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Introduction



Motivation Question

Lebesgue Differentiation Theorem

1

|Q(x , r)|

∫
Q(x,r)

f −−−→
r→0

f (x) a.e x ∈ Rn, for all f ∈ Lp(Rn)

Q(x , r) is a cube centered at x and sidelength r .
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Some Notation

Definition

B := {Collection of bounded open sets on Rn}
Rn := {Open rectangles on Rn}
Qn := {Open cubes on Rn}

Remark

They are all homothecy invariant.

Definition

Maximal operator associated to B:

MBf (x) := sup
B∈B
x∈B

1

|B|

∫
B

|f |, f ∈ Lp(Rn), x ∈ Rn.
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Introduction

Definition

• Lp(Rn) :=

{
f measurable :

(∫
Rn

|f |p
) 1

p

=: ||f ||Lp(Rn) <∞

}

• ||f ||Lp,∞ := {The smallest C0 that verifies (*)}
• Lp,∞(Rn) := {f measurable : ||f ||Lp,∞(Rn) <∞}

For all f ∈ Lp(Rn) (1 ≤ p <∞) we have

|{x ∈ Rn : |f (x)| > λ}| ≤ C p
0

λp
(*)
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Introduction

Definition

We say that T is strong-type (p, p) if T : Lp −→ Lp is bounded.

We say that T is weak-type (p, p) if T : Lp −→ Lp,∞ is bounded,

|{x ∈ Rn : |Tf (x)| > λ}| ≤ C p

λp

∫
Rn

|f (x)|pdx , λ > 0,

for some C > 0.

Lemma

T is of weak-type (p, p) (1 < p <∞) if and only if for every E with

0 < |E | <∞

∣∣∣∣ ∫
E

Tf

∣∣∣∣ ≤ Cp‖f ‖Lp(Rn)|E |
1
p′ .
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Strong Maximal Theorem

Strong Maximal Theorem (Jessen, Marcinkiewicz, Zygmund 1935)

The estimate

|{x ∈ Rn : MRn f (x) > λ}| ≤ Cn

∫
Rn

|f |
λ

(
1 + log+ |f |

λ

)n−1

holds for every λ > 0, with log+ t = max{0, log t}. It follows that Rn

differentiates functions f for which∫
K

|f |(1 + log+ |f |)n−1 <∞,

for every compact set K ⊂ Rn.
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Duality link between analysis and

geometry



Duality approach

Duality approach for general B (A. Córdoba - R. Fefferman).

Definition (Covering property Vq)

Let 1 ≤ q ≤ ∞. We say that B has the covering property Vq if there

exist c1, c2 > 0 such that for every finite collection {Bj}Nj=1 ⊂ B there

exists a finite subcollection {B̃k}Mk=1 such that

(i)

∣∣∣∣ N⋃
j=1

Bj

∣∣∣∣ ≤ c1

∣∣∣∣ M⋃
k=1

B̃k

∣∣∣∣ (We don’t lose much of the measure)

(ii)

∥∥∥∥ M∑
k=1

1B̃k

∥∥∥∥
Lq(Rn)

≤ c2

∣∣∣∣ N⋃
j=1

Bj

∣∣∣∣ 1
q

(Control of the overlap)

Proposition

Let 1 < p <∞ and 1
p + 1

p′ = 1. The maximal operator MB is of

weak-type (p, p) if and only if B has the covering property Vp′ .
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Proof: Vp′ ⇒ weak-type (p, p)

Consider

Eλ = {x ∈ Rn : MBf (x) > λ}
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1
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Proof: Vp′ ⇒ weak-type (p, p)

Consider

K ⊂
N⋃
j=1

Bj

such that

1

|Bj |

∫
Bj

|f (y)|dy > λ.

By Hölder’s inequality and (ii) of Vp′ :

|K | ≤
∣∣∣∣ N⋃
j=1

Bj

∣∣∣∣ ≤ c1

∣∣∣∣ M⋃
k=1

B̃k

∣∣∣∣ ≤ c1

λ

∫
Rn

M∑
k=1

1B̃k
(y)|f (y)|dy

Hölder
≤ c1

λ

∥∥∥∥∥
M∑
k=1

1B̃k

∥∥∥∥∥
Lp′ (Rn)

‖f ‖Lp(Rn)

(ii)

≤ c1c2

λ

∣∣∣∣ N⋃
j=1

Bj

∣∣∣∣ 1
p′

‖f ‖Lp(Rn).
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Proof: Vp′ ⇒ weak-type (p, p)

Consider

K ⊂
N⋃
j=1

Bj

such that

1

|Bj |

∫
Bj

|f (y)|dy > λ

With a few more simple computations:

|K | ≤ cp1 c
p
2

λp
‖f ‖pp

and let K ↗ Eλ.
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Proof: weak-type (p, p)⇒ Vp′

Let {Bj}Nj=1 ⊂ B, and suppose without loss of generality that

|B1| ≥ · · · ≥ |BN |.
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Proof: weak-type (p, p)⇒ Vp′

Let {Bj}Nj=1 ⊂ B, and suppose without loss of generality that

|B1| ≥ · · · ≥ |BN |.

We extract a subcollection as follows:

- B̃1 = B1

- Selected {B̃k}mk=1, m < N, choose the first B ∈ {Bj}Nj=1 \ {B̃k}mk=1

verifying: ∣∣∣∣B ∩ ⋃
k≤m

B̃k

∣∣∣∣ ≤ 1

2
|B|

The overlapping is less than 50% in measure.
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Proof: weak-type (p, p)⇒ Vp′

We have selected {B̃k}Mk=1 such that, defining

Ẽk = B̃k \
⋃
j<k

B̃j ,

it holds

|Ẽk | ≥
1

2
|B̃k | &

M⋃
k=1

Ẽk =
M⋃
k=1

B̃k .
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Proof: weak-type (p, p)⇒ Vp′

We have selected {B̃k}Mk=1 such that, defining

Ẽk = B̃k \
⋃
j<k

B̃j ,

it holds

|Ẽk | ≥
1

2
|B̃k | &

M⋃
k=1

Ẽk =
M⋃
k=1

B̃k .

To prove (i):

⋃
B not

selected

B ⊂
⋃{

B :
|B ∩

⋃
B̃k |

|B|
>

1

2

}
⊂
{
MB(1⋃

B̃k
) >

1

2

}
.
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Proof: weak-type (p, p)⇒ Vp′

To prove (ii) we define the linear and weak-type (p, p) operator

Tf (x) :=
M∑
k=1

(
1

|B̃k |

∫
B̃k

f (y)dy

)
1Ẽk

(x) ≤ MBf (x).
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1
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Computing the adjoint of T and evaluating at 1⋃
k B̃k

we get

T ∗(1⋃
k B̃k

) =
M∑
k=1

|Ẽk |
|B̃k |

1B̃k
≥ 1

2

M∑
k=1

1B̃k
.
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Proof: weak-type (p, p)⇒ Vp′

Therefore

∣∣∣∣ ∫
Rn

M∑
k=1

1B̃k
f

∣∣∣∣ ≤ 2

∣∣∣∣ ∫
Rn

T ∗(1⋃
k B̃k

)f

∣∣∣∣ = 2

∣∣∣∣ ∫⋃
k B̃k

Tf

∣∣∣∣ ≤ 2Cp‖f ‖Lp(Rn)

∣∣∣∣ M⋃
k=1

B̃k

∣∣∣∣ 1
p′

.
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.

Taking the supremum over all f ∈ Lp(Rn) with ‖f ‖Lp(Rn) ≤ 1 we obtain

∥∥∥∥ M∑
k=1

1B̃k

∥∥∥∥
Lp′ (Rn)

≤ 2Cp

∣∣∣∣ M⋃
k=1

B̃k

∣∣∣∣ 1
p′

.
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Some remarks

Remark 1

The covering property V∞ implies weak-type (1, 1).

Remark 2

The differentiation basis given by all cubes Qn verifies the property V∞
(Vitali’s covering lemma). We conclude that Qn differentiates L1(Rn).
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Strong Maximal Theorem



Strong Maximal Theorem

• Setting: rectangles in Rn. For simplicity, we will restrict to R2. Let

R2 be the set of all rectangles in R2 with sides parallel to the axes.

• MR2 is not weak-type (1, 1). The following does not hold for any c

|{x ∈ R2 : MR2 f (x) > λ}| ≤ c

λ

∫
R2

|f (y)|dy .
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Strong Maximal Theorem

New covering property Vexp: we say that B has the covering property

Vexp if there exist c1, c2 > 0 such that for every finite collection

{Rj}Nj=1 ⊂ B there exists a finite subcollection {R̃k}Mk=1 such that

i)

∣∣∣∣∣ N⋃
j=1

Rj

∣∣∣∣∣ ≤ c1

∣∣∣∣ M⋃
k=1

R̃k

∣∣∣∣ ,
ii)

∫
R2

[
exp

(
θ

M∑
k=1

1R̃k

)
− 1

]
≤ θc2

∣∣∣∣∣
M⋃
k=1

R̃k

∣∣∣∣∣ for θ small.
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Strong Maximal Theorem: Vexp ⇒ boundedness

Vexp implies the strong maximal theorem in R2.

Theorem

If B has the covering property Vexp, then

∣∣{x ∈ R2 : MBf (x) > λ}
∣∣ ≤ C

∫
R2

|f (x)|
λ

(
1 + log+ |f (x)|

λ

)
dx ,

where log+ t := max{0, log t}.
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Strong Maximal Theorem: Vexp ⇒ boundedness

Sketch of proof:

• Instead of Hölder’s, use Young’s inequality (Hölder’s is a particular

case):

st ≤ cθs
(
1 + log+ s

)
+ exp (θt)− 1,

where s, t ≥ 0 and θ > 0.

|K | ≤ c1

∣∣∣∣∣
M⋃
k=1

R̃k

∣∣∣∣∣ ≤ c1

∫
R2

(
M∑
k=1

1R̃k
(y)

)
|f (y)|
λ

dy

Young
≤ c1

∫
R2

[
cθ
|f (y)|
λ

(
1 + log+ |f (y)|

λ

)
+ exp

(
θ

M∑
k=1

1R̃k
(y)

)
− 1

]
dy

(ii)

≤ . . . + c1c2θ

∣∣∣∣∣
M⋃
k=1

R̃k

∣∣∣∣∣ .
16



Strong Maximal Theorem: R2 has Vexp

Theorem

The differentiation basis of rectangles R2 satisfies the Vexp covering

property.

Sketch of proof (inductive selection scheme): Let Π1(R),Π2(R) denote

the projections of R ∈ R2 on the x and y axis (resp.).

• Let {Rj}Nj=1 ⊂ R2 ordered by |Π2(R1)| ≥ · · · ≥ |Π2(RN)|.
• Fix R̃1 := R1.

• Having selected {R̃k}mk=1, m < N, choose the first

R ∈ {Rj}Nj=1\{R̃k}mk=1 verifying either∣∣∣R ∩ (∪j<k R̃
∗
k

)∣∣∣ ≤ 1

2
|R|,

or R ∩
(
∪j<k R̃k

)
= ∅.
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Strong Maximal Theorem: R2 has Vexp

Sketch of proof: claim {R̃k}mk=1 satisfies the Vexp estimates.

• The selection scheme allows us to show that the 1D slices of the

{R̃k}mk=1 satisfy similar sparseness properties.

• Fix y ∈ Π2(R), R not selected. Then,

(2D)
∣∣∣R ∩ (∪j<k R̃

∗
k

)∣∣∣ > 1

2
|R| ⇒

⇒ (1D)
∣∣∣Πy

1(R) ∩
(
∪j<kΠy

1(R̃k)
)∣∣∣ > 1

2
|Πy

1(R)|,

and these are 1D averages.

⋃
R not

selected

Πy
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Strong Maximal Theorem: R2 has Vexp

Sketch of proof: i)

∣∣∣∣∣ N⋃
j=1

Rj

∣∣∣∣∣ ≤ C1

∣∣∣∣ M⋃
k=1

R̃k

∣∣∣∣ .

• Maximal operator MR1 is Hardy-Littlewood maximal operator M1.

• weak-type properties of M1 prove the estimates∣∣∣∣∣∣∣
⋃

R not
selected

Πy
1(R)

∣∣∣∣∣∣∣ ≤ C1

∣∣∣∣∣
M⋃
k=1

Πy
1(R̃k)

∣∣∣∣∣ .

• Integrate in y .
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Strong Maximal Theorem: R2 has Vexp

Sketch of proof: ii)

∫
R2

[
exp

(
θ

M∑
k=1

1R̃k

)
− 1

]
≤ θC2

∣∣∣∣∣
M⋃
k=1

R̃k

∣∣∣∣∣ .

• Take the exponential series expansion∫
R2

∞∑
p=1

θp

p!

(
M∑
k=1

1R̃k

)p

=
∞∑
p=1

θp

p!

∥∥∥∥∥
M∑
k=1

1R̃k

∥∥∥∥∥
p

Lp(R2)

.

• Estimate the Lp(R2) norms of the overlaps from the slices∥∥∥∥∥
M∑
k=1

1Πy
1 (R̃k )

∥∥∥∥∥
p

Lp(R2)

≤ cp

∣∣∣∣∣
M⋃
k=1

Πy
1(R̃k)

∣∣∣∣∣ .
.
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Conclusion



Conclusion

• Boundedness of maximal operator equivalent to covering properties

of the differentiation basis. Equivalence is provided by duality.

• Rectangles 6= cubes in covering terms, but boundedness properties

still hold: strong maximal theorem.
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Thanks for your attention!
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