Algoritmos avariciosos y bases bidemocráticas

Pablo Manuel Berná Larrosa

Joint work with F. Albiac, J. L. Ansorena, M. Berasategui and S. Lassalle

Marzo 2022
XVII Encuentro de la Red de Análisis Funcional y Aplicaciones

UNIVERSIDAD

Notation:

- Let \mathbb{X} be a Banach (or quasi-Banach) space over \mathbb{F}.
- Let $\mathcal{B}:=\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ a basis for \mathbb{X} :
- $\overline{\operatorname{span}\left(\mathbf{x}_{n}: n \in \mathbb{N}\right)}=\mathbb{X}$ (fundamental system).
- There is a sequence $\mathcal{B}^{*}=\left(\mathbf{x}_{n}^{*}\right)_{n=1}^{\infty}$ such that $\mathbf{x}_{n}^{*}\left(\mathbf{x}_{m}\right)=\delta_{n, m}$.
- $\sup _{n} \max \left\{\left\|\mathbf{x}_{n}\right\|,\left\|\mathbf{x}_{n}^{*}\right\|\right\}<\infty$.

If $f \in \mathbb{X}, f \sim \sum_{n} \mathbf{x}_{n}^{*}(f) \mathbf{x}_{n}$, with $\left(\mathbf{x}_{n}^{*}(f)\right)_{n} \in c_{0}$.

Notation:

- Let \mathbb{X} be a Banach (or quasi-Banach) space over \mathbb{F}.
- Let $\mathcal{B}:=\left\{\mathbf{x}_{n}\right\}_{n=1}^{\infty}$ a basis for \mathbb{X} :
- $\overline{\operatorname{span}\left(\mathbf{x}_{n}: n \in \mathbb{N}\right)}=\mathbb{X}$ (fundamental system).
- There is a sequence $\mathcal{B}^{*}=\left(\mathbf{x}_{n}^{*}\right)_{n=1}^{\infty}$ such that $\mathbf{x}_{n}^{*}\left(\mathbf{x}_{m}\right)=\delta_{n, m}$.
- $\sup _{n} \max \left\{\left\|\mathbf{x}_{n}\right\|,\left\|\mathbf{x}_{n}^{*}\right\|\right\}<\infty$.

If $f \in \mathbb{X}, f \sim \sum_{n} \mathbf{x}_{n}^{*}(f) \mathbf{x}_{n}$, with $\left(\mathbf{x}_{n}^{*}(f)\right)_{n} \in c_{0}$.
Also, if the basis is total, that is

$$
\mathbf{x}_{j}^{*}(f)=0 \text { for all } j \in \mathbb{N} \Rightarrow f=0
$$

the basis \mathcal{B} is Markushevich.

Let A be a finite set of indices and we define \mathcal{E}_{A} the set of the signs:

$$
\mathcal{E}_{A}=\left\{\varepsilon=\left(\varepsilon_{n}\right)_{n \in A}:\left|\varepsilon_{n}\right|=1\right\} .
$$

"The indicator sum on A with signs":

$$
\mathbf{1}_{\varepsilon A}=\sum_{n \in A} \varepsilon_{n} \mathbf{x}_{n}, \varepsilon \in \mathcal{E}_{A} .
$$

If $\varepsilon \equiv 1$, we use $\mathbf{1}_{A}$.

- The projection operator: if A is a finite set,

$$
P_{A}(f)=\sum_{n \in A} \mathbf{x}_{n}^{*}(f) \mathbf{x}_{n} .
$$

- \mathcal{B} is \mathbf{K}-unconditional if for every finite set A and $f \in \mathbb{X}$,

$$
\left\|P_{A}(f)\right\| \leq \mathbf{K}\|f\| .
$$

- \mathcal{B} is Schauder if there is a constant C such that

$$
\left\|P_{\{1, \ldots, m\}}(f)\right\| \leq C\|f\|,
$$

for every $m \in \mathbb{N}$ and $f \in \mathbb{X}$.

Thresholding greedy algorithm

Let $f \in \mathbb{X}$. The m th greedy sum of f is the sum

$$
\begin{gathered}
\mathcal{G}_{m}(f)=\sum_{j \in A_{m}(f)} \mathbf{x}_{j}^{*}(f) \mathbf{x}_{j}, \\
\min _{j \in A_{m}(f)}\left|\mathbf{x}_{j}^{*}(f)\right| \geq \max _{j \notin A_{m}(f)}\left|\mathbf{x}_{j}^{*}(f)\right| .
\end{gathered}
$$

The set $A_{m}(f)$ is called the m th greedy set and the collection $\left\{\mathcal{G}_{m}\right\}_{m}$ is the Greedy Algorithm.

Quasi-greedy bases

Definition

A basis \mathcal{B} is quasi-greedy if there exists a constant C such that for any $f \in \mathbb{X}$ and $m \in \mathbb{N}$ we have

$$
\left\|\mathcal{G}_{m}(f)\right\| \leq C\|f\|
$$

Quasi-greedy bases

Definition

A basis \mathcal{B} is quasi-greedy if there exists a constant C such that for any $f \in \mathbb{X}$ and $m \in \mathbb{N}$ we have

$$
\left\|\mathcal{G}_{m}(f)\right\| \leq C\|f\| .
$$

Theorem (Wojtasczyk; 2000)
A basis is quasi-greedy if and only if

$$
\lim _{m \rightarrow \infty}\left\|f-\mathcal{G}_{m}(f)\right\|=0
$$

Remark: every quasi-greedy basis is total, so if \mathcal{B} is quasi-greedy, then \mathcal{B} is Markushevich.
國 P.Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J.Approx.Theory 107 (2000), no.2, 293-314.

Greedy Bases

$$
\sigma_{m}(f):=\inf \left\{\left\|f-\sum_{n \in A} c_{n} \mathbf{x}_{n}\right\|:|A|=m, c_{n} \in \mathbb{F}\right\}
$$

Greedy Bases

$$
\sigma_{m}(f):=\inf \left\{\left\|f-\sum_{n \in A} c_{n} \mathbf{x}_{n}\right\|:|A|=m, c_{n} \in \mathbb{F}\right\}
$$

Definition

A basis \mathcal{B} is greedy if there is a positive constant C such that

$$
\sigma_{m}(f) \leq\left\|f-\mathcal{G}_{m}(f)\right\| \leq C \sigma_{m}(f), \quad \forall m \in \mathbb{N}, \quad \forall f \in \mathbb{X}
$$

We denote by $C_{g}=C_{g}[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.

Greedy Bases

$$
\sigma_{m}(f):=\inf \left\{\left\|f-\sum_{n \in A} c_{n} \mathbf{x}_{n}\right\|:|A|=m, c_{n} \in \mathbb{F}\right\} .
$$

Definition

A basis \mathcal{B} is greedy if there is a positive constant C such that

$$
\sigma_{m}(f) \leq\left\|f-\mathcal{G}_{m}(f)\right\| \leq C \sigma_{m}(f), \quad \forall m \in \mathbb{N}, \quad \forall f \in \mathbb{X}
$$

We denote by $C_{g}=C_{g}[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.
Theorem (Konyagin, Temlyakov; 1999), (AABW; 2021)
A basis is greedy if and only if the basis is unconditional and democratic.
We say that a basis \mathcal{B} is Δ_{d}-democratic with $\Delta_{d}>0$ if

$$
\left\|1_{A}\right\| \leq \Delta_{d}\left\|1_{B}\right\|,
$$

for any $|A| \leq|B|$.
显
S.V.Konyagin, V.N.Temlyakov,A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365-379.

Almost greedy Bases

$$
\tilde{\sigma}_{m}(f):=\inf \left\{\left\|f-P_{A}(f)\right\|:|A|=m\right\} .
$$

Definition

A basis \mathcal{B} is almost-greedy if there exists an absolute constant $C \geq 1$ such that

$$
\tilde{\sigma}_{m}(f) \leq\left\|f-\mathcal{G}_{m}(f)\right\| \leq C \tilde{\sigma}_{m}(f), \quad \forall m \in \mathbb{N}, \quad \forall x \in \mathbb{X}
$$

Theorem (Dilworth, Kutzarova, Kalton Temlyakov; 2003), (AABW; 2021)

A basis is almost-greedy if and only if the basis is quasi-greedy and democratic.

目
S.J. Dilworth, N.J. Kalton, Denka Kutzarova, V.N.

Temlyakov, The thresholding greedy algorithm, greedy bases, and duality, Constr.Approx. 19 (2003), no.4, 575-597.

What about duality?

If \mathcal{B} is greedy, is the dual basis \mathcal{B}^{*} also greedy?

Greediness

Consider $\mathcal{H}_{1}=\left(h_{n}^{1}\right)_{n=1}^{\infty}$ the Haar basis normalized in $L_{1}[0,1]$ and consider \mathbb{X} the space of all sequences of scalaras $\left(a_{n}\right)_{n=1}^{\infty}$ such that

$$
\left\|\left(a_{n}\right)_{n}\right\|=\int_{0}^{1}\left(\sum_{n=1}^{\infty}\left(a_{n} h_{n}^{1}(t)\right)^{2}\right)^{1 / 2} d t<\infty
$$

The unit vector basis $\mathcal{B}=\left(e_{n}\right)_{n}$ in $(\mathbb{X},\|\cdot\|)$ is a normalized greedy basis but \mathcal{B}^{*} is not greedy.
\& F. Albiac, N.J. Kalton, Topics in Banach space Theory, Springer.

Almost-greediness

Let $\left(e_{n}\right)_{n}$ be the canonical basis in $\ell_{1}(\mathbb{N})$ and define the vectors

$$
\mathbf{x}_{n}=e_{n}-\frac{1}{2} e_{2 n+1}-\frac{1}{2} e_{2 n+2}, n=1,2, \ldots
$$

The system $\mathcal{L}=\left(\mathbf{x}_{n}\right)_{n}$ was introduced by Lindestrauss and it is an almost-greedy basis, but \mathcal{L}^{*} is not almost-greedy.
囯 S.J. Dilworth, D. Mitra, A conditional quasi-greedy basis of ℓ_{1}. Studia Math. 144 (2001), 95-100.
雷 P. M. Berná, Ó. Blasco, G. Garrigós, E. Hernández, T. Oikhberg, Embeddings and Lebesgue-type inequalities for the greedy algorithm in Banach spaces. Constr. Approx. 48 (3) (2018), 415-451.

The fundamental functions of \mathbb{X} and \mathbb{X}^{*} :

$$
\begin{aligned}
& \varphi(m)=\varphi[\mathcal{B}, \mathbb{X}](m):=\sup _{\substack{\varepsilon \in \mathcal{E}_{A} \\
|A| \leq m}}\left\|\mathbf{1}_{\varepsilon A}\right\| \\
& \varphi^{*}(m)=\varphi\left[\mathcal{B}^{*}, \mathbb{Y}\right](m)=\sup _{\substack{\varepsilon \in \mathcal{E}_{A} \\
|A| \leq m}}\left\|\mathbf{1}_{\varepsilon A}^{*}\right\|,
\end{aligned}
$$

where $\mathbf{1}_{\varepsilon A}^{*}=\sum_{n \in A} \varepsilon_{n} \mathbf{x}_{n}^{*}$ and \mathbb{Y} is the subspace of \mathbb{X}^{*} spanned by \mathcal{B}^{*}.

The fundamental functions of \mathbb{X} and \mathbb{X}^{*} :

$$
\begin{gathered}
\varphi(m)=\varphi[\mathcal{B}, \mathbb{X}](m):=\sup _{\substack{\varepsilon \in \mathcal{E}_{A} \\
|A| \leq m}}\left\|\mathbf{1}_{\varepsilon A}\right\| \\
\varphi^{*}(m)=\varphi\left[\mathcal{B}^{*}, \mathbb{Y}\right](m)=\sup _{\substack{\varepsilon \in \mathcal{E}_{A} \\
|A| \leq m}}\left\|\mathbf{1}_{\varepsilon A}^{*}\right\|,
\end{gathered}
$$

where $\mathbf{1}_{\varepsilon A}^{*}=\sum_{n \in A} \varepsilon_{n} \mathbf{x}_{n}^{*}$ and \mathbb{Y} is the subspace of \mathbb{X}^{*} spanned by \mathcal{B}^{*}.

Definition

A basis \mathcal{B} is bidemocratic if there is $C>0$ such that

$$
\varphi(m) \varphi^{*}(m) \leq C m, \forall m \in \mathbb{N}
$$

We denote by $\Delta=\Delta[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.
Remark: if $|A|=m$,

$$
m=\mathbf{1}_{A}^{*}\left(\mathbf{1}_{A}\right) \leq\left\|\mathbf{1}_{A}^{*}\right\|_{*}\left\|\mathbf{1}_{A}\right\| \leq \varphi(m) \varphi^{*}(m)
$$

Duality results

Theorem (DKKT, 2003)

Let \mathcal{B} a quasi-greedy Schauder basis in a Banach space. The following are equivalent:

- \mathcal{B} is bidemocratic.
- \mathcal{B} and \mathcal{B}^{*} are almost-greedy.

Theorem (DKKT, 2003)

Let \mathcal{B} an unconditional basis in a Banach space. The following are equivalent:

- \mathcal{B} is bidemocratic.
- \mathcal{B} and \mathcal{B}^{*} are greedy.

圊 S.J. Dilworth, N.J. Kalton, D. Kutzarova, V.N. Temlyakov, The thresholding greedy algorithm, greedy bases, and duality, Constr.Approx. 19 (2003), no.4, 575-597.

Bidemocracy vs Quasi-greediness

圁 F. Albiac, J.L. Ansorena, M. Berasategui, P. M. Berná, S. Lassalle, Bidemocratic bases and their connetions with other greedy-type bases. Submitted (2021)

Bidemocracy vs Quasi-greediness

A weight $w=\left(w_{n}\right)_{n}$ is a bounded sequence of positive numbers and its primitive weight $\left(s_{n}\right)_{n}$ is given by $s_{n}:=\sum_{j=1}^{n} w_{n}$.

Given a weight w and $0<q<\infty$, the weighted Lorentz seqeunce space $d_{1, q}(w)$ is the space of sequences $\left(a_{n}\right)_{n} \subset c_{0}$ whose non-increasing rearrangement $\left(a_{n}^{*}\right)_{n}$ satisfies

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty}\left(a_{n}^{*}\right)^{q} s_{n}^{q-1} w_{n}\right)^{1 / q}<\infty \tag{1}
\end{equation*}
$$

with the quasi-norm given the the left-hand side of (1).
When $w_{n}=n^{1 / p-1}$ for some $1<p<\infty, d_{1, q}(w)$ is the Lorentz space $\ell_{p, q}$ (up to an equivalent quasi-norm) and $s_{m} \approx m^{1 / p}$.

Bidemocracy vs Quasi-greediness

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $\left(s_{n}\right)_{n}$ is unbounded. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_{n}$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1, q}(w)$ for some $1<q<\infty$.
Then, \mathbb{X} has a bidemocratic basis \mathcal{B}_{1} with $\varphi\left[\mathcal{B}_{1}, \mathbb{X}\right](m) \approx s_{n}$ that is not Markushevich (and hence, not quasi-greedy). In fact,

$$
(\log (m))^{1 / q^{\prime}} \lesssim \mathbf{k}_{m}
$$

Bidemocracy vs Quasi-greediness

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $\left(s_{n}\right)_{n}$ is unbounded. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_{n}$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1, q}(w)$ for some $1<q<\infty$.
Then, \mathbb{X} has a bidemocratic basis \mathcal{B}_{1} with $\varphi\left[\mathcal{B}_{1}, \mathbb{X}\right](m) \approx s_{n}$ that is not Markushevich (and hence, not quasi-greedy). In fact,

$$
(\log (m))^{1 / q^{\prime}} \lesssim \mathbf{k}_{m}
$$

Corollary

For all $1<p<\infty, \ell_{p}$ has a bidemocratic basis that is not Markushevich.

Bidemocracy vs Quasi-greediness

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $\left(s_{n}\right)_{n}$ has the LRP and $\left(\frac{s_{n}}{n}\right)_{n}$ is non-increasing. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_{n}$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1, q}(w)$ for some $1<q<\infty$.
Then, \mathbb{X} has a subspace \mathbb{Y} with a bidemocratic Markushevich basis \mathcal{B}_{2} with $\varphi\left[\mathcal{B}_{2}, \mathbb{Y}\right](n) \approx s_{n}$ that is not quasi-greedy nor, in any order, a Schauder basis.

A positive sequence $\left(s_{n}\right)_{n}$ has the LRP (Lower Regularity Property) if there is $a>0$ and $C \geq 1$ such that

$$
\frac{m^{a}}{n^{a}} \leq C \frac{s_{m}}{s_{n}}
$$

Bidemocracy vs Quasi-greediness

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $\left(s_{n}\right)_{n}$ has the LRP and $\left(\frac{s_{n}}{n}\right)_{n}$ is non-increasing. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_{n}$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1, q}(w)$ for some $1<q<\infty$.
Then, \mathbb{X} has a subspace \mathbb{Y} with a bidemocratic Markushevich basis \mathcal{B}_{2} with $\varphi\left[\mathcal{B}_{2}, \mathbb{Y}\right](n) \approx s_{n}$ that is not quasi-greedy nor, in any order, a Schauder basis.
A positive sequence $\left(s_{n}\right)_{n}$ has the LRP (Lower Regularity Property) if there is $a>0$ and $C \geq 1$ such that

$$
\frac{m^{a}}{n^{a}} \leq C \frac{s_{m}}{s_{n}}
$$

Corollary
For each $1<p<\infty$, there is a subspace \mathbb{Y} of ℓ_{p} with a bidemocratic Markushevich basis that is not quasi-greedy.

Bidemocracy vs Quasi-greediness

Theorem (AABBL,2021)

There is a bidemocratic Schauder basis that is not quasi-greedy.

Building bidemocratic conditional quasi-greedy bases

The DKK-method produces conditional almost-greedy bases whose fundamental function either is equivalent to $(n)_{n=1}^{\infty}$ or has both the LRP and the URP.

Building bidemocratic conditional quasi-greedy bases

The DKK-method produces conditional almost-greedy bases whose fundamental function either is equivalent to $(n)_{n=1}^{\infty}$ or has both the LRP and the URP.

If \mathbb{X} is a Banach space, taking $\mathbf{k}_{m}:=\sup _{|A| \leq m}\left\|P_{A}\right\|$, if \mathcal{B} is quasi-greedy, then

$$
\mathbf{k}_{m} \lesssim \log (m)
$$

Thus, the DKK-method serves as a tool for constructing Banach spaces with bidemocratic conditional quasi-greedy bases whose fundamental function has both the LRP and the URP.

With bidemocracy, we develop a new method for building conditional bases that allows us to construct bidemocratic conditional quasi-greedy bases with an arbitrary fundamental function.

We write $\mathbb{X} \oplus \mathbb{Y}$ for the Cartesian product of the quasi-Banach spaces \mathbb{X} and \mathbb{Y} with the quasi-norm

$$
\|(f, g)\|=\max \{\|f\|,\|g\|\}, f \in \mathbb{X}, g \in \mathbb{Y}
$$

We consider the "rotated" sequence $\mathcal{B}_{x} \diamond \mathcal{B}_{y}=\left(z_{n}\right)_{n}$ in $\mathbb{X} \oplus \mathbb{Y}$ given by

$$
z_{2 n-1}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right), \quad z_{2 n}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{n},-\mathbf{y}_{n}\right), n \in \mathbb{N} .
$$

We write $\mathbb{X} \oplus \mathbb{Y}$ for the Cartesian product of the quasi-Banach spaces \mathbb{X} and \mathbb{Y} with the quasi-norm

$$
\|(f, g)\|=\max \{\|f\|,\|g\|\}, f \in \mathbb{X}, g \in \mathbb{Y}
$$

We consider the "rotated" sequence $\mathcal{B}_{x} \diamond \mathcal{B}_{y}=\left(z_{n}\right)_{n}$ in $\mathbb{X} \oplus \mathbb{Y}$ given by

$$
z_{2 n-1}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right), \quad z_{2 n}=\frac{1}{\sqrt{2}}\left(\mathbf{x}_{n},-\mathbf{y}_{n}\right), n \in \mathbb{N}
$$

Proposition (AABBL,2021)

- $\mathcal{B}_{x} \diamond \mathcal{B}_{y}$ is a basis for $\mathbb{X} \oplus \mathbb{Y}$ with dual basis $\mathcal{B}_{x}^{*} \diamond \mathcal{B}_{y}^{*}$.
- If \mathcal{B}_{x} and \mathcal{B}_{y} are Schauder, so is $\mathcal{B}_{x} \diamond \mathcal{B}_{y}$.
- There is $C>0$ depending only on \mathbb{X} and \mathbb{Y} such that

$$
\varphi\left[\mathcal{B}_{x} \diamond \mathcal{B}_{y}\right](m) \leq C \max \left\{\varphi\left[\mathcal{B}_{x}\right](m), \varphi\left[\mathcal{B}_{y}\right](m)\right\}, \forall m \in \mathbb{N} .
$$

- If \mathcal{B}_{x} and \mathcal{B}_{y} are bidemocratic bases with $\varphi\left[\mathcal{B}_{x}\right] \approx \varphi\left[\mathcal{B}_{y}\right]$, then, $\mathcal{B}_{x} \diamond \mathcal{B}_{y}$ is quasi-greedy if and only if \mathcal{B}_{x} and \mathcal{B}_{y} are quasi-greedy.
- If \mathcal{B}_{x} and \mathcal{B}_{y} are not equivalent, then $\mathcal{B}_{x} \diamond \mathcal{B}_{y}$ is conditional.

Theorem (AABBL,2021)

Let $\left(s_{m}\right)_{m}$ be a non-decreasing unbounded sequence of positive scalars and suppose that $\left(\mathrm{m} / s_{m}\right)_{m}$ is unbounded and non-decreasing. Then, there is a Banach space \mathbb{X} with a conditional 1-bidemocratic Schauder quasi-greedy basis whose fundamental function grows as $\left(s_{m}\right)_{m}$.

It is well known that the sequences $(\varphi(m))_{m}$ and $(m / \varphi(m))_{m}$ in Banach spaces are non-decreasing.

Algoritmos avariciosos y bases bidemocráticas

Pablo Manuel Berná Larrosa

Joint work with F. Albiac, J. L. Ansorena, M. Berasategui and S. Lassalle

Marzo 2022
XVII Encuentro de la Red de Análisis Funcional y Aplicaciones

UNIVERSIDAD

