathfrak{B}}$.

Question: (M. de Guzman, 1975)

If $\mathfrak B$ is just translation invariant is it true that $\mathfrak B$ is a density basis if and only if there exists (small) r > 0 such that for all $\alpha \in (0, 1)$ we have

 $C_{\mathfrak{B},r}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{ x \in \mathbb{R}^n : M_{\mathfrak{B},r} \mathbf{1}_E(x) > \alpha \}| < \infty ?$

TRANSLATION INVARIANT BASES

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but not necessarily scale invariant. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but destroy the boundedness properties of $M_{\mathfrak{B}}$.

QUESTION: (M. DE GUZMAN, 1975)

If \mathfrak{B} is just translation invariant is it true that \mathfrak{B} is a density basis if and only if there exists (small) r > 0 such that for all $\alpha \in (0, 1)$ we have

$$C_{\mathfrak{B},r}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B},r} \mathbb{1}_E(x) > \alpha\}| < \infty ?$$

IOANNIS PARISSIS

UPV/EHU 7 / 18

TRANSLATION INVARIANT BASES

- The Busemann-Feller theorem gives a quite satisfactory characterization of density bases in the homothecy invariant case.
- Let us now consider a basis \mathfrak{B} which is *translation invariant* but not necessarily scale invariant. Immediately one discovers many pathological examples simply by introducing bad sets in large scales. Clearly these sets do not affect the differentiation properties of \mathfrak{B} but destroy the boundedness properties of $M_{\mathfrak{B}}$.

QUESTION: (M. DE GUZMAN, 1975)

If \mathfrak{B} is just translation invariant is it true that \mathfrak{B} is a density basis if and only if there exists (small) r > 0 such that for all $\alpha \in (0, 1)$ we have

$$C_{\mathfrak{B},r}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^n : M_{\mathfrak{B},r} \mathbb{1}_E(x) > \alpha\}| < \infty ?$$

Contents

- DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.
- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- [] A few words about the proof

・ 同下 ・ 三下 ・ 三三

 While we cannot prove de Guzmán's conjecture we can still prove a characterization of the density property in the translation invariant case.

 Note the reverse order of the quantifiers compared to de Guzmán's conjecture. Our radius r_e depends on *x*.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

▲ ■ ▶ ■ ∽ ९ ○ UPV/EHU 9 / 18

イロト イヨト イヨト

• While we cannot prove de Guzmán's conjecture we can still prove a characterization of the density property in the translation invariant case.

Theorem (P. Hagelstein, I. P.)

Let \mathfrak{B} be a translation invariant basis. Then \mathfrak{B} is a density basis if and only if for every $\alpha \in (0, 1)$ there exists $r = r_{\alpha} > 0$ such that

 $C_{\mathfrak{B},r_{\alpha}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^{n} : M_{\mathfrak{B},r_{\alpha}} \mathbb{1}_{E}(x) > \alpha\}| < \infty$

• Note the reverse order of the quantifiers compared to de Guzmán's conjecture. Our radius r_{α} depends on α .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

• While we cannot prove de Guzmán's conjecture we can still prove a characterization of the density property in the translation invariant case.

THEOREM (P. HAGELSTEIN, I. P.)

Let \mathfrak{B} be a translation invariant basis. Then \mathfrak{B} is a density basis if and only if for every $\alpha \in (0, 1)$ there exists $r = r_{\alpha} > 0$ such that

$$C_{\mathfrak{B},r_{\alpha}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^{n} : M_{\mathfrak{B},r_{\alpha}} \mathbb{1}_{E}(x) > \alpha\}| < \infty$$

• Note the reverse order of the quantifiers compared to de Guzmán's conjecture. Our radius r_{α} depends on α .

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 9 / 18

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

• While we cannot prove de Guzmán's conjecture we can still prove a characterization of the density property in the translation invariant case.

THEOREM (P. HAGELSTEIN, I. P.)

Let \mathfrak{B} be a translation invariant basis. Then \mathfrak{B} is a density basis if and only if for every $\alpha \in (0, 1)$ there exists $r = r_{\alpha} > 0$ such that

$$C_{\mathfrak{B},r_{\alpha}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^{n} : M_{\mathfrak{B},r_{\alpha}} \mathbb{1}_{E}(x) > \alpha\}| < \infty$$

• Note the reverse order of the quantifiers compared to de Guzmán's conjecture. Our radius r_{α} depends on α .

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 9 / 18

ヘロト 人間ト 人目下 人口ト

• While we cannot prove de Guzmán's conjecture we can still prove a characterization of the density property in the translation invariant case.

THEOREM (P. HAGELSTEIN, I. P.)

Let \mathfrak{B} be a translation invariant basis. Then \mathfrak{B} is a density basis if and only if for every $\alpha \in (0, 1)$ there exists $r = r_{\alpha} > 0$ such that

$$C_{\mathfrak{B},r_{\alpha}}(\alpha) \coloneqq \sup_{0 < |E| < \infty} \frac{1}{|E|} |\{x \in \mathbb{R}^{n} : M_{\mathfrak{B},r_{\alpha}} \mathbb{1}_{E}(x) > \alpha\}| < \infty$$

• Note the reverse order of the quantifiers compared to de Guzmán's conjecture. Our radius r_{α} depends on α .

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 9 / 18

(本部) (本語) (本語)

Contents

- DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.
- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- [] A few words about the proof

・ 同下 ・ 三下 ・ 三三

• We define

 $M_{\mathfrak{B},r,f}(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \int_{B} |f(y)| dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^{n}} \mathfrak{B}(x).$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

 A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For k ∈ N let

 $\mathfrak{B}_{k}(0) := \left\{ \left(-\frac{\delta}{2}, \frac{\delta}{2}\right) \cup (\epsilon, s+2\gamma^{k}\delta) : 0 < \delta < 2\gamma^{k}, \dots, s \in (2\gamma^{k}, 2\gamma^{k}+2\gamma^{k}) \right\}.$ (Then external DV translation invariance $\mathfrak{B} := [1 - \gamma s, 1 + 2\gamma^{k})$

(日) (四) (日) (日)

• We define

$$M_{\mathfrak{B},r}f(x)\coloneqq \sup_{\substack{B\in\mathfrak{B}(x)\\ \mathrm{diam}(B)< r}} \mathcal{f}_B|f(y)|dy, \qquad \mathfrak{B}\coloneqq \bigcup_{x\in\mathbb{R}^n}\mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

- A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For $k \in \mathbb{N}$ let
 - $\mathcal{B}_{K}(0) := \left\{ \left(-\frac{\delta}{2}, \frac{\delta}{2}\right) \cup (\epsilon, s+2\gamma^{*}\delta) : 0 < \delta < 2\gamma^{*}\delta, \dots s \in (2\gamma^{*}, 2\gamma^{*}+2\gamma^{*}\delta) \right\}$ Then external law translation invariance $\mathcal{B} \ge 1$ (see (2 $\gamma^{*}, 2\gamma^{*}+2\gamma^{*}\delta)$).

• We define

$$M_{\mathfrak{B},r}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \mathcal{f}_B | f(y) | dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^n} \mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

• We define

$$M_{\mathfrak{B},r}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \mathcal{f}_B | f(y) | dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^n} \mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

- A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For $k \in \mathbb{N}$ let $\mathfrak{m}_{k}(\alpha) = \left\{ \alpha \in \mathbb{Q}^{k} \ \text{Subscript{abs}} \ \alpha \in \mathbb{Q}^{-k} \ \alpha \in$
 - Then extend by translation invariance $\mathfrak{B} \coloneqq \bigcup_{\mathbf{y} \in \mathbb{R}^n} \cup_{k \in \mathbb{N}} (\mathfrak{B}_k(0) + \mathbf{x}).$

• We define

$$M_{\mathfrak{B},r}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \mathcal{f}_B | f(y) | dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^n} \mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

• A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For $k\in\mathbb{N}$ let

$$\mathfrak{B}_k(0) \coloneqq \Big\{ (-\frac{\delta}{2}, \frac{\delta}{2}) \cup (s, s+2^{-k}\delta) : \ 0 < \delta < 2^{-2^k}, \quad s \in (2^{-k}, 2^{-k}+2^{-2^k}) \Big\}.$$

Then extend by translation invariance $\mathfrak{B} := \bigcup_{x \in \mathbb{R}^n} \bigcup_{k \in \mathbb{N}} (\mathfrak{B}_k(0) + x).$

• We define

$$M_{\mathfrak{B},r}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \mathcal{f}_B |f(y)| dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^n} \mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

• A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For $k\in\mathbb{N}$ let

$$\mathfrak{B}_k(0) \coloneqq \Big\{ (-\frac{\delta}{2}, \frac{\delta}{2}) \cup (s, s+2^{-k}\delta) : \ 0 < \delta < 2^{-2^k}, \quad s \in (2^{-k}, 2^{-k}+2^{-2^k}) \Big\}.$$

Then extend by translation invariance $\mathfrak{B} := \bigcup_{x \in \mathbb{R}^n} \bigcup_{k \in \mathbb{N}} (\mathfrak{B}_k(0) + x).$

• We define

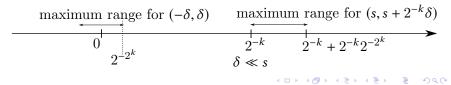
$$M_{\mathfrak{B},r}f(x) \coloneqq \sup_{\substack{B \in \mathfrak{B}(x) \\ \operatorname{diam}(B) < r}} \mathcal{f}_B | f(y) | dy, \qquad \mathfrak{B} \coloneqq \bigcup_{x \in \mathbb{R}^n} \mathfrak{B}(x).$$

Here $\mathfrak{B}(x)$ is a given collection of sets containing $x \in \mathbb{R}^n$. For example $\mathfrak{B}(x)$ is the collection of all balls centered at x.

• A counterexample to De Guzmán's conjecture in the centered case can be constructed as follows. For $k\in\mathbb{N}$ let

$$\mathfrak{B}_k(0) \coloneqq \Big\{ (-\frac{\delta}{2}, \frac{\delta}{2}) \cup (s, s+2^{-k}\delta) : \ 0 < \delta < 2^{-2^k}, \quad s \in (2^{-k}, 2^{-k}+2^{-2^k}) \Big\}.$$

Then extend by translation invariance $\mathfrak{B} := \bigcup_{x \in \mathbb{R}^n} \bigcup_{k \in \mathbb{N}} (\mathfrak{B}_k(0) + x).$



IOANNIS PARISSIS

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|$, see the ord

 $n < \frac{|(d, \cup, l) \cap \mathcal{R}||}{|(d, \cup, l)|}$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in \{0,1\}$ there exists $\alpha = \pi(\alpha)$ much that $C_{\mathfrak{B}_k}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_k} \mathbb{1}_{\delta} > 1/(1 + 2^{-k})$ on

・ 回 ト ・ ヨ ト ・ ヨ ト

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap I_2|}{|I_1|} > \alpha/2$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in \{0, 1\}$ there exists $\alpha = \pi(\alpha)$ such that $C_{\mathfrak{B}_k}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_k} \mathbb{1}_{\delta} > 1/(1 + 2^{-k})$ on

1**2** 1 1 2 1 1 2 1

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in \{0, 1\}$ there exists $\alpha = \pi(\alpha)$ much that $C_{\mathfrak{B}_k}(\alpha) < \infty$
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_k} \mathbb{1}_{\delta} > 1/(1 + 2^{-k})$ on

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_k} \mathbb{1}_{\delta} > 1/(1 + 2^{-k})$ on

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_E(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B}_k}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{2p} \mathbb{1}_d > 1/(1 + 2^{-k})$ on

- Let $\alpha \in (0, 1), k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_k} \mathbb{1}_{\delta} > 1/(1 + 2^{-k})$ on

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\delta_{2k}} \mathbb{I}_{\delta} > 1/(1+2^{-k})$ on

180 X 2 X 4 3 X

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ (!) such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then Mayle be $U(1 + 2^{-1})$ on

1**2** 1 1 2 1 1 2 1

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\mathfrak{B}_k} \mathbb{1}_E > 1/(1 + 2^{-k})$ on an interval of length 2^{-2^k} .

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1 + 2^{-k})$ on an interval of length 2^{-2^k} .

UPV/EHU 12 / 18

- Let $\alpha \in (0, 1)$, $k \in \mathbb{N}$ such that $2^{-k} < \alpha/2$, and $x \in \mathbb{R}$ such that $M_{\mathfrak{B}} \mathbb{1}_{E}(x) > \alpha$ for some E with $0 < |E| < \infty$.
- By the definition of \mathfrak{B} there exists $I = I_1 \cup I_2 \in \mathfrak{B}_k(x)$ with I_1, I_2 disjoint, $|I_1| = 2^k |I_2|, x \in I_1$ and

$$\frac{|E \cap (I_1 \cup I_2)|}{|I_1 \cup I_2|} > \alpha \implies \frac{|I_1 \cap E|}{|I_1|} > \alpha/2.$$

- By the Hardy-Littlewood maximal theorem we then get that $C_{\mathfrak{B}_k}(\alpha) \leq 1/\alpha$ if $2^{-k} \leq \alpha$. Thus for every $\alpha \in (0, 1)$ there exists $r = r(\alpha)$ such that $C_{\mathfrak{B},r}(\alpha) < \infty$.
- We show however that it is impossible to choose a *uniform* r for every $\alpha \in (0, 1)$ so that $C_{\mathfrak{B}, r}(\alpha) < \infty$.
- For this let $E = [0, \delta]$ with $\delta \ll 2^{-2^k}$. Then $M_{\mathfrak{B}_k} \mathbb{1}_E > 1/(1 + 2^{-k})$ on an interval of length 2^{-2^k} .

- We showed $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1+2^{-k})$ on an interval of length 2^{-2^k} , and $|E| = \delta \ll 2^{-2^k}$.
- This implies that $C_{\mathfrak{B},r}((1+2^{-k})^{-1}) = \infty$ if $r \geq 2^{-k}$ and so that

$$C_{\mathfrak{B},r}(\alpha) = \infty$$
 if $r \gtrsim \frac{1}{\alpha} - 1$, $\alpha \to 1^-$.

Bowever, the positive direction of the theorem shows that 2 is in a fact a density basis.

- 4 回 2 4 日 2 4 日

- We showed $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1+2^{-k})$ on an interval of length 2^{-2^k} , and $|E| \approx \delta \ll 2^{-2^k}$.
- This implies that $C_{\mathfrak{B},r}((1+2^{-k})^{-1}) = \infty$ if $r \geq 2^{-k}$ and so that

$$C_{\mathfrak{B},r}(\alpha) = \infty \quad \text{if} \quad r \gtrsim \frac{1}{\alpha} - 1, \quad \alpha \to 1^-.$$

• However, the positive direction of the theorem shows that \mathfrak{B} is in fact a density basis. Thus the characterization via the condition $C_{\mathfrak{B},r}(\alpha) < \infty$ cannot be valid for r independent of α .

Can De Guzmán's conjecture still be valid in the uncentered case?

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 13 / 18

(A) < (A)

- We showed $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1+2^{-k})$ on an interval of length 2^{-2^k} , and $|E| = \delta \ll 2^{-2^k}$.
- This implies that $C_{\mathfrak{B},r}((1+2^{-k})^{-1})=\infty$ if $r\gtrsim 2^{-k}$ and so that

$$C_{\mathfrak{B},r}(\alpha) = \infty$$
 if $r \gtrsim \frac{1}{\alpha} - 1$, $\alpha \to 1^-$.

• However, the positive direction of the theorem shows that \mathfrak{B} is in fact a density basis. Thus the characterization via the condition $C_{\mathfrak{B},r}(\alpha) < \infty$ cannot be valid for r independent of α .

Can De Guzmán's conjecture still be valid in the uncentered case?

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 13 / 18

- We showed $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1+2^{-k})$ on an interval of length 2^{-2^k} , and $|E| = \delta \ll 2^{-2^k}$.
- This implies that $C_{\mathfrak{B},r}((1+2^{-k})^{-1}) = \infty$ if $r \gtrsim 2^{-k}$ and so that

$$C_{\mathfrak{B},r}(\alpha) = \infty$$
 if $r \gtrsim \frac{1}{\alpha} - 1$, $\alpha \to 1^-$.

• However, the positive direction of the theorem shows that \mathfrak{B} is in fact a density basis. Thus the characterization via the condition $C_{\mathfrak{B},r}(\alpha) < \infty$ cannot be valid for r independent of α .

QUESTION

Can De Guzmán's conjecture still be valid in the uncentered case? (Uncentered here means that $\mathfrak{B}(\mathbf{x})$ is the collection of all sets containing \mathbf{x} , not just a predefined collection.)

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 13 / 18

- We showed $M_{\mathfrak{B}_k} \mathbf{1}_E > 1/(1+2^{-k})$ on an interval of length 2^{-2^k} , and $|E| = \delta \ll 2^{-2^k}$.
- This implies that $C_{\mathfrak{B},r}((1+2^{-k})^{-1})=\infty$ if $r\gtrsim 2^{-k}$ and so that

$$C_{\mathfrak{B},r}(\alpha) = \infty$$
 if $r \gtrsim \frac{1}{\alpha} - 1$, $\alpha \to 1^-$.

• However, the positive direction of the theorem shows that \mathfrak{B} is in fact a density basis. Thus the characterization via the condition $C_{\mathfrak{B},r}(\alpha) < \infty$ cannot be valid for r independent of α .

QUESTION

Can De Guzmán's conjecture still be valid in the uncentered case? (Uncentered here means that $\mathfrak{B}(\mathbf{x})$ is the collection of all sets containing \mathbf{x} , not just a predefined collection.)

- **A B A B A B**

Contents

- DIFFERENTIATION BASES AND THE BUSEMANN-FELLER THEOREM.
- 2 The density property for translation invariant bases
- 3 A COUNTEREXAMPLE TO A CENTERED DE GUZMÁN CONJECTURE
- A FEW WORDS ABOUT THE PROOF

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 14 / 18

オポト イラト イラト

THE BUSEMANN-FELLER CONSEQUENCE

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a

differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

 $|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_{\alpha}$, with r_{α} as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

THE BUSEMANN-FELLER CONSEQUENCE

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

 $|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_\alpha$, with r_α as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_\alpha$, with r_α as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

(D) (**A**) (**A**) (**B**)

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbb{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_\alpha$, with r_α as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

(D) (**A**) (**A**) (**B**)

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbb{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_{\alpha}$, with r_{α} as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

- then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_{\alpha}$, with r_{α} as in our theorem.
- It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_\alpha$, with r_α as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_{\alpha}$, with r_{α} as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

(미) (귀) (문) (문)

• One direction of the theorem is an easy consequence of a more general result of Busemann and Feller (BF). If \mathfrak{B} is a differentiation basis and for each $\alpha \in (0, 1)$, for each nested sequence of bounded measurable sets $\{A_k\}$ such that $|A_k| \to 0$, and for each sequence of positive numbers $r_k \to 0$ we have

$$|\{x \in \mathbb{R}^n : M_{\mathfrak{B}, r_k} \mathbf{1}_{A_k}(x) > \alpha\}| \xrightarrow{k} 0,$$

then \mathfrak{B} is a density basis. We can easily check that our assumption implies the BF condition. Indeed we just need to fix $\alpha \in (0, 1)$ and chose k sufficiently large so that $r_k < r_{\alpha}$, with r_{α} as in our theorem.

• It remains to show that if \mathfrak{B} is a translation invariant density basis then the conclusion of the theorem holds.

1 **A A A B A B A**

• Assuming our conclusion fails (for contradiction) there exists $\alpha \in (0, 1)$ and sets $S_{k,\ell} \subset \mathbb{R}^n$ of finite and positive measure with

 $|\{x\in \mathbb{R}^n:\, M_{2^{-k}}\mathbf{1}_{S_{k,\ell}}(x)>\alpha\}|\geq 2^\ell|S_{k,\ell}|,\qquad \forall (k,\ell)\in \mathbb{N}^2.$

• By pigeonholing and using that $M_{2^{-k}}$ is a local operator we can then find a unit cube Q and for each $\ell \in \mathbb{N}$ a set $E_{\ell} := S_{\ell,\ell} \cap 3Q$ of positive and finite measure such that

 $|F_{\ell} := \{ x \in Q : M_{2^{-\ell}} \mathbf{1}_{E_{\ell}}(x) > \alpha \} | \gtrsim_n 2^{\ell} |E_{\ell}|, \qquad |E_{\ell}| \lesssim_n 2^{-\ell} |F_{\ell}|.$

• Choose a positive integer n_{ℓ} such that $|3Q| \approx n_{\ell}|F_{\ell}|$ and construct a sequence of sets $\{\widetilde{E}_m\}_m$ as follows

En and Elizabeth Estate and Estate

• Construct similarly a sequence of sets $\{F_m\}_m$ starting from $\{F_\ell\}_\ell$.

DENSITY PROPERTY FOR TI BASES

• Assuming our conclusion fails (for contradiction) there exists $\alpha \in (0, 1)$ and sets $S_{k,\ell} \subset \mathbb{R}^n$ of finite and positive measure with

$$|\{x \in \mathbb{R}^n : M_{2^{-k}} \mathbb{1}_{S_{k,\ell}}(x) > \alpha\}| \ge 2^{\ell} |S_{k,\ell}|, \quad \forall (k,\ell) \in \mathbb{N}^2.$$

• By pigeonholing and using that $M_{2^{-k}}$ is a local operator we can then find a unit cube Q and for each $\ell \in \mathbb{N}$ a set $E_{\ell} := S_{\ell,\ell} \cap 3Q$ of positive and finite measure such that

$$|F_{\ell} := \{ x \in Q : M_{2^{-\ell}} \mathbb{1}_{E_{\ell}}(x) > \alpha \} | \gtrsim_{n} 2^{\ell} |E_{\ell}|, \qquad |E_{\ell}| \lesssim_{n} 2^{-\ell} |F_{\ell}|.$$

• Choose a positive integer n_{ℓ} such that $|3Q| \approx n_{\ell}|F_{\ell}|$ and construct a sequence of sets $\{\widetilde{E}_m\}_m$ as follows

 $E_1, \ldots, E_1, E_2, \ldots, E_2, \ldots, E_\ell, \ldots, E_\ell, \ldots$

• Construct similarly a sequence of sets $\{F_m\}_m$ starting from $\{F_\ell\}_\ell$.

DENSITY PROPERTY FOR TI BASES

• Assuming our conclusion fails (for contradiction) there exists $\alpha \in (0, 1)$ and sets $S_{k,\ell} \subset \mathbb{R}^n$ of finite and positive measure with

$$|\{x \in \mathbb{R}^n : M_{2^{-k}} \mathbb{1}_{S_{k,\ell}}(x) > \alpha\}| \ge 2^{\ell} |S_{k,\ell}|, \quad \forall (k,\ell) \in \mathbb{N}^2.$$

• By pigeonholing and using that $M_{2^{-k}}$ is a local operator we can then find a unit cube Q and for each $\ell \in \mathbb{N}$ a set $E_{\ell} := S_{\ell,\ell} \cap 3Q$ of positive and finite measure such that

$$|F_{\ell} := \{ x \in Q : M_{2^{-\ell}} \mathbb{1}_{E_{\ell}}(x) > \alpha \} | \geq_n 2^{\ell} |E_{\ell}|, \qquad |E_{\ell}| \leq_n 2^{-\ell} |F_{\ell}|.$$

• Choose a positive integer n_ℓ such that $|3Q| \approx n_\ell |F_\ell|$ and construct a sequence of sets $\{\widetilde{E}_m\}_m$ as follows

• Construct similarly a sequence of sets $\{F_m\}_m$ starting from $\{F_\ell\}_\ell$.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU

16 / 18

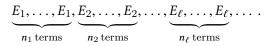
• Assuming our conclusion fails (for contradiction) there exists $\alpha \in (0, 1)$ and sets $S_{k,\ell} \subset \mathbb{R}^n$ of finite and positive measure with

$$|\{x \in \mathbb{R}^n : M_{2^{-k}} \mathbb{1}_{S_{k,\ell}}(x) > \alpha\}| \ge 2^{\ell} |S_{k,\ell}|, \qquad \forall (k,\ell) \in \mathbb{N}^2.$$

• By pigeonholing and using that $M_{2^{-k}}$ is a local operator we can then find a unit cube Q and for each $\ell \in \mathbb{N}$ a set $E_{\ell} := S_{\ell,\ell} \cap 3Q$ of positive and finite measure such that

$$|F_{\ell} := \{ x \in Q : M_{2^{-\ell}} \mathbb{1}_{E_{\ell}}(x) > \alpha \} | \geq_n 2^{\ell} |E_{\ell}|, \qquad |E_{\ell}| \leq_n 2^{-\ell} |F_{\ell}|.$$

• Choose a positive integer n_ℓ such that $|3Q| \approx n_\ell |F_\ell|$ and construct a sequence of sets $\{\widetilde{E}_m\}_m$ as follows



• Construct similarly a sequence of sets $\{F_m\}_m$ starting from $\{F_\ell\}_\ell$.

DENSITY PROPERTY FOR TI BASES

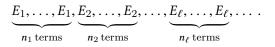
• Assuming our conclusion fails (for contradiction) there exists $\alpha \in (0, 1)$ and sets $S_{k,\ell} \subset \mathbb{R}^n$ of finite and positive measure with

$$|\{x \in \mathbb{R}^n : M_{2^{-k}} \mathbb{1}_{S_{k,\ell}}(x) > \alpha\}| \ge 2^{\ell} |S_{k,\ell}|, \qquad \forall (k,\ell) \in \mathbb{N}^2.$$

• By pigeonholing and using that $M_{2^{-k}}$ is a local operator we can then find a unit cube Q and for each $\ell \in \mathbb{N}$ a set $E_{\ell} := S_{\ell,\ell} \cap 3Q$ of positive and finite measure such that

$$|F_{\ell} := \{ x \in Q : M_{2^{-\ell}} \mathbb{1}_{E_{\ell}}(x) > \alpha \} | \geq_n 2^{\ell} |E_{\ell}|, \qquad |E_{\ell}| \leq_n 2^{-\ell} |F_{\ell}|.$$

• Choose a positive integer n_ℓ such that $|3Q| \approx n_\ell |F_\ell|$ and construct a sequence of sets $\{\widetilde{E}_m\}_m$ as follows



• Construct similarly a sequence of sets $\{\widetilde{F}_m\}_m$ starting from $\{F_\ell\}_\ell$.

UPV/EHU

16 / 18

With these definitions we can conclude (remember $n_{\ell}|F_{\ell}| = 1$) $\sum_{m} |\overline{E}_{m}| = \sum_{\ell} n_{\ell}|E_{\ell}| \leq \sum_{\ell} n_{\ell} 2^{-\ell}|F_{\ell}| \leq 1, \quad \sum_{m} |\overline{E}_{m}| = +\infty$

- By a Borel-Cantelli type of argument we can now find translations $\{\tau_m\}_m$ such that almost every point of \mathbb{R}^n is contained in infinitely many of the sets $\{\tau_m \widetilde{F}_m\}_m$.
- * By this construction and branslation invariance we can now find a strictly increasing sequence $\{m_j\}_j$ such that almost every $x \in \mathbb{R}^n$ satisfies

$$\begin{split} & \left\{ 0 \leq n_{in} d \log k \ge 0 \right\} \bigcap_{i=1}^{m} \geq \left\{ 0 \leq i_{in} d \log k \le 0 \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in} d \log k \ge 0 \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in} d \log k \ge 0 \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in} d \log k \ge 0 \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in} d \log k \le 0 \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in} d \log k \right\} \bigcap_{i=1}^{m} \left\{ 2 \leq i_{in}$$

• With these definitions we can conclude (remember $n_{\ell}|F_{\ell}| \approx 1$)

$$\sum_m |\widetilde{E}_m| = \sum_\ell n_\ell |E_\ell| \lesssim \sum_\ell n_\ell 2^{-\ell} |F_\ell| \lesssim 1, \quad \sum_m |\widetilde{F}_m| = +\infty$$

- By a Borel-Cantelli type of argument we can now find translations $\{\tau_m\}_m$ such that almost every point of \mathbb{R}^n is contained in infinitely many of the sets $\{\tau_m \widetilde{F}_m\}_m$.
- By this construction and translation invariance we can now find a strictly increasing sequence $\{m_j\}_j$ such that almost every $x \in \mathbb{R}^n$ satisfies

$$x \in \bigcap_{j=1}^{\infty} \{ Q : M_{2^{-m_j}} \mathbb{1}_{\tau_{m_j} E_{m_j}} > \alpha \} \subseteq \bigcap_{j=1}^{\infty} \{ Q : M_{2^{-j}} \mathbb{1}_{\tau_{m_j} E} > \alpha \},\$$
$$E := \bigcup_m \tau_m \widetilde{E}_m, \qquad |E| < +\infty.$$

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 17 / 18

• With these definitions we can conclude (remember $n_{\ell}|F_{\ell}| \approx 1$)

$$\sum_{m} |\widetilde{E}_{m}| = \sum_{\ell} n_{\ell} |E_{\ell}| \lesssim \sum_{\ell} n_{\ell} 2^{-\ell} |F_{\ell}| \lesssim 1, \quad \sum_{m} |\widetilde{F}_{m}| = +\infty$$

- By a Borel-Cantelli type of argument we can now find translations $\{\tau_m\}_m$ such that almost every point of \mathbb{R}^n is contained in infinitely many of the sets $\{\tau_m \widetilde{F}_m\}_m$.
- By this construction and translation invariance we can now find a strictly increasing sequence $\{m_j\}_j$ such that almost every $x \in \mathbb{R}^n$ satisfies

$$x \in \bigcap_{j=1}^{\infty} \{ Q : M_{2^{-m_j}} \mathbb{1}_{\tau_{m_j} E_{m_j}} > \alpha \} \subseteq \bigcap_{j=1}^{\infty} \{ Q : M_{2^{-j}} \mathbb{1}_{\tau_{m_j} E} > \alpha \},\$$
$$E := \bigcup_m \tau_m \widetilde{E}_m, \qquad |E| < +\infty.$$

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

UPV/EHU 17 / 18

(4) (3) (4) (4) (4)

• With these definitions we can conclude (remember $n_{\ell}|F_{\ell}| \approx 1$)

$$\sum_{m} |\widetilde{E}_{m}| = \sum_{\ell} n_{\ell} |E_{\ell}| \lesssim \sum_{\ell} n_{\ell} 2^{-\ell} |F_{\ell}| \lesssim 1, \quad \sum_{m} |\widetilde{F}_{m}| = +\infty$$

- By a Borel-Cantelli type of argument we can now find translations $\{\tau_m\}_m$ such that almost every point of \mathbb{R}^n is contained in infinitely many of the sets $\{\tau_m \widetilde{F}_m\}_m$.
- By this construction and translation invariance we can now find a strictly increasing sequence $\{m_j\}_j$ such that almost every $x \in \mathbb{R}^n$ satisfies

$$\begin{aligned} x \in \bigcap_{j=1}^{\infty} \left\{ Q : M_{2^{-m_{j}}} \mathbb{1}_{\tau_{m_{j}}E_{m_{j}}} > \alpha \right\} &\subseteq \bigcap_{j=1}^{\infty} \left\{ Q : M_{2^{-j}} \mathbb{1}_{\tau_{m_{j}}E} > \alpha \right\}, \\ E &\coloneqq \bigcup_{m} \tau_{m} \widetilde{E}_{m}, \qquad |E| < +\infty. \end{aligned}$$

• We have proved that if the necessity statement of the theorem is negated then for almost every $x \in \mathbb{R}^n$ we have

$$x \in \bigcap_{j=1}^{\infty} \{Q : M_{2^{-j}} \mathbb{1}_E > \alpha\}, \qquad |E| < \infty.$$

• We conclude that there exists $\alpha > 0$ such that, for almost every $x \in \mathbb{R}^n$ there exists a sequence of sets $\{R_{x,j}\}_j \subset \mathfrak{B}$ with $\operatorname{diam}(R_{x,j}) \leq 2^{-j}$, and such that

$$\frac{|R_{x,j} \cap E|}{|R_{x,j}|} > \alpha, \qquad \forall j \ge 1.$$

• But \mathfrak{B} is a density basis so for almost all $x \in E^{\mathsf{c}}$ we must have

$$\lim_{j \to \infty} \frac{|R_{x,j} \cap E|}{|R_{x,j}|} = 0$$

which is clearly a contradiction

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

• We have proved that if the necessity statement of the theorem is negated then for almost every $x \in \mathbb{R}^n$ we have

$$x\in \bigcap_{j=1}^{\infty} \left\{Q: M_{2^{-j}}1_E > \alpha\right\}, \qquad |E| < \infty.$$

• We conclude that there exists $\alpha > 0$ such that, for almost every $x \in \mathbb{R}^n$ there exists a sequence of sets $\{R_{x,j}\}_j \subset \mathfrak{B}$ with $\operatorname{diam}(R_{x,j}) \leq 2^{-j}$, and such that

$$\frac{|R_{x,j} \cap E|}{|R_{x,j}|} > \alpha, \qquad \forall j \ge 1.$$

• But \mathfrak{B} is a density basis so for almost all $x \in E^{\mathsf{c}}$ we must have

$$\lim_{j \to \infty} \frac{|R_{x,j} \cap E|}{|R_{x,j}|} = 0$$

which is clearly a contradiction. We used $|E| < \infty$ to show that E^{c} actually contains a set of positive measure.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

• We have proved that if the necessity statement of the theorem is negated then for almost every $x \in \mathbb{R}^n$ we have

$$x\in \bigcap_{j=1}^{\infty} \left\{Q: M_{2^{-j}}1_E > \alpha\right\}, \qquad |E|<\infty.$$

• We conclude that there exists $\alpha > 0$ such that, for almost every $x \in \mathbb{R}^n$ there exists a sequence of sets $\{R_{x,j}\}_j \subset \mathfrak{B}$ with $\operatorname{diam}(R_{x,j}) \leq 2^{-j}$, and such that

$$\frac{|R_{x,j} \cap E|}{|R_{x,j}|} > \alpha, \qquad \forall j \ge 1.$$

 $\bullet\,$ But $\mathfrak B$ is a density basis so for almost all $x\in E^{\mathsf{c}}$ we must have

$$\lim_{j \to \infty} \frac{|R_{x,j} \cap E|}{|R_{x,j}|} = 0$$

which is clearly a contradiction. We used $|E| < \infty$ to show that E^{c} actually contains a set of positive measure.

IOANNIS PARISSIS

DENSITY PROPERTY FOR TI BASES

• We have proved that if the necessity statement of the theorem is negated then for almost every $x \in \mathbb{R}^n$ we have

$$x\in \bigcap_{j=1}^{\infty} \left\{Q: M_{2^{-j}}1_E > \alpha\right\}, \qquad |E| < \infty.$$

• We conclude that there exists $\alpha > 0$ such that, for almost every $x \in \mathbb{R}^n$ there exists a sequence of sets $\{R_{x,j}\}_j \subset \mathfrak{B}$ with $\operatorname{diam}(R_{x,j}) \leq 2^{-j}$, and such that

$$\frac{|R_{x,j} \cap E|}{|R_{x,j}|} > \alpha, \qquad \forall j \ge 1.$$

 $\bullet\,$ But $\mathfrak B$ is a density basis so for almost all $x\in E^{\mathsf{c}}$ we must have

$$\lim_{j \to \infty} \frac{|R_{x,j} \cap E|}{|R_{x,j}|} = 0$$

which is clearly a contradiction. We used $|E| < \infty$ to show that E^{c} actually contains a set of positive measure.

IOANNIS PARISSIS

Density property for ti bases