Frequent Recurrence via Invariant Measures

Antoni López-Martínez

XVII Encuentro de la Red de Analisis Funcional y Aplicaciones, La Laguna

March 11, 2022

Joint work with...

Sophie Grivaux

S. GRIVAUX AND A. LÓPEZ-MARTÍNEZ: Recurrence properties for linear dynamical systems: an approach via invariant measures. arXiv:2203.03027.

The work was supported by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021), by the Labex CEMPI (ANR-11-LABX-0007-01), by the project FPU2019/04094 and by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-I00.

1 Introduction: Topological vs Measurable Dynamics

2 Constructing Invariant Measures

3 From Reiterative to Frequent Recurrence

- ∢ ≣ ▶

э.

Índex

1 Introduction: Topological vs Measurable Dynamics

- 2 Constructing Invariant Measures
- 3 From Reiterative to Frequent Recurrence

・ロト ・四ト ・ヨト ・ヨトー

э.

What are we studying?

We will discuss some properties about Linear Dynamics so:

 $T: X \to X$ is an operator; X is a (separable, infinite-dimens.) Banach space (or a continuous map); (or a Polish space)

(X, T) is a linear dynamical system and given $x \in X$ we study its *T*-orbit: (or a Polish dynamical system)

 $Orb(x, T) := \{T^n x : n \in \mathbb{N}_0\}.$

What are we studying?

We will discuss some properties about Linear Dynamics so:

 $T: X \to X$ is an operator; X is a (separable, infinite-dimens.) Banach space (or a continuous map); (or a Polish space)

(X, T) is a linear dynamical system and given $x \in X$ we study its *T*-orbit: (or a Polish dynamical system)

$$Orb(x, T) := \{T^n x : n \in \mathbb{N}_0\}.$$

We focus on the frequency in which it visit some sets, i.e. in the "bigness" of

$$N(x, U) := \{n \in \mathbb{N}_0 : T^n x \in U\},\$$

the return set from x to $U \subset X$; where U is a neighbourhood or $U \in O(X)$...

 $O(X) := \{ U \text{ non-empty open subset of } X \}.$

Definition

- A vector $x \in X$ is said to be:
 - (i) recurrent/hypercyclic if N(x, U) is infinite ...

$\forall U \text{ neighbourhood of } x$

 $\forall U \text{ non-empty open subset of } X.$

イロト 不得 とくほと くほとう

э

 $x \in \operatorname{Rec}(T) \Leftrightarrow \lim_{k \to \infty} T^{n_k} x = x$

 $/ \qquad x \in \mathsf{HC}(T) \Leftrightarrow \overline{\mathsf{Orb}(x,T)} = X$

Definition

A vector $x \in X$ is said to be:

- (i) recurrent/hypercyclic if N(x, U) is infinite ...
- (ii) frequently recurrent/hypercyclic if $\underline{dens}(N(x, U)) > 0 \dots$

 $\forall U \text{ neighbourhood of } x$ / $\forall U \text{ non-empty open subset of } X.$

Definition

Given $A \subset \mathbb{N}_0$ its lower density is

$$\underline{\mathsf{dens}}(A) := \liminf_{N \to \infty} \frac{\#A \cap [0, N]}{N+1}.$$

FRec(T) (Bonilla et al., 2020)

FHC(T) (Bayart and Grivaux, 2006)

イロト イボト イヨト イヨト

Definition

A vector $x \in X$ is said to be:

- (i) recurrent/hypercyclic if N(x, U) is infinite ...
- (ii) frequently recurrent/hypercyclic if $\underline{dens}(N(x, U)) > 0$...
- (iii) \mathcal{U} -frequently recurrent/hypercyclic if $\overline{\text{dens}}(N(x, U)) > 0$...

 $\forall U \text{ neighbourhood of } x / \forall U \text{ non-empty open subset of } X.$

Definition

Given $A \subset \mathbb{N}_0$ its upper density is

$$\overline{\mathsf{dens}}(A) := \limsup_{N \to \infty} \frac{\#A \cap [0, N]}{N+1}$$

ヘロン 人間 とくほ とくほ とう

UFRec(T) (Bonilla et al., 2020) / UFHC(T) (Shkarin, 2009).

Definition

A vector $x \in X$ is said to be:

- (i) recurrent/hypercyclic if N(x, U) is infinite ...
- (ii) frequently recurrent/hypercyclic if $\underline{dens}(N(x, U)) > 0$...
- (iii) \mathcal{U} -frequently recurrent/hypercyclic if $\overline{\text{dens}}(N(x, U)) > 0$...
- (iv) reiteratively recurrent/hypercyclic if $\overline{Bd}(N(x, U)) > 0$...

 $\forall U \text{ neighbourhood of } x$ / $\forall U \text{ non-empty open subset of } X.$

Definition

Given $A \subset \mathbb{N}_0$ its upper Banach density is

$$\overline{\mathsf{Bd}}(A) := \limsup_{N \to \infty} \left(\max_{m \ge 0} \frac{\#A \cap [m, m + N]}{N + 1} \right)$$

RRec(T) (Bonilla et al., 2020)

RHC(T) (Bés et al., 2016).

イロト 不同 トイヨト イヨト

э.

Definition

A vector $x \in X$ is said to be:

- (i) recurrent/hypercyclic if N(x, U) is infinite ...
- (ii) frequently recurrent/hypercyclic if $\underline{dens}(N(x, U)) > 0 \dots$
- (iii) \mathcal{U} -frequently recurrent/hypercyclic if $\overline{\text{dens}}(N(x, U)) > 0$...
- (iv) reiteratively recurrent/hypercyclic if $\overline{Bd}(N(x, U)) > 0$... $\forall U$ neighbourhood of x / $\forall U$ non-empty open subset of X.
 - T is (freq., U-freq., reiter.) hypercyclic if there is such a vector
 - T is (freq., U-freq., reiter.) recurrent if the set of such vectors is dense

$$0 \leq \underline{\mathsf{dens}}(A) \leq \overline{\mathsf{dens}}(A) \leq \overline{\mathsf{Bd}}(A) \leq 1$$
 for each $A \subset \mathbb{N}_0$

 $\mathsf{FHC}(T) \subset \mathsf{UFHC}(T) \subset \mathsf{RHC}(T) \subset \mathsf{HC}(T)$ $\mathsf{FRec}(T) \subset \mathsf{UFRec}(T) \subset \mathsf{RRec}(T) \subset \mathsf{Rec}(T)$

э.

듣▶ ★ 듣▶ ...

Topological vs Measurable Dynamics I

Topological Dynamics:

\Leftarrow	Frequent Hypercyclicity
	\downarrow
\Leftarrow	U-frequent Hypercyclicity
	\Downarrow
\Leftarrow	Reiterative Hypercyclicity
	\Downarrow
\Leftarrow	Hypercyclicity

Measurable Dynamics (Ergodic Theory):

If μ is a Borel prob. measure with full support (i.e. $\mu(U) > 0$ for $U \in O(X)$) we can study the system $(X, \mathscr{B}(X), \mu, T)$ with the properties:

* 国家 * 国家 -

э.

Topological vs Measurable Dynamics I

Topological Dynamics:

\Leftarrow	Frequent Hypercyclicity
	\Downarrow
\Leftarrow	U-frequent Hypercyclicity
	\Downarrow
\Leftarrow	Reiterative Hypercyclicity
	\Downarrow
\Leftarrow	Hypercyclicity

Measurable Dynamics (Ergodic Theory):

If μ is a Borel prob. measure with full support (i.e. $\mu(U) > 0$ for $U \in O(X)$) we can study the system $(X, \mathscr{B}(X), \mu, T)$ with the properties:

(a) invariance: for each A ∈ ℬ(X) the equality μ(T⁻¹(A)) = μ(A) holds. Poincaré Recurrence Theorem ⇒ T is recurrent.
(b) ergodicity: μ is T-invariant and if T⁻¹(A) = A then μ(A) ∈ {0,1}. Pointwise Ergodic Theorem ⇒ T is frequently hypercyclic.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological vs Measurable Dynamics II

If μ is a Borel probability measure with full support ($\mu(U) > 0$ for $U \in O(X)$) then from the system ($X, \mathscr{B}(X), \mu, T$) we get:

Invariance	\Leftarrow	Ergodicity
???		\Downarrow
Frequent Recurrence	\Leftarrow	Frequent Hypercyclicity
\downarrow		\Downarrow
$\mathcal U$ -frequent Recurrence	\Leftarrow	\mathcal{U} -frequent Hypercyclicity
\downarrow		\Downarrow
Reiterative Recurrence	\Leftarrow	Reiterative Hypercyclicity
\downarrow		\Downarrow
Recurrence	\Leftarrow	Hypercyclicity
↑		
Invariance		

Question

Does Invariance implies Frequent Recurrence?

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

Topological vs Measurable Dynamics II

If μ is a Borel probability measure with full support ($\mu(U) > 0$ for $U \in O(X)$) then from the system ($X, \mathscr{B}(X), \mu, T$) we get:

Invariance	\Leftarrow	Ergodicity
\Downarrow		\Downarrow
Frequent Recurrence	\Leftarrow	Frequent Hypercyclicity
\Downarrow		\Downarrow
$\mathcal U$ -frequent Recurrence	\Leftarrow	\mathcal{U} -frequent Hypercyclicity
\Downarrow		\Downarrow
Reiterative Recurrence	\Leftarrow	Reiterative Hypercyclicity
\Downarrow		\Downarrow
Recurrence	\Leftarrow	Hypercyclicity
↑		
Invariance		

Lemma 1 (S. Grivaux and A. L-M, 2022) Let $T : (X, \mathscr{B}(X), \mu) \to (X, \mathscr{B}(X), \mu)$ be invariant. Then $\mu(\operatorname{FRec}(T)) = 1$ and $\operatorname{supp}(\mu) \subset \overline{\operatorname{FRec}(T)}.$

Antoni López-Martínez

Invariance \Rightarrow Frequent Recurrence

STEP 1: For each $B \in \mathscr{B}(X)$ with $\mu(B) > 0$ apply the ...

Ergodic Decomposition Theorem

Let $T : (X, \mathscr{B}(X), \mu) \to (X, \mathscr{B}(X), \mu)$ be invariant. There is an abstract probability measure space (\mathcal{M}, τ) formed by measures such that for any $A \in \mathscr{B}(X)$ we have

$$\mu(A) = \int_{\mathcal{M}} \nu(A) \ d\tau(\nu)$$

프 🖌 🔺 프 🕨 👘

and for τ -a.e. measure $\nu \in \mathcal{M}$, $T : (X, \mathscr{B}(X), \nu) \to (X, \mathscr{B}(X), \nu)$ is ergodic.

... obtaining an ergodic measure ν on X with (AT LEAST) $\nu(B) > 0$.

Invariance \Rightarrow Frequent Recurrence

STEP 1: For each $B \in \mathscr{B}(X)$ with $\mu(B) > 0$ apply the ...

Ergodic Decomposition Theorem

Let $T : (X, \mathscr{B}(X), \mu) \to (X, \mathscr{B}(X), \mu)$ be invariant. There is an abstract probability measure space (\mathcal{M}, τ) formed by measures such that for any $A \in \mathscr{B}(X)$ we have

$$\mu(A) = \int_{\mathcal{M}} \nu(A) \ d\tau(\nu)$$

and for τ -a.e. measure $\nu \in \mathcal{M}$, $T : (X, \mathscr{B}(X), \nu) \to (X, \mathscr{B}(X), \nu)$ is ergodic.

... obtaining an ergodic measure ν on X with (AT LEAST) $\nu(B) > 0$.

STEP 2: Apply to ν the Pointwise Ergodic Theorem as in the VERY WELL-KNOWN Ergodicity \Rightarrow Frequent Hypercyclicity CASE:

 \exists **FREQUENTLY DENSE** orbits **AROUND** $B \Rightarrow$ FRec $(T) \cap B \neq \emptyset$

イロト 不得 トイヨト イヨト 二日

By the arbitrariness of $B \Rightarrow \mu(FRec(T)) = 1$.

Topological vs Measurable Dynamics III

S. Grivaux and É. Matheron (2014): (*) \equiv under some "natural" assumptions

Frequent Hypercylcicity $\xrightarrow{(*)}$ Invariance

< ∃ > < ∃ >

Topological vs Measurable Dynamics III

S. Grivaux and É. Matheron (2014): (*) \equiv under some "natural" assumptions

Frequent Hypercylcicity $\xrightarrow{(*)}$ Invariance

S. Grivaux and A. L-M (2022): (*) \equiv under some "natural" assumptions

Reiterative Recurrence $\xrightarrow{(*)}$ Invariance

イロト イボト イヨト イヨト

э

Índex

Introduction: Topological vs Measurable Dynamics

- 2 Constructing Invariant Measures
- 3 From Reiterative to Frequent Recurrence

・ロト ・四ト ・ヨト ・ヨトー

э

Let (X, T) be a Polish dynamical system, i.e.:

 (X, τ_X) is separable and completely metrizable; $T: X \to X$ is τ_X -continuous

"Natural" Topological Assumptions

Let τ be a Hausdorff topology in X. Enumerate the properties:

- (I) $T: (X, \tau) \to (X, \tau)$ is τ -continuous;
- (II) $\tau \subset \tau_X$, i.e. τ is coarser than τ_X ;

(III*) every $x \in X$ has a τ_X -neighbourhood basis of τ -compact sets.

- ₹ 🕨 🕨

Let (X, T) be a Polish dynamical system, i.e.:

 (X, τ_X) is separable and completely metrizable; $T: X \to X$ is τ_X -continuous

"Natural" Topological Assumptions

Let τ be a Hausdorff topology in X. Enumerate the properties:

(I) $T: (X, \tau) \to (X, \tau)$ is τ -continuous;

(II) $\tau \subset \tau_X$, i.e. τ is coarser than τ_X ;

(III*) every $x \in X$ has a τ_X -neighbourhood basis of τ -compact sets.

• If (X, τ_X) is compact, take $\tau = \tau_X$. Compact Dynamical Systems, ...

▶ < 글 ▶

Let (X, T) be a Polish dynamical system, i.e.:

 (X, τ_X) is separable and completely metrizable; $T: X \to X$ is τ_X -continuous

"Natural" Topological Assumptions

Let τ be a Hausdorff topology in X. Enumerate the properties:

(I)
$$T: (X, \tau) \rightarrow (X, \tau)$$
 is τ -continuous;

(II) $\tau \subset \tau_X$, i.e. τ is coarser than τ_X ;

(III*) every $x \in X$ has a τ_X -neighbourhood basis of τ -compact sets.

• If (X, τ_X) is compact, take $\tau = \tau_X$. Compact Dynamical Systems, ...

• If (X, τ_X) is locally compact, take $\tau = \tau_X$. Diff. Manifolds, $(\mathbb{R}^n, T), \dots$

Let (X, T) be a Polish dynamical system, i.e.:

 (X, τ_X) is separable and completely metrizable; $T: X \to X$ is τ_X -continuous

"Natural" Topological Assumptions

Let τ be a Hausdorff topology in X. Enumerate the properties:

(I)
$$T: (X, \tau) \rightarrow (X, \tau)$$
 is τ -continuous;

(II) $\tau \subset \tau_X$, i.e. τ is coarser than τ_X ;

(III*) every $x \in X$ has a τ_X -neighbourhood basis of τ -compact sets.

- If (X, τ_X) is compact, take $\tau = \tau_X$. Compact Dynamical Systems, ...
- If (X, τ_X) is locally compact, take $\tau = \tau_X$. Diff. Manifolds, $(\mathbb{R}^n, T), \dots$
- Given an adjoint operator $T : X \to X$ on a dual Banach space $(X, \|\cdot\|)$ take $\tau = w^*$ (weak-star topology) and $\tau_X = \tau_{\|\cdot\|}$ (norm topology)

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

Invariant Measures from Reiterative Recurrence

"Natural" Topological Assumptions

Let τ be a Hausdorff topology in X. Enumerate the properties:

- (I) $T: (X, \tau) \rightarrow (X, \tau)$ is τ -continuous;
- (II) $\tau \subset \tau_X$, i.e. τ is coarser than τ_X ;

(III*) every $x \in X$ has a τ_X -neighbourhood basis of τ -compact sets.

Main Theorem (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and τ fulfilling (I), (II) and (III*)

 \implies for each $x_0 \in \operatorname{RRec}(T)$ (reiteratively recurrent point) one can find an invariant probability measure μ_{x_0} on X such that

 $x_0 \in \operatorname{supp}(\mu_{x_0}).$

イロト 不得 トイヨト イヨト 二日

We divide the proof in 2 facts:

Measures' "Constructing Machine"

Fact 1

 $\overline{\text{Bd}}(N(x_0, U)) > 0$, $U \ \tau$ -compact $\Rightarrow \exists \mu \text{ inv. prob. measure with } \mu(U) > 0$.

Technical Lemma (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and τ fulfilling (I), (II) and (III*) \implies for each $x_0 \in X$ and each Banach limit $\mathfrak{m} : \ell^{\infty}(\mathbb{N}_0) \to \mathbb{R}$ one can find a (non-negative) invariant finite Borel regular measure μ on X such that

$$\mu(K) \ge \mathfrak{m}(\chi_{N(x_{0},K)}) \quad \text{for every } \tau\text{-compact } K \subset X.$$

$$\chi_{N(x_{0},U)} \stackrel{1}{=} 1 \stackrel{$$

 $\chi_{N(x_0,U)} \in \ell^{\infty}(\mathbb{N}_0) \text{ ... choose a Banach limit } \mathfrak{m} \text{ such that } \mathfrak{m}(\chi_{N(x_0,U)}) > 0$ $\mu(U) \geq \mathfrak{m}(\chi_{N(x_0,U)}) = \overline{\mathrm{Bd}}(N(x_0,U)) > 0$

Measures' "Constructing Machine"

Fact 1

 $\overline{\text{Bd}}(N(x_0, U)) > 0$, $U \ \tau$ -compact $\Rightarrow \exists \mu \text{ inv. prob. measure with } \mu(U) > 0$.

Technical Lemma (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and τ fulfilling (I), (II) and (III*) \implies for each $x_0 \in X$ and each Banach limit $\mathfrak{m} : \ell^{\infty}(\mathbb{N}_0) \to \mathbb{R}$ one can find a (non-negative) invariant finite Borel regular measure μ on X such that

$$\mu(K) \geq \mathfrak{m}(\chi_{N(x_0,K)})$$
 for every au -compact $K \subset X$.

Fact 2

For $x_0 \in \operatorname{RRec}(T) \Rightarrow \exists \mu_{x_0}$ inv. probability measure such that $x_0 \in \operatorname{supp}(\mu_{x_0})$.

 $(III^*) \Rightarrow \exists a \tau_X$ -neighbourhood basis $(U_n)_{n \in \mathbb{N}}$ formed by τ -compact sets

$$x_0 \in \mathsf{RRec}(\mathcal{T}) \Rightarrow \overline{\mathsf{Bd}}(N(x_0, U_n)) > 0 \stackrel{\mathsf{Fact 1}}{\Longrightarrow} \exists \mu_n \text{ with } \mu_n(U_n) > 0 \ \forall n \in \mathbb{N} \dots$$

$$\mu_{\mathbf{x}_0} := \sum_{n \in \mathbb{N}} \frac{\mu_n}{2^n} \quad \text{is invariant and } \mathbf{x}_0 \in \mathrm{supp}(\mu_{\mathbf{x}_0}).$$

Antoni López-Martínez

Reiterative Recurrence \Rightarrow Full Support Invariant Measure

Main Theorem (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and τ fulfilling (I), (II) and (III*)

⇒ for each $x_0 \in \operatorname{RRec}(T)$ (reiteratively recurrent point) one can find an invariant probability measure μ_{x_0} on X such that

 $x_0 \in \operatorname{supp}(\mu_{x_0}).$

_ ∢ ⊒ ▶

Reiterative Recurrence \Rightarrow Full Support Invariant Measure

Main Theorem (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and τ fulfilling (I), (II) and (III*)

⇒ for each $x_0 \in \operatorname{RRec}(T)$ (reiteratively recurrent point) one can find an invariant probability measure μ_{x_0} on X such that

 $x_0 \in \operatorname{supp}(\mu_{x_0}).$

If RRec(T) is dense there is an invariant prob. measure μ with full support.

There is $\{x_n : n \in \mathbb{N}\} \subset \operatorname{RRec}(T)$ dense ...

Fact 2

For $x_n \in \operatorname{RRec}(T) \Rightarrow \exists \mu_{x_n}$ inv. probability measure such that $x_n \in \operatorname{supp}(\mu_{x_n})$.

. . .

$$\mu := \sum_{n \in \mathbb{N}} \frac{\mu_{\mathsf{x}_n}}{2^n}$$

イロト 不同 トイヨト イヨト

is an invariant probability measure with full support.

Índex

Introduction: Topological vs Measurable Dynamics

2 Constructing Invariant Measures

3 From Reiterative to Frequent Recurrence

・ロト ・四ト ・ヨト ・ヨトー

э

Adjoint Operators and Reflexive Spaces

Theorem (S. Grivaux and A. L-M, 2022)

For an adjoint operator $T: X \to X$ on a separable dual Banach space X we have $\overline{\text{FRec}(T)} = \overline{\text{RRec}(T)}$. Moreover, the following statements are equivalent:

- (i) T is frequently recurrent;
- (ii) T is U-frequently recurrent;
- (iii) T is reiteratively recurrent;
- (iv) T admits an invariant probability measure with full support.
 - (1) T is adjoint \implies T : $(X, w^*) \rightarrow (X, w^*)$ is continuous;
- (II) $w^* \subset \tau_{\parallel \cdot \parallel}$;

(III*) Alaoglu-Bourbaki \implies closed balls are w^* -compact and $\|\cdot\|$ -neighbour.

Given $x_0 \in \operatorname{RRec}(T)$ there is μ_{x_0} invariant with $x_0 \in \operatorname{supp}(\mu_{x_0}) \subset \overline{\operatorname{FRec}(T)}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

• True whenever X is reflexive ... L^p and ℓ^p -spaces (1

Product Dynamical Systems

When $T: X \to X$ has a property ...

Usual Question

Does $T \oplus T : X \oplus X \longrightarrow X \oplus X$ has that property?

$$\begin{array}{cccc} T \oplus T : X \oplus X & \longrightarrow & X \oplus X \\ (x,y) & \longmapsto & (Tx,Ty) \end{array}$$

イロト イ押ト イヨト イヨト

э

Examples

There are negative and positive answers; and open problems:

- T hypercyclic \Rightarrow T \oplus T hypercyclic;
- T reiteratively hypercyclic \implies T \oplus T reit.hypercyclic;
- $T \ U$ -frequently hypercyclic $\implies T \oplus T \ U$ -freq. hypercyclic;
- *T* frequently hypercyclic $\stackrel{???}{\Longrightarrow} T \oplus T$ freq. hypercyclic;
- *T* recurrent $\stackrel{???}{\Longrightarrow}$ $T \oplus T$ recurrent.

Product Dynamical Systems

When $T: X \to X$ has a property ...

Usual Question

Does $T \oplus T : X \oplus X \longrightarrow X \oplus X$ has that property?

$$T_n = \underbrace{T \oplus \cdots \oplus T}_n : \underbrace{X \oplus \cdots \oplus X}_n \longrightarrow \underbrace{X \oplus \cdots \oplus X}_n (x_1, ..., x_n) \longmapsto (Tx_1, ..., Tx_n)$$

Corollary (S. Grivaux and A. L-M, 2022)

For an adjoint operator $T : X \to X$ on a separable dual Banach space X, then the following statements are equivalent:

< ≣ >

< □ > < 同 >

- (i) for every $n \in \mathbb{N}$, T_n is frequently recurrent;
- (ii) for every $n \in \mathbb{N}$, T_n is \mathcal{U} -frequently recurrent;
- (iii) for every $n \in \mathbb{N}$, T_n is reiteratively recurrent;
- (iv) T is reiteratively recurrent.

Product Dynamical Systems

When $T: X \to X$ has a property ...

Usual Question

Does $T \oplus T : X \oplus X \longrightarrow X \oplus X$ has that property?

$$egin{array}{rcl} T = T_1 \oplus \cdots \oplus T_N : X_1 \oplus \cdots \oplus X_N & \longrightarrow & X_1 \oplus \cdots \oplus X_N \ (x_1,...,x_n) & \longmapsto & (T_1x_1,...,T_Nx_N) \end{array}$$

Theorem (S. Grivaux and A. L-M, 2022)

Fix $N \in \mathbb{N}$ and for each $1 \le i \le N$ let $T_i : X_i \to X_i$ be an adjoint operator on a separable dual Banach space X_i . For the direct sum operator

 $T = T_1 \oplus \cdots \oplus T_N$ on the direct sum space $X = X_1 \oplus \cdots \oplus X_N$,

we have the equality $\overline{\mathsf{FRec}(T)} = \prod \overline{\mathsf{RRec}(T_i)}$.

Proof for Product Dynamical Systems

$$\begin{array}{cccc} T = T_1 \oplus \cdots \oplus T_N : X_1 \oplus \cdots \oplus X_N & \longrightarrow & X_1 \oplus \cdots \oplus X_N \\ (x_1, ..., x_n) & \longmapsto & (T_1 x_1, ..., T_N x_N) \end{array}$$

We clearly have the inclusion

$$\operatorname{FRec}(T) \subset \prod_{i=1}^{N} \operatorname{RRec}(T_i).$$

For $\mathbf{x}_0 = (x_1, ..., x_N) \in X$ with $x_i \in \operatorname{RRec}(T_i), \exists \mu_{x_i} \ T_i$ -invariant, $x_i \in \operatorname{supp}(\mu_{x_i})$. Since

$$\mathscr{B}(X,\tau_X)=\prod_{i=1}^{n}\mathscr{B}(X_i,\tau_{X_i}),$$

the product measure $\mu_{\mathbf{x}_0} := \prod_{i=1}^N \mu_{\mathbf{x}_i}$ on $X_1 \oplus \cdots \oplus X_N$ is *T*-invariant, so

$$\mathbf{x}_0 = (x_1, ..., x_N) \in \operatorname{supp}(\mu_{\mathbf{x}_0}) \overset{\operatorname{Lemma 1}}{\subset} \overline{\operatorname{FRec}(T)}.$$

医下颌 医下口

< □ > < 同 >

3

Inverse Dynamical Systems

When $T: X \to X$ has a property ... and $T^{-1}: X \to X$ exists ...

Usual Question

Does $T^{-1}: X \to X$ has that property?

Examples

There are **positive** and **negative** answers:

- T hypercyclic $\iff T^{-1}$ hypercyclic;
- T reiteratively hypercyclic $\iff T^{-1}$ reit.hypercyclic;
- $T \ U$ -frequently hypercyclic $\Rightarrow T^{-1} \ U$ -freq. hypercyclic;
- T frequently hypercyclic $\implies T^{-1}$ freq. hypercyclic;
- T recurrent $\iff T^{-1}$ recurrent.

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

Inverse Dynamical Systems

When $T: X \to X$ has a property ... and $T^{-1}: X \to X$ exists ...

Usual Question

Does $T^{-1}: X \to X$ has that property?

T is adjoint
$$\iff T^{-1}$$
 is adjoint

Theorem (S. Grivaux and A. L-M, 2022)

For an invertible adjoint operator $T : X \to X$ on a sep. dual Banach space X,

$$\overline{\mathsf{RRec}(T)} = \overline{\mathsf{FRec}(T)} = \overline{\mathsf{FRec}(T^{-1})} = \overline{\mathsf{RRec}(T^{-1})}.$$

T is reiteratively (and then \mathcal{U} -frequently and frequently) recurrent iff so is T^{-1} .

Note that $(X, \mathscr{B}(X), T, \mu)$ invariant $\Longrightarrow (X, \mathscr{B}(X), T^{-1}, \mu)$ invariant since

$$\mu([T^{-1}]^{-1}(A)) = \mu(T(A)) \stackrel{\mu \text{ is } T-\text{invariant}}{=} \mu(T^{-1}(T(A))) = \mu(A)$$

医下颌 医下口

Conclusion

In closing ...

- PART 1: Invariant Measure \implies there are Frequently Recurrent Points;
- PART $2^{(*)}$: Reiterative Recurrent Points \implies there are Invariant Measures;
- PART 3^(*): Reiterative Recurrence \iff Frequent Recurrence;
- FINALLY: good prop. for **PRODUCT** and **INVERSE** dynamical systems.

米 医 トー 三臣

 $(*) \equiv$ under some "natural" assumptions ...

References

- A. BONILLA, K.-G. GROSSE-ERDMANN, A. LÓPEZ-MARTÍNEZ AND A. PERIS: Frequently recurrent operators. arXiv:2006.11428, 2020.
- [2] G. COSTAKIS, A. MANOUSSOS AND I. PARISSIS: Recurrent linear operators. Complex Anal. Oper. Theory, 8, 1601–1643, 2014.
- [3] H. FURSTENBERG: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, New Jersey 1981.
- [4] S. GRIVAUX AND A. LÓPEZ-MARTÍNEZ: Recurrence properties for linear dynamical systems: an approach via invariant measures. arXiv:2203.03027.

- ∢ ⊒ ▶

[5] S. GRIVAUX AND E. MATHERON: Invariant measures for frequently hypercyclic operators, Adv. Math., 265 (2014), p. 371–427.

Thank you for your attention

イロト イボト イヨト イヨト

э