Multiplicative convex functions: a redefinition

PABLO JIMÉNEZ RODRÍGUEZ

XVII Encuentro de Análisis Funcional y Aplicaciones

11/03/2022

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

for every number x, y and $0 \le \lambda \le 1$.

ANALYSIS Tetwork

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

for every number x, y and $0 \le \lambda \le 1$.

Nicolescu: A function is multiplicative convex if

$$f(x^{\lambda}y^{1-\lambda}) \leq f(x)^{\lambda}f(y)^{1-\lambda}$$

for every x, y > 0 and $0 \le \lambda \le 1$.

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

for every number x, y and $0 \le \lambda \le 1$.

Nicolescu: A function is multiplicative convex if

$$f(x^{\lambda}y^{1-\lambda}) \leq f(x)^{\lambda}f(y)^{1-\lambda}$$

for every x, y > 0 and $0 \le \lambda \le 1$.

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

for every number x, y and $0 \le \lambda \le 1$.

C. P. Niculescu: A function is multiplicative convex if

$$f(x^{\lambda} \cdot y^{1-\lambda}) \leq f(x)^{\lambda} \cdot f(y)^{1-\lambda}$$

for every x, y > 0 and $0 \le \lambda \le 1$.

Our definition

A function $f: (0,\infty) \to [0,\infty)$ is *multiplicative convex* (*mc*-function for short) if

$$f(x^{\mu}y^{1/\mu}) \leq f(x)^{\mu}f(y)^{1/\mu}$$

for every number $x, y \ge 0$ and $\mu > 0$.

Our definition

A function $f: (0,\infty) \to [0,\infty)$ is *multiplicative convex* (*mc*-function for short) if

$$f(x^{\mu}y^{1/\mu}) \leq f(x)^{\mu}f(y)^{1/\mu}$$

for every number $x, y \ge 0$ and $\mu > 0$.

If f(1) = 1, we will say that *f* is *1-multiplicative convex* (*mc*1–function for short).

UNCTIONAL **ANALYSIS** ETWORK

Theorem 1

An mc1-function is either increasing, decreasing or decreasing on (0, 1) and increasing $[1, \infty)$ (decreasing-increasing type, for short).

Proposition 1

Let *f* be an *mc*1–function and $q \in \mathbb{Q}^+$. Then

 $f(x^q)=f(x)^q.$

ANALYSIS Tetwork

Proposition 1

Let *f* be an *mc*1–function and $q \in \mathbb{Q}^+$. Then

$$f(x^q)=f(x)^q.$$

Theorem 2

Let *f* be an *mc*1–function. Then *f* is continuous.

Proposition 1

Let *f* be an *mc*1–function and $q \in \mathbb{Q}^+$. Then

$$f(x^q)=f(x)^q.$$

Theorem 2

Let *f* be an *mc*1–function. Then *f* is continuous.

Proposition 2

Let *f* be an *mc*1–function and $\mu > 0$. Then,

 $f(x^{\mu})=f(x)^{\mu}.$

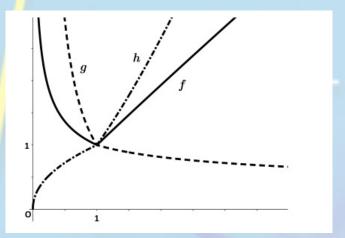
Theorem 3

Let $f : (0, \infty) \to (0, \infty)$. Then, f is a mc1-function if and only if f is of the form

$$f(x) = \begin{cases} b^{\log_a(x)} & \text{if } 0 < x < 1, \\ b'^{\log_{a'}(x)} & \text{if } x \ge 1, \end{cases}$$

where

1 0 < a < 1 and a' > 1, **2** if b < 1, then $\log_b(b') \le \log_a(a')$, **3** if b > 1, then $\log_b(b') \ge \log_a(a')$.



UNCTIONAL **ANALYSIS** ETWORK

• The sum of *mc*-functions is *mc*.

UNCTIONAL **ANALYSIS** ETWORK

- The sum of *mc*-functions is *mc*.
- The product of *mc*-functions is *mc*.

ANALYSIS Tetwork

- The sum of *mc*-functions is *mc*.
- The product of *mc*-functions is *mc*.
- The composition of *mc*-functions is *mc if the upper function is increasing*.

ANALYSIS Tetwork

- The sum of *mc*-functions is *mc*.
- The product of *mc*-functions is *mc*.
- The composition of *mc*-functions is *mc if the upper function is increasing*.
- The composition of x^μ with an mc-function is mc, for every μ > 0.

- The sum of *mc*-functions is *mc*.
- The product of *mc*-functions is *mc*.
- The composition of *mc*-functions is *mc if the upper function is increasing*.
- The composition of x^μ with an mc-function is mc, for every μ > 0.
- If f is an mc-function and $K \ge 1$, Kf is an mc-function.

- The sum of *mc*-functions is *mc*.
- The product of *mc*-functions is *mc*.
- The composition of *mc*-functions is *mc if the upper function is increasing*.
- The composition of x^μ with an mc-function is mc, for every μ > 0.
- If f is an mc-function and $K \ge 1$, Kf is an mc-function.
- The punctual limit of *mc*-functions is *mc*.

- The sum of *mc*–functions is *mc*.
- 2 The product of *mc*-functions is *mc*.
- The composition of *mc*-functions is *mc if the upper function is increasing*.
- The composition of x^{μ} with an *mc*-function is *mc*, for every $\mu > 0$.
- If f is an mc-function and $K \ge 1$, Kf is an mc-function.
- The punctual limit of mc-functions is mc.

LINE INAL ANJIS FEIWURK

A subset V of a topological vector space is a *closed algebraic truncated cone* if

A subset *V* of a topological vector space is a *closed algebraic truncated cone* if

• We can define sum and product, fulfilling the usual properties,

A subset V of a topological vector space is a *closed algebraic truncated cone* if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,

A subset *V* of a topological vector space is a *closed algebraic truncated cone* if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,

A subset V of a topological vector space is a *closed algebraic truncated cone* if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1,

A subset *V* of a topological vector space is a *closed algebraic truncated cone* if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1,
- it is a closed set.

A subset *V* of a topological vector space is a *closed algebraic truncated cone* if

- We can define sum and product, fulfilling the usual properties,
- it is closed under sums,
- it is closed under products,
- it is closed under multiplication by scalars greater than 1,
- it is a closed set.

Theorem 4

The set of *mc*-functions is a closed algebraic truncated cone.

UNCTIONAL ANALYSIS

 $\mathcal{MC} = \{f : (0, \infty) \to (0, \infty) : f \text{ is a } mc-\text{function}\},$ $\mathcal{MC}_1 = \{f : (0, \infty) \to (0, \infty) : f \text{ is a } mc1-\text{function}\}$

 $\mathcal{MC} = \{f : (0,\infty) \to (0,\infty) : f \text{ is a } mc-\text{function}\},\\ \mathcal{MC}_1 = \{f : (0,\infty) \to (0,\infty) : f \text{ is a } mc1-\text{function}\}$

Is $\mathcal{MC} = \overline{\mathfrak{A}(\mathcal{MC}_1)}$?

 $\mathcal{MC} = \{f : (0, \infty) \to (0, \infty) : f \text{ is a } mc-\text{function}\},\\ \mathcal{MC}_1 = \{f : (0, \infty) \to (0, \infty) : f \text{ is a } mc1-\text{function}\}$

Is $\mathcal{MC} = \mathfrak{A}(\mathcal{MC}_1)$?

 $\mathfrak{A}(V)$ stands for theset of all algebraiccombinations ofelements of the set V

 $\mathcal{MC} = \{f : (0,\infty) \to (0,\infty) : f \text{ is a } mc-\text{function}\},\\ \mathcal{MC}_1 = \{f : (0,\infty) \to (0,\infty) : f \text{ is a } mc1-\text{function}\}$

Is every *mc*-function continuous?

The function

$$f(x) = \begin{cases} 2 & \text{if } 0 < x < 1, \\ 4 & \text{if } x \ge 1 \end{cases}$$

is a discontinuous *mc*-function.

ANALYSIS

$$f(x) = \begin{cases} 2 & \text{if } 0 < x < 1, \\ 4 & \text{if } x \ge 1 \end{cases}$$

is a discontinuous *mc*-function.

Proposition 3

 $\mathcal{MC} \setminus C(0,\infty)$ contains a closed algebraic truncated cone with a set of cardinality \mathfrak{c} of algebraically independent elements.

$$f(x) = \begin{cases} 2 & \text{if } 0 < x < 1, \\ 4 & \text{if } x \ge 1 \end{cases}$$

is a discontinuous *mc*-function.

Proposition 3

 $\mathcal{MC} \setminus C(0,\infty)$ contains a closed algebraic truncated cone with a set of cardinality \mathfrak{c} of algebraically independent elements.

$$f(x) = \begin{cases} \alpha f(x) & \text{if } 0 < x < 1, \\ \beta f(x) & \text{if } x \ge 1, \end{cases}$$

where *f* is a *mc*1–function and $1 < \alpha < \beta \le \alpha^2$.

$$f(x) = \begin{cases} 2 & \text{if } 0 < x < 1, \\ 4 & \text{if } x \ge 1 \end{cases}$$

is a discontinuous *mc*-function.

Theorem 5

If \mathfrak{X} is a monotonous sequence, then there exists an mc-function which is discontinuous on \mathfrak{X} and continuous on $(0,\infty) \setminus \mathfrak{X}$.

$$f(x) = \begin{cases} 2 & \text{if } 0 < x < 1, \\ 4 & \text{if } x \ge 1 \end{cases}$$

is a discontinuous *mc*-function.

Theorem 5

If \mathfrak{X} is a monotonous sequence, then there exists an mc-function which is discontinuous on \mathfrak{X} and continuous on $(0,\infty) \setminus \mathfrak{X}$.

Theorem 6

There exists a truncated cone consisting of mc-functions discontinuous over an infinite set and containing an uncountable set of algebraically independent elements.

ETWORK

・ロ・・雪・・雪・・雪・ 今への

• What is the cardinality of the set MC?

- What is the cardinality of the set \mathcal{MC} ?
- What is the maximum cardinality of the points where an *mc*-function is discontinuous?

- What is the cardinality of the set MC?
- What is the maximum cardinality of the points where an *mc*-function is discontinuous?
- What can we say about the general behaviour of an *mc*-function?

- What is the cardinality of the set MC?
- What is the maximum cardinality of the points where an *mc*-function is discontinuous?
- What can we say about the general behaviour of an *mc*-function?
 Answer: The following Theorem

Theorem 7

An *mc*-function is either increasing, decreasing or decreasing-increasing.

- What is the cardinality of the set *MC*? Answer: c
- What is the maximum cardinality of the points where an *mc*-function is discontinuous?
- What can we say about the general behaviour of an *mc*-function?
 Answer: The following Theorem

Theorem 7

An *mc*-function is either increasing, decreasing or decreasing-increasing.

- What is the cardinality of the set \mathcal{MC} ? Answer: c
- What is the maximum cardinality of the points where an *mc*−function is discontinuous?
 Answer: ℵ₀
- What can we say about the general behaviour of an *mc*-function?
 Answer: The following Theorem

Theorem 7

An *mc*-function is either increasing, decreasing or decreasing-increasing.

An open question:

 $\mathcal{MC} \cap C(0,\infty)$ is a truncated cone. Is $\mathcal{MC} \setminus C(0,\infty)$ a truncated cone?

ANALYSIS TETWORK

THANK YOU VERY MUCH FOR YOUR ATTENTION!! ANALYSIS