Multiplicative convex functions: a redefinition

Pablo Jiménez Rodríguez

XVII Encuentro de Análisis Funcional y Aplicaciones

11/03/2022

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for every number x, y and $0 \leq \lambda \leq 1$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for every number x, y and $0 \leq \lambda \leq 1$.

Nicolescu: A function is multiplicative convex if

$$
f\left(x^{\lambda} y^{1-\lambda}\right) \leq f(x)^{\lambda} f(y)^{1-\lambda}
$$

for every $x, y>0$ and $0 \leq \lambda \leq 1$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for every number x, y and $0 \leq \lambda \leq 1$.

Nicolescu: A function is multiplicative convex if

$$
f\left(x^{\lambda} y^{1-\lambda}\right) \leq f(x)^{\lambda} f(y)^{1-\lambda}
$$

for every $x, y>0$ and $0 \leq \lambda \leq 1$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for every number x, y and $0 \leq \lambda \leq 1$.
C. P. Niculescu: A function is multiplicative convex if

$$
f\left(x^{\lambda} \cdot y^{1-\lambda}\right) \leq f(x)^{\lambda} \cdot f(y)^{1-\lambda}
$$

for every $x, y>0$ and $0 \leq \lambda \leq 1$.

Our definition

A function $f:(0, \infty) \rightarrow[0, \infty)$ is multiplicative convex ($m c$-function for short) if

$$
f\left(x^{\mu} y^{1 / \mu}\right) \leq f(x)^{\mu} f(y)^{1 / \mu}
$$

for every number $x, y \geq 0$ and $\mu>0$.

Our definition

A function $f:(0, \infty) \rightarrow[0, \infty)$ is multiplicative convex ($m c$-function for short) if

$$
f\left(x^{\mu} y^{1 / \mu}\right) \leq f(x)^{\mu} f(y)^{1 / \mu}
$$

for every number $x, y \geq 0$ and $\mu>0$.

If $f(1)=1$, we will say that f is 1 -multiplicative convex (mc1-function for short).

Let us focus first on mc1-functions, and let us see what we can say of them...

Let us focus first on mc1-functions, and let us see what we can say of them...

Theorem 1

An mc1-function is either increasing, decreasing or decreasing on $(0,1)$ and increasing $[1, \infty)$ (decreasing-increasing type, for short).

Let us focus first on mc1-functions, and let us see what we can say of them...

Proposition 1

Let f be an $m c 1$-function and $q \in \mathbb{Q}^{+}$. Then

$$
f\left(x^{q}\right)=f(x)^{q} .
$$

Let us focus first on mc1-functions, and let us see what we can say of them...

Proposition 1

Let f be an $m c 1$-function and $q \in \mathbb{Q}^{+}$. Then

$$
f\left(x^{q}\right)=f(x)^{q} .
$$

Theorem 2

Let f be an $m c 1$-function. Then f is continuous.

Let us focus first on mc1-functions, and let us see what we can say of them...

Proposition 1

Let f be an $m c 1$-function and $q \in \mathbb{Q}^{+}$. Then

$$
f\left(x^{q}\right)=f(x)^{q} .
$$

Theorem 2

Let f be an $m c 1$-function. Then f is continuous.

Proposition 2

Let f be an $m c 1$-function and $\mu>0$. Then,

$$
f\left(x^{\mu}\right)=f(x)^{\mu} .
$$

Let us focus first on mc1-functions, and let us see what we can say of them...

Theorem 3

Let $f:(0, \infty) \rightarrow(0, \infty)$. Then, f is a mc1-function if and only if f is of the form

$$
f(x)= \begin{cases}b^{\log _{a}(x)} & \text { if } 0<x<1 \\ b^{\prime \log _{a^{\prime}}(x)} & \text { if } x \geq 1\end{cases}
$$

where
(1) $0<a<1$ and $a^{\prime}>1$,
(2) if $b<1$, then $\log _{b}\left(b^{\prime}\right) \leq \log _{a}\left(a^{\prime}\right)$,
(3) if $b>1$, then $\log _{b}\left(b^{\prime}\right) \geq \log _{a}\left(a^{\prime}\right)$.

Let us focus first on mc1-functions, and let us see what we can say of them...

Considering some algebraic properties of $m c$-functions:

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.
- The product of $m c$-functions is $m c$.

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.
- The product of $m c$-functions is $m c$.
- The composition of mc-functions is $m c$ if the upper function is increasing.

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.
- The product of $m c$-functions is $m c$.
- The composition of $m c$-functions is $m c$ if the upper function is increasing.
- The composition of x^{μ} with an $m c$-function is $m c$, for every $\mu>0$.

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.
- The product of $m c$-functions is $m c$.
- The composition of $m c$-functions is $m c$ if the upper function is increasing.
- The composition of x^{μ} with an $m c$-function is $m c$, for every $\mu>0$.
- If f is an $m c$-function and $K \geq 1, K f$ is an $m c$-function.

Considering some algebraic properties of $m c$-functions:

- The sum of $m c$-functions is $m c$.
- The product of $m c$-functions is $m c$.
- The composition of $m c$-functions is $m c$ if the upper function is increasing.
- The composition of x^{μ} with an $m c$-function is $m c$, for every $\mu>0$.
- If f is an $m c$-function and $K \geq 1, K f$ is an $m c$-function.
- The punctual limit of $m c$-functions is $m c$.

Considering some algebraic properties of $m c$-functions:
(1) The sum of $m c$-functions is $m c$.
(2) The product of $m c$-functions is $m c$.

- The composition of $m c$-functions is $m c$ if the upper function is increasing.
- The composition of x^{μ} with an $m c$-function is $m c$, for every $\mu>0$.
(3) If f is an $m c$-function and $K \geq 1, K f$ is an $m c$-function.
(4) The punctual limit of $m c$-functions is $m c$.

A closed truncated cone:

A closed truncated cone:

A subset V of a topological vector space is a closed algebraic truncated cone if

A closed truncated cone:

A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,

A closed truncated cone:

A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,

A closed truncated cone:
A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,

A closed truncated cone:
A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1 ,

A closed truncated cone:
A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1 ,
- it is a closed set.

A closed truncated cone:
A subset V of a topological vector space is a closed algebraic truncated cone if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1 ,
- it is a closed set.

Theorem 4

The set of $m c$-functions is a closed algebraic truncated cone.

What about general $m c$-functions?

What about general $m c$-functions?

$$
\begin{aligned}
\mathcal{M C} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c \text {-function }\} \\
\mathcal{M C} \mathcal{C}_{1} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c 1 \text {-function }\}
\end{aligned}
$$

What about general $m c$-functions?

$$
\begin{aligned}
\mathcal{M C} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c \text {-function }\} \\
\mathcal{M C} \mathcal{C}_{1} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c 1 \text {-function }\}
\end{aligned}
$$

$$
\text { Is } \mathcal{M C}=\overline{\mathfrak{A}\left(\mathcal{M C}_{1}\right)} \text { ? }
$$

What about general mc-functions?

$$
\begin{aligned}
\mathcal{M C} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c \text {-function }\} \\
\mathcal{M C} \mathcal{C}_{1} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c 1 \text {-function }\}
\end{aligned}
$$

Is $\mathcal{M C}=\overline{\mathfrak{A}\left(\mathcal{M C}_{1}\right)}$?
$\mathfrak{A}(\mathrm{V})$ stands for the set of all algebraic combinations of elements of the set V

What about general $m c$-functions?

$$
\begin{aligned}
\mathcal{M C} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c \text {-function }\} \\
\mathcal{M C} \mathcal{C}_{1} & =\{f:(0, \infty) \rightarrow(0, \infty): f \text { is a } m c 1 \text {-function }\}
\end{aligned}
$$

Is every $m c$-function continuous?

The function

$$
f(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}
$$

is a discontinuous mc-function.

The function

$$
f(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}
$$

is a discontinuous mc-function.

Proposition 3

$\mathcal{M C} \backslash C(0, \infty)$ contains a closed algebraic truncated cone with a set of cardinality \mathfrak{c} of algebraically independent elements.

The function

$$
f(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}
$$

is a discontinuous mc-function.

Proposition 3

$\mathcal{M C} \backslash C(0, \infty)$ contains a closed algebraic truncated cone with a set of cardinality \mathfrak{c} of algebraically independent elements.

$$
f(x)= \begin{cases}\alpha f(x) & \text { if } 0<x<1 \\ \beta f(x) & \text { if } x \geq 1\end{cases}
$$

where f is a $m c 1$-function and $1<\alpha<\beta \leq \alpha^{2}$.

The function

$$
f(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}
$$

is a discontinuous $m c$-function.

Theorem 5

If \mathfrak{X} is a monotonous sequence, then there exists an mc-function which is discontinuous on \mathfrak{X} and continuous on $(0, \infty) \backslash \mathfrak{X}$.

The function

$$
f(x)= \begin{cases}2 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}
$$

is a discontinuous mc-function.

Theorem 5

If \mathfrak{X} is a monotonous sequence, then there exists an mc-function which is discontinuous on \mathfrak{X} and continuous on $(0, \infty) \backslash \mathfrak{X}$.

Theorem 6

There exists a truncated cone consisting of $m c$-functions discontinuous over an infinite set and containing an uncountable set of algebraically independent elements.

Questions that arise.

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?
- What is the maximum cardinality of the points where an $m c$-function is discontinuous?

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?
- What is the maximum cardinality of the points where an $m c$-function is discontinuous?
- What can we say about the general behaviour of an $m c$-function?

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?
- What is the maximum cardinality of the points where an $m c$-function is discontinuous?
- What can we say about the general behaviour of an $m c$-function?
Answer: The following Theorem

Theorem 7

An mc-function is either increasing, decreasing or decreasing-increasing.

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?

Answer: \mathfrak{c}

- What is the maximum cardinality of the points where an $m c$-function is discontinuous?
- What can we say about the general behaviour of an mc-function?
Answer: The following Theorem

Theorem 7

An $m c$-function is either increasing, decreasing or decreasing-increasing.

Questions that arise.

- What is the cardinality of the set $\mathcal{M C}$?

Answer: \mathfrak{c}

- What is the maximum cardinality of the points where an $m c-$ function is discontinuous?
Answer: \aleph_{0}
- What can we say about the general behaviour of an $m c$-function?
Answer: The following Theorem

Theorem 7

An $m c$-function is either increasing, decreasing or decreasing-increasing.

An open question:

$\mathcal{M C} \cap C(0, \infty)$ is a truncated cone. Is $\mathcal{M C} \backslash C(0, \infty)$ a truncated cone?

THANK YOU VERY MUCH FOR YOUR ATTENTION!!

