Algoritmos avariciosos y bases bidemocráticas

Pablo Manuel Berná Larrosa

Joint work with F. Albiac, J. L. Ansorena, M. Berasategui and S. Lassalle

Marzo 2022 XVII Encuentro de la Red de Análisis Funcional y Aplicaciones

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas

Notation:

• Let X be a Banach (or quasi-Banach) space over \mathbb{F} .

• Let
$$\mathcal{B} := \{\mathbf{x}_n\}_{n=1}^\infty$$
 a basis for \mathbb{X} :

- $\overline{span(\mathbf{x}_n : n \in \mathbb{N})} = \mathbb{X}$ (fundamental system).
- There is a sequence $\mathcal{B}^* = (\mathbf{x}_n^*)_{n=1}^\infty$ such that $\mathbf{x}_n^*(\mathbf{x}_m) = \delta_{n,m}$.

•
$$\sup_n \max\{\|\mathbf{x}_n\|, \|\mathbf{x}_n^*\|\} < \infty.$$

If
$$f \in \mathbb{X}$$
, $f \sim \sum_n \mathbf{x}_n^*(f)\mathbf{x}_n$, with $(\mathbf{x}_n^*(f))_n \in c_0$.

Notation:

• Let X be a Banach (or quasi-Banach) space over \mathbb{F} .

• Let
$$\mathcal{B} := \{\mathbf{x}_n\}_{n=1}^\infty$$
 a basis for \mathbb{X} :

- $\overline{span(\mathbf{x}_n : n \in \mathbb{N})} = \mathbb{X}$ (fundamental system).
- There is a sequence $\mathcal{B}^* = (\mathbf{x}_n^*)_{n=1}^\infty$ such that $\mathbf{x}_n^*(\mathbf{x}_m) = \delta_{n,m}$.

•
$$\sup_n \max\{\|\mathbf{x}_n\|, \|\mathbf{x}_n^*\|\} < \infty$$
.

If
$$f \in \mathbb{X}$$
, $f \sim \sum_n \mathbf{x}_n^*(f)\mathbf{x}_n$, with $(\mathbf{x}_n^*(f))_n \in c_0$.

Also, if the basis is total, that is

$$\mathbf{x}_{j}^{*}(f)=0 \text{ for all } j\in \mathbb{N} \Rightarrow f=0,$$

the basis \mathcal{B} is Markushevich.

Pablo Manuel Berná Larrosa

Let A be a finite set of indices and we define \mathcal{E}_A the set of the signs:

$$\mathcal{E}_A = \{ \varepsilon = (\varepsilon_n)_{n \in A} : |\varepsilon_n| = 1 \}.$$

"The indicator sum on A with signs":

$$\mathbf{1}_{\varepsilon A} = \sum_{n \in A} \varepsilon_n \mathbf{x}_n, \ \varepsilon \in \mathcal{E}_A.$$

If $\varepsilon \equiv 1$, we use $\mathbf{1}_A$.

• The projection operator: if A is a finite set,

$$P_A(f) = \sum_{n \in A} \mathbf{x}_n^*(f) \mathbf{x}_n.$$

• \mathcal{B} is K-unconditional if for every finite set A and $f \in \mathbb{X}$,

 $\|P_A(f)\| \leq \mathbf{K}\|f\|.$

• \mathcal{B} is Schauder if there is a constant C such that

 $\|P_{\{1,...,m\}}(f)\| \le C \|f\|,$

for every $m \in \mathbb{N}$ and $f \in \mathbb{X}$.

Pablo Manuel Berná Larrosa

Thresholding greedy algorithm

Let $f \in \mathbb{X}$. The mth greedy sum of f is the sum

$$\mathcal{G}_m(f) = \sum_{j \in A_m(f)} \mathbf{x}_j^*(f) \mathbf{x}_j,$$

$$\min_{j \in A_m(f)} |\mathbf{x}_j^*(f)| \ge \max_{j \notin A_m(f)} |\mathbf{x}_j^*(f)|.$$

The set $A_m(f)$ is called the *m*th greedy set and the collection $\{\mathcal{G}_m\}_m$ is the Greedy Algorithm.

Quasi-greedy bases

Definition

A basis $\mathcal B$ is **quasi-greedy** if there exists a constant C such that for any $f\in\mathbb X$ and $m\in\mathbb N$ we have

 $\|\mathcal{G}_m(f)\| \le C \|f\|.$

Quasi-greedy bases

Definition

A basis \mathcal{B} is **quasi-greedy** if there exists a constant C such that for any $f \in X$ and $m \in \mathbb{N}$ we have

 $\|\mathcal{G}_m(f)\| \le C \|f\|.$

Theorem (Wojtasczyk; 2000)

A basis is quasi-greedy if and only if

 $\lim_{m \to \infty} \|f - \mathcal{G}_m(f)\| = 0.$

Remark: every quasi-greedy basis is total, so if \mathcal{B} is quasi-greedy, then \mathcal{B} is Markushevich.

P.WOJTASZCZYK, Greedy algorithm for general biorthogonal systems, J.Approx. Theory 107 (2000), no.2, 293-314.

Greedy Bases

$$\sigma_m(f) := \inf\{\|f - \sum_{n \in A} c_n \mathbf{x}_n\| : |A| = m, \ c_n \in \mathbb{F}\}.$$

Greedy Bases

$$\sigma_m(f) := \inf\{\|f - \sum_{n \in A} c_n \mathbf{x}_n\| : |A| = m, \ c_n \in \mathbb{F}\}.$$

Definition

A basis ${\mathcal B}$ is greedy if there is a positive constant C such that

 $\sigma_m(f) \le \|f - \mathcal{G}_m(f)\| \le C\sigma_m(f), \ \forall m \in \mathbb{N}, \ \forall f \in \mathbb{X}.$

We denote by $C_g = C_g[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.

Greedy Bases

$$\sigma_m(f) := \inf\{\|f - \sum_{n \in A} c_n \mathbf{x}_n\| : |A| = m, \ c_n \in \mathbb{F}\}.$$

Definition

A basis $\mathcal B$ is greedy if there is a positive constant C such that

 $\sigma_m(f) \le \|f - \mathcal{G}_m(f)\| \le C\sigma_m(f), \ \forall m \in \mathbb{N}, \ \forall f \in \mathbb{X}.$

We denote by $C_g = C_g[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.

Theorem (Konyagin, Temlyakov; 1999), (AABW; 2021)

A basis is greedy if and only if the basis is unconditional and democratic.

We say that a basis \mathcal{B} is Δ_d -democratic with $\Delta_d > 0$ if

$$\|1_A\| \le \Delta_d \|1_B\|,$$

for any $|A| \leq |B|$.

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas

Almost greedy Bases

$$\tilde{\sigma}_m(f) := \inf\{\|f - P_A(f)\| : |A| = m\}.$$

Definition

A basis ${\mathcal B}$ is almost-greedy if there exists an absolute constant $C\geq 1$ such that

$$\tilde{\sigma}_m(f) \le \|f - \mathcal{G}_m(f)\| \le C \tilde{\sigma}_m(f), \ \forall m \in \mathbb{N}, \ \forall x \in \mathbb{X}.$$

Theorem (Dilworth, Kutzarova, Kalton Temlyakov; 2003), (AABW; 2021)

A basis is almost-greedy if and only if the basis is quasi-greedy and democratic.

S.J. DILWORTH, N.J. KALTON, DENKA KUTZAROVA, V.N. TEMLYAKOV, The thresholding greedy algorithm, greedy bases, and duality, Constr.Approx.19 (2003), no.4, 575-597.

What about duality?

If \mathcal{B} is greedy, is the dual basis \mathcal{B}^* also greedy?

Greediness

Consider $\mathcal{H}_1 = (h_n^1)_{n=1}^{\infty}$ the Haar basis normalized in $L_1[0,1]$ and consider X the space of all sequences of scalaras $(a_n)_{n=1}^{\infty}$ such that

$$\|(a_n)_n\| = \int_0^1 \left(\sum_{n=1}^\infty (a_n h_n^1(t))^2\right)^{1/2} dt < \infty.$$

The unit vector basis $\mathcal{B} = (e_n)_n$ in $(\mathbb{X}, \|\cdot\|)$ is a normalized greedy basis but \mathcal{B}^* is not greedy.

E. Albiac, N.J. Kalton, *Topics in Banach space Theory*, Springer.

Almost-greediness

Let $(e_n)_n$ be the canonical basis in $\ell_1(\mathbb{N})$ and define the vectors

$$\mathbf{x}_n = e_n - \frac{1}{2}e_{2n+1} - \frac{1}{2}e_{2n+2}, \; n = 1, 2, \dots$$

The system $\mathcal{L} = (\mathbf{x}_n)_n$ was introduced by Lindestrauss and it is an almost-greedy basis, but \mathcal{L}^* is not almost-greedy.

- S.J. DILWORTH, D. MITRA, *A conditional quasi-greedy basis of* ℓ_1 . Studia Math. 144 (2001), 95-100.
- P. M. BERNÁ, Ó. BLASCO, G. GARRIGÓS, E. HERNÁNDEZ, T. OIKHBERG, Embeddings and Lebesgue-type inequalities for the greedy algorithm in Banach spaces. Constr. Approx. 48 (3) (2018), 415–451.

The fundamental functions of $\mathbb X$ and $\mathbb X^*\colon$

$$\varphi(m) = \varphi[\mathcal{B}, \mathbb{X}](m) := \sup_{\substack{\varepsilon \in \mathcal{E}_A \\ |A| \le m}} \|\mathbf{1}_{\varepsilon A}\|,$$

$$\varphi^*(m) = \varphi[\mathcal{B}^*, \mathbb{Y}](m) = \sup_{\substack{\varepsilon \in \mathcal{E}_A \\ |A| \le m}} \|\mathbf{1}_{\varepsilon A}^*\|,$$

where $\mathbf{1}_{\varepsilon A}^* = \sum_{n \in A} \varepsilon_n \mathbf{x}_n^*$ and \mathbb{Y} is the subspace of \mathbb{X}^* spanned by \mathcal{B}^* .

The fundamental functions of X and X^* :

$$\varphi(m) = \varphi[\mathcal{B}, \mathbb{X}](m) := \sup_{\substack{\varepsilon \in \mathcal{E}_A \\ |A| \le m}} \|\mathbf{1}_{\varepsilon A}\|,$$

$$\varphi^*(m) = \varphi[\mathcal{B}^*, \mathbb{Y}](m) = \sup_{\substack{\varepsilon \in \mathcal{E}_A \\ |A| \le m}} \|\mathbf{1}_{\varepsilon A}^*\|,$$

where $\mathbf{1}_{\varepsilon A}^* = \sum_{n \in A} \varepsilon_n \mathbf{x}_n^*$ and \mathbb{Y} is the subspace of \mathbb{X}^* spanned by \mathcal{B}^* .

Definition

A basis \mathcal{B} is **bidemocratic** if there is C > 0 such that

 $\varphi(m)\varphi^*(m) \le C \, m, \, \forall m \in \mathbb{N}.$

We denote by $\Delta = \Delta[\mathcal{B}, \mathbb{X}]$ the least constant verifying the definition.

Remark: if |A| = m,

$$m = \mathbf{1}_A^*(\mathbf{1}_A) \le \|\mathbf{1}_A^*\|_* \|\mathbf{1}_A\| \le \varphi(m)\varphi^*(m).$$

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas

Duality results

Theorem (DKKT, 2003)

Let $\ensuremath{\mathcal{B}}$ a quasi-greedy Schauder basis in a Banach space. The following are equivalent:

- \mathcal{B} is bidemocratic.
- \mathcal{B} and \mathcal{B}^* are almost-greedy.

Theorem (DKKT, 2003)

Let $\ensuremath{\mathcal{B}}$ an unconditional basis in a Banach space. The following are equivalent:

- B is bidemocratic.
- \mathcal{B} and \mathcal{B}^* are greedy.
- S.J. DILWORTH, N.J. KALTON, D. KUTZAROVA, V.N. TEMLYAKOV, *The thresholding greedy algorithm, greedy bases, and duality*, Constr.Approx.**19** (2003), no.4, 575-597.

F. Albiac, J.L. Ansorena, M. Berasategui, P. M. Berná, S. LASSALLE, Bidemocratic bases and their connetions with other greedy-type bases. Submitted (2021)

A weight $w = (w_n)_n$ is a bounded sequence of positive numbers and its primitive weight $(s_n)_n$ is given by $s_n := \sum_{j=1}^n w_n$.

Given a weight w and $0 < q < \infty$, the weighted Lorentz sequence space $d_{1,q}(w)$ is the space of sequences $(a_n)_n \subset c_0$ whose non-increasing rearrangement $(a_n^*)_n$ satisfies

$$\left(\sum_{n=1}^{\infty} (a_n^*)^q s_n^{q-1} w_n\right)^{1/q} < \infty, \tag{1}$$

with the quasi-norm given the the left-hand side of (1). When $w_n = n^{1/p-1}$ for some $1 , <math>d_{1,q}(w)$ is the Lorentz space $\ell_{p,q}$ (up to an equivalent quasi-norm) and $s_m \approx m^{1/p}$.

Pablo Manuel Berná Larrosa

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $(s_n)_n$ is unbounded. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_n$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1,q}(w)$ for some $1 < q < \infty$.

Then, \mathbb{X} has a bidemocratic basis \mathcal{B}_1 with $\varphi[\mathcal{B}_1, \mathbb{X}](m) \approx s_n$ that is not Markushevich (and hence, not quasi-greedy). In fact,

 $(\log(m))^{1/q'} \lesssim \mathbf{k}_m.$

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $(s_n)_n$ is unbounded. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_n$.
- \mathcal{B} has a subsequence dominated by the unit vector basis of $d_{1,q}(w)$ for some $1 < q < \infty$.

Then, \mathbb{X} has a bidemocratic basis \mathcal{B}_1 with $\varphi[\mathcal{B}_1, \mathbb{X}](m) \approx s_n$ that is not Markushevich (and hence, not quasi-greedy). In fact,

$$(\log(m))^{1/q'} \lesssim \mathbf{k}_m.$$

Corollary

For all $1 , <math>\ell_p$ has a bidemocratic basis that is not Markushevich.

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $(s_n)_n$ has the LRP and $(\frac{s_n}{n})_n$ is non-increasing. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_n$.
- $\mathcal B$ has a subsequence dominated by the unit vector basis of $d_{1,q}(w)$ for some $1 < q < \infty$.

Then, \mathbb{X} has a subspace \mathbb{Y} with a bidemocratic Markushevich basis \mathcal{B}_2 with $\varphi[\mathcal{B}_2,\mathbb{Y}](n) \approx s_n$ that is not quasi-greedy nor, in any order, a Schauder basis.

A positive sequence $(s_n)_n$ has the LRP (Lower Regularity Property) if there is a > 0 and $C \ge 1$ such that

$$\frac{m^a}{n^a} \le C \frac{s_m}{s_n}.$$

Theorem (AABBL,2021)

Let \mathcal{B} a basis for a quasi-Banach space \mathbb{X} and let w be a weight whose primitive weight $(s_n)_n$ has the LRP and $(\frac{s_n}{n})_n$ is non-increasing. Assume that \mathcal{B} verifies the following conditions:

- \mathcal{B} is bidemocratic with $\varphi(n) \approx s_n$.
- $\mathcal B$ has a subsequence dominated by the unit vector basis of $d_{1,q}(w)$ for some $1 < q < \infty$.

Then, \mathbb{X} has a subspace \mathbb{Y} with a bidemocratic Markushevich basis \mathcal{B}_2 with $\varphi[\mathcal{B}_2,\mathbb{Y}](n)\approx s_n$ that is not quasi-greedy nor, in any order, a Schauder basis.

A positive sequence $(s_n)_n$ has the LRP (Lower Regularity Property) if there is a>0 and $C\geq 1$ such that

$$\frac{m^a}{n^a} \le C \frac{s_m}{s_n}.$$

Corollary

For each $1 there is a subspace <math display="inline">\mathbb {Y}$ of ℓ_p with a bidemocratic Markushevich basis that is not quasi-greedy.

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas

Theorem (AABBL,2021)

There is a bidemocratic Schauder basis that is not quasi-greedy.

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas

Building bidemocratic conditional quasi-greedy bases

The DKK-method produces conditional almost-greedy bases whose fundamental function either is equivalent to $(n)_{n=1}^\infty$ or has both the LRP and the URP.

The DKK-method produces conditional almost-greedy bases whose fundamental function either is equivalent to $(n)_{n=1}^\infty$ or has both the LRP and the URP.

If $\mathbb X$ is a Banach space, taking ${\bf k}_m:=\sup_{|A|\leq m}\|P_A\|$, if $\mathcal B$ is quasi-greedy, then

 $\mathbf{k}_m \lesssim \log(m).$

Thus, the DKK-method serves as a tool for constructing Banach spaces with bidemocratic conditional quasi-greedy bases whose fundamental function has both the LRP and the URP.

With bidemocracy, we develop a new method for building conditional bases that allows us to construct bidemocratic conditional quasi-greedy bases with an arbitrary fundamental function.

We write $\mathbb{X}\oplus\mathbb{Y}$ for the Cartesian product of the quasi-Banach spaces \mathbb{X} and \mathbb{Y} with the quasi-norm

$$||(f,g)|| = \max\{||f||, ||g||\}, \ f \in \mathbb{X}, g \in \mathbb{Y}.$$

We consider the "rotated" sequence $\mathcal{B}_x \diamond \mathcal{B}_y = (z_n)_n$ in $\mathbb{X} \oplus \mathbb{Y}$ given by

$$z_{2n-1} = \frac{1}{\sqrt{2}}(\mathbf{x}_n, \mathbf{y}_n), \ z_{2n} = \frac{1}{\sqrt{2}}(\mathbf{x}_n, -\mathbf{y}_n), \ n \in \mathbb{N}.$$

We write $\mathbb{X}\oplus\mathbb{Y}$ for the Cartesian product of the quasi-Banach spaces \mathbb{X} and \mathbb{Y} with the quasi-norm

$$\|(f,g)\| = \max\{\|f\|, \|g\|\}, \ f \in \mathbb{X}, g \in \mathbb{Y}.$$

We consider the "rotated" sequence $\mathcal{B}_x \diamond \mathcal{B}_y = (z_n)_n$ in $\mathbb{X} \oplus \mathbb{Y}$ given by

$$z_{2n-1} = \frac{1}{\sqrt{2}}(\mathbf{x}_n, \mathbf{y}_n), \ \ z_{2n} = \frac{1}{\sqrt{2}}(\mathbf{x}_n, -\mathbf{y}_n), \ n \in \mathbb{N}.$$

Proposition (AABBL,2021)

- $\mathcal{B}_x \diamond \mathcal{B}_y$ is a basis for $\mathbb{X} \oplus \mathbb{Y}$ with dual basis $\mathcal{B}_x^* \diamond \mathcal{B}_y^*$.
- If \mathcal{B}_x and \mathcal{B}_y are Schauder, so is $\mathcal{B}_x \diamond \mathcal{B}_y$.
- There is C > 0 depending only on $\mathbb X$ and $\mathbb Y$ such that

 $\varphi[\mathcal{B}_x \diamond \mathcal{B}_y](m) \le C \max\{\varphi[\mathcal{B}_x](m), \varphi[\mathcal{B}_y](m)\}, \ \forall m \in \mathbb{N}.$

- If \mathcal{B}_x and \mathcal{B}_y are bidemocratic bases with $\varphi[\mathcal{B}_x] \approx \varphi[\mathcal{B}_y]$, then, $\mathcal{B}_x \diamond \mathcal{B}_y$ is quasi-greedy if and only if \mathcal{B}_x and \mathcal{B}_y are quasi-greedy.
- If \mathcal{B}_x and \mathcal{B}_y are not equivalent, then $\mathcal{B}_x \diamond \mathcal{B}_y$ is conditional.

Theorem (AABBL,2021)

Let $(s_m)_m$ be a non-decreasing unbounded sequence of positive scalars and suppose that $(m/s_m)_m$ is unbounded and non-decreasing. Then, there is a Banach space \mathbb{X} with a conditional 1-bidemocratic Schauder quasi-greedy basis whose fundamental function grows as $(s_m)_m$.

It is well known that the sequences $(\varphi(m))_m$ and $(m/\varphi(m))_m$ in Banach spaces are non-decreasing.

Algoritmos avariciosos y bases bidemocráticas

Pablo Manuel Berná Larrosa

Joint work with F. Albiac, J. L. Ansorena, M. Berasategui and S. Lassalle

Marzo 2022 XVII Encuentro de la Red de Análisis Funcional y Aplicaciones

Pablo Manuel Berná Larrosa

Algoritmos avariciosos y bases bidemocráticas