Generalized Black–Scholes PDEs by bisectorial operators

Jesús Oliva-Maza

Universidad de Zaragoza Instituto Universitario de investigación en Matemáticas y Aplicaciones

XVII Encuentro de la Red de Análisis Funcional y Aplicaciones joliva@unizar.es

Joint work with M. Warma

10/03/2022

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

Universidad Zaragoza The Black-Scholes equation is a degenerate parabolic PDE, given by

$$u_t = x^2 u_{xx} + x u_x = B u, \qquad t, \, x > 0,$$
 (BS)

where $(Bf)(x) = x^2 f''(x) + xf'(x)$. (BS) is used in mathematical finance for the modelling of the price of European-style options.

Definition (C_0 -semigroup of operators)

A family $T = (T(t))_{t \in \mathbb{R}^+}$ in $\mathcal{B}(X)$ is called a semigroup if the following properties are satisfied:

- $T(0) = 1_X$, the identity operator on X.
- 2 T(t+s) = T(t)T(s), for every $t, s \in \mathbb{R}^+$.

We will say that T is a C_0 -semigroup (or strongly continuous) if in addition, it holds that

3
$$\lim_{t\to 0} ||T(t)x - x|| = 0$$
, for all $x \in X$.

Universidad Zaragoza

Definition (Infinitesimal generator)

Let $(T(t))_{t \in \mathbb{R}^+}$ be a semigroup of operators. Then, we set the infinitesimal generator $\Lambda : \mathcal{D}(\Lambda) \to X$,

$$\Lambda x := \lim_{\varepsilon \to 0} \frac{T(\varepsilon)x - x}{\varepsilon}$$

where $\mathcal{D}(\Lambda) := \{x \in X \mid \text{limit above exists}\}.$

Definition (Infinitesimal generator)

Let $(T(t))_{t \in \mathbb{R}^+}$ be a semigroup of operators. Then, we set the infinitesimal generator $\Lambda : \mathcal{D}(\Lambda) \to X$,

$$\Lambda x := \lim_{\varepsilon \to 0} \frac{T(\varepsilon)x - x}{\varepsilon}$$

where $\mathcal{D}(\Lambda) := \{x \in X \mid \text{limit above exists}\}.$

One has that

$$T(t)x o x \text{ as } t o 0 \iff x \in \overline{\mathcal{D}(\Lambda)}.$$

So T is strongly continuous if and only if $\overline{\mathcal{D}(\Lambda)} = X$.

Let B be a closed operator on a Banach space X, and consider the following abstract Cauchy problem:

$$\begin{cases} u \in C^{1}((0,\infty);X), & u(t) \in \mathcal{D}(B), \quad t > 0, \\ u'(t) = Bu(t), & t > 0, \\ \lim_{t \downarrow 0} u(t) = f \in X, \end{cases}$$
(ACP₀)

We say that the Cauchy problem (ACP_0) is well-posed if for for any $f \in X$, there exists a unique solution u.

Let B be a closed operator on a Banach space X, and consider the following abstract Cauchy problem:

$$\begin{cases} u \in C^{1}((0,\infty);X), & u(t) \in \mathcal{D}(B), \quad t > 0, \\ u'(t) = Bu(t), & t > 0, \\ \lim_{t \downarrow 0} u(t) = f \in X, \end{cases}$$
(ACP₀)

We say that the Cauchy problem (ACP_0) is well-posed if for for any $f \in X$, there exists a unique solution u.

Theorem

The abstract Cauchy problem ACP_0 is well-posed if and only if B is the infinitesimal generator of a C_0 -semigroup T. In that case, the solution is given by u(t) = T(t)f.

Jesús Oliva-Maza (Unizar - IUMA)

Zaragoza

$$u_t = x^2 u_{xx} + x u_x = B u, \qquad t, \, x > 0.$$
 (BS)

$$u_t = x^2 u_{xx} + x u_x = B u, \qquad t, \, x > 0.$$
 (BS)

In [ADP02], (BS) is studied in order continuous norm $(L^1 - L^{\infty})$ -interpolation spaces on $(0, \infty)$ by means of the relation

$$B = A^2$$
, $(Af)(x) = -xf'(x)$, $x > 0$,

$$u_t = x^2 u_{xx} + x u_x = B u, \qquad t, \, x > 0.$$
 (BS)

In [ADP02], (BS) is studied in order continuous norm $(L^1 - L^{\infty})$ -interpolation spaces on $(0, \infty)$ by means of the relation

$$B = A^2$$
, $(Af)(x) = -xf'(x)$, $x > 0$,

where A generates the C_0 -group $(T(t)f)(x) = f(e^{-t}x), x > 0, t \in \mathbb{R}$.

$$u_t = x^2 u_{xx} + x u_x = B u, \qquad t, \, x > 0.$$
 (BS)

In [ADP02], (BS) is studied in order continuous norm $(L^1 - L^{\infty})$ -interpolation spaces on $(0, \infty)$ by means of the relation

$$B = A^2$$
, $(Af)(x) = -xf'(x)$, $x > 0$,

where A generates the C_0 -group $(T(t)f)(x) = f(e^{-t}x), x > 0, t \in \mathbb{R}$.

Proposition

If A generates a C_0 -group, then A^2 generates a C_0 -semigroup.

For $\alpha > 0$, one can define the generalized Cesàro operator $\mathcal{C}_{\alpha}, \mathcal{C}_{\alpha}^*$,

$$(\mathcal{C}_{\alpha}f)(x) := rac{lpha}{x^{lpha}} \int_0^x (x-y)^{lpha-1} f(y) \, dy, \quad x > 0,$$

 $(\mathcal{C}^*_{\alpha}f)(x) := lpha \int_x^\infty rac{(x-y)^{lpha-1}}{y^{lpha}} f(y) \, dy, \quad x > 0,$

For $\alpha > 0$, one can define the generalized Cesàro operator $\mathcal{C}_{\alpha}, \mathcal{C}_{\alpha}^{*}$,

$$(\mathcal{C}_{\alpha}f)(x) := rac{lpha}{x^{lpha}} \int_0^x (x-y)^{lpha-1} f(y) \, dy, \quad x > 0,$$

 $(\mathcal{C}^*_{\alpha}f)(x) := lpha \int_x^\infty rac{(x-y)^{lpha-1}}{y^{lpha}} f(y) \, dy, \quad x > 0,$

If $\alpha = 1$, one obtains the classical Cesàro operator \mathcal{C}_1 and its adjoint \mathcal{C}_1^*

$$(\mathcal{C}_1 f)(x) = \frac{1}{x} \int_0^x f(y) \, dy, \quad (\mathcal{C}_1^* f)(x) = \int_x^\infty \frac{f(y)}{y} \, dy, \quad x > 0.$$

Generalized Black–Scholes equations

The Black–Scholes operators satisfies that

$$B = (1 - \mathcal{C}_1^{-1})^2 = (\mathcal{C}_1^*)^{-2} = (\mathcal{C}_1^*)^{-1}(1 - \mathcal{C}_1^{-1}).$$

The Black–Scholes operators satisfies that

$$B = (1 - \mathcal{C}_1^{-1})^2 = (\mathcal{C}_1^*)^{-2} = (\mathcal{C}_1^*)^{-1}(1 - \mathcal{C}_1^{-1}).$$

With an arbitrary $\alpha > 0$, one obtains the following PDEs

$$u_{t} = \frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha} (x^{\alpha} D^{\alpha} (x^{\alpha} u)) - \frac{2}{\Gamma(\alpha+1)} D^{\alpha} (x^{\alpha} u) + u_{t}$$
$$u_{t} = \frac{1}{\Gamma(\alpha+1)^{2}} x^{\alpha} W^{\alpha} (x^{\alpha} W^{\alpha} u),$$
$$u_{t} = -\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha} (x^{2\alpha} W^{\alpha} u) + \frac{1}{\Gamma(\alpha+1)} x^{\alpha} W^{\alpha} u,$$

where D^{α} and W^{α} stand for the Riemann-Liouville and Weyl fractional derivatives of order α , respectively.

Bisectorial operators

Next, for any $\omega \in (0,\pi/2]$ and $a \geq 0$ a real number, we set

$$BS_{\omega,a} := \begin{cases} (-a + S_{\pi-\omega}) \cap (a - S_{\pi-\omega}) & \text{if } \omega < \pi/2 \text{ or } a > 0, \\ i\mathbb{R} & \text{if } \omega = \pi/2 \text{ and } a = 0. \end{cases}$$

Jesús Oliva-Maza (Unizar - IUMA)

Definition

Let $\omega \in (o, \pi/2]$, $a \ge 0$, $A \in C(X)$. A is a bisectorial operator $\in BSect(\omega, a)$ if:

- $\sigma(A) \subset \overline{BS_{\omega,a}}$.
- Fix any $\omega' \in (0, \omega)$. Then

$$\|R(\lambda,A)\|_{\mathcal{B}(X)} \leq \frac{K_{\omega'}}{\min\{|\lambda-a|,|\lambda+a|\}} \quad \lambda \notin \overline{BS_{\omega',a}},$$

for some $K_{\omega'} > 0$.

★ ∃ ►

Natural functional calculus of bisectorial operators I

Idea: For $A \in BSect(\omega, a)$ set

$$\mathcal{E}(A) := \left\{ f \in H^{\infty}(BS_{\varphi,a}) \, : \, \int_{\Gamma} \left| \frac{f(z)}{\min\{|\lambda - a|, |\lambda + a|\}} \right| |dz| < \infty, \varphi < \omega \right.$$

and some extra properties...}

Natural functional calculus of bisectorial operators I

Idea: For $A \in BSect(\omega, a)$ set

$$\mathcal{E}(A) := \left\{ f \in H^{\infty}(BS_{\varphi,a}) : \int_{\Gamma} \left| \frac{f(z)}{\min\{|\lambda - a|, |\lambda + a|\}} \right| |dz| < \infty, \varphi < \omega \right.$$

and some extra properties...
$$\left. \right\},$$

and set

$$f(A) := rac{1}{2\pi i} \int_{\Gamma} f(z) R(z, A) \, dz \in \mathcal{B}(X), \qquad f \in \mathcal{E}(A).$$

Definition

Let $A \in BSect(\omega, a)$ and $\varphi < \omega$. Let $f \in \mathcal{M}(BS_{\varphi,a})$ be such that there exists $e \in \mathcal{E}(A)$ for which

- $ef \in \mathcal{E}(A)$.
- **2** e(A) is injective.

Then we say that f is regularizable, $f \in \mathcal{M}(A)$ and set

 $f(A) := e(A)^{-1}(ef)(A).$

Universidad Zaragoza

Generalized Black–Scholes through functional calculus

The generalized Black–Scholes equations

$$u_{t} = \frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}(x^{\alpha}D^{\alpha}(x^{\alpha}u)) - \frac{2}{\Gamma(\alpha+1)}D^{\alpha}(x^{\alpha}u) + u,$$

$$u_{t} = \frac{1}{\Gamma(\alpha+1)^{2}}x^{\alpha}W^{\alpha}(x^{\alpha}W^{\alpha}u),$$

$$u_{t} = -\frac{1}{\Gamma(\alpha+1)^{2}}D^{\alpha}(x^{2\alpha}W^{\alpha}u) + \frac{1}{\Gamma(\alpha+1)}x^{\alpha}W^{\alpha}u$$

Generalized Black–Scholes through functional calculus

The generalized Black–Scholes equations

$$\begin{split} u_t &= \frac{1}{\Gamma(\alpha+1)^2} D^{\alpha} (x^{\alpha} D^{\alpha} (x^{\alpha} u)) - \frac{2}{\Gamma(\alpha+1)} D^{\alpha} (x^{\alpha} u) + u, \\ u_t &= \frac{1}{\Gamma(\alpha+1)^2} x^{\alpha} W^{\alpha} (x^{\alpha} W^{\alpha} u), \\ u_t &= -\frac{1}{\Gamma(\alpha+1)^2} D^{\alpha} (x^{2\alpha} W^{\alpha} u) + \frac{1}{\Gamma(\alpha+1)} x^{\alpha} W^{\alpha} u \end{split}$$

can be respectively written as

$$\begin{split} u_t &= (1 - (\alpha \mathbb{B}(I - A, \alpha))^{-1})^2 u := g_1^{\alpha}(A)u, \\ u_t &= (\alpha \mathbb{B}(A, \alpha))^{-2} u := g_2^{\alpha}(A)u, \\ u_t &= (\alpha \mathbb{B}(A, \alpha))^{-1} (1 - (\alpha \mathbb{B}(I - A, \alpha))^{-1})u := g_3^{\alpha}(A)u, \end{split}$$

where ${\mathbb B}$ denotes the Beta-Euler function.

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

For
$$\varphi \in (0,\pi)$$
, set the sector $S_{\varphi} := \Big\{ z \in \mathbb{C} : |\operatorname{arg}(z)| < \varphi \Big\}$, and $S_0 := (0,\infty)$.

Definition

Let $\delta \in (0, \pi/2]$. A mapping $T : S_{\delta} \to \mathcal{B}(X)$ is called an **exponentially** bounded holomorphic semigroup (of angle δ):

$$T(z)T(z') = T(z+z') \text{ for all } z, z' \in S_{\delta}.$$

2
$$T: S_{\delta} \to \mathcal{B}(X)$$
 is holomorphic.

3 For each
$$\delta' \in (0, \delta)$$
,

$$\|T(w)\|_{\mathcal{B}(X)} \leq M_{\delta'} e^{
ho_{\delta'} \Re w}, \quad w \in S_{\delta'}.$$

< ∃ ►

For
$$\varphi \in (0,\pi)$$
, set the sector $S_{\varphi} := \left\{ z \in \mathbb{C} : |\operatorname{arg}(z)| < \varphi \right\}$, and $S_0 := (0,\infty)$.

Definition

Let $\delta \in (0, \pi/2]$. A mapping $T : S_{\delta} \to \mathcal{B}(X)$ is called an **exponentially** bounded holomorphic semigroup (of angle δ):

$$T(z)T(z') = T(z+z') \text{ for all } z, z' \in S_{\delta}.$$

2
$$T: S_{\delta} \to \mathcal{B}(X)$$
 is holomorphic.

3 For each $\delta' \in (0, \delta)$,

$$\|T(w)\|_{\mathcal{B}(X)} \leq M_{\delta'} e^{
ho_{\delta'} \Re w}, \quad w \in S_{\delta'}.$$

If $\rho_{\delta'} = 0$, then T is a **bounded holomorphic semigroup**.

Universidad Zaragoza Let $B \in \mathcal{C}(X)$ with domain $\mathcal{D}(B)$ is said to be a sectorial operator (of angle φ) if

Let $B \in \mathcal{C}(X)$ with domain $\mathcal{D}(B)$ is said to be a **sectorial operator** (of angle φ) if

•
$$\sigma(B) \subset \overline{S_{\varphi}}$$

for some $\varphi \in [0, \pi)$.

Let $B \in \mathcal{C}(X)$ with domain $\mathcal{D}(B)$ is said to be a sectorial operator (of angle φ) if for some $\varphi \in [0, \pi)$. $\sup \|\lambda R(\lambda, A)\| < \infty$ 2 Fix $\varphi' \in (\varphi, \pi)$. Then $\sigma(A)$ $\|R(\lambda,B)\|_{\mathcal{B}(X)} \leq \frac{K_{\varphi'}}{\lambda}, \quad \lambda \in \mathbb{C} \setminus S_{\varphi'},$ for some $K_{\omega'} > 0$. Zaragoz

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

10/03/2022 16/31

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

10/03/2022 16/31

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

Let α ∈ ℝ⁺ \ {1,3,5,...}. If A generates a bounded group, then (-1)ⁿA^α is a quasi-sectorial operator of angle |α − 2n|^π/₂ for α ∈ (2n − 1, 2n + 1) ([BHK09]).

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

- Let $\alpha \in \mathbb{R}^+ \setminus \{1, 3, 5, ...\}$. If A generates a bounded group, then $(-1)^n A^{\alpha}$ is a quasi-sectorial operator of angle $|\alpha 2n|\frac{\pi}{2}$ for $\alpha \in (2n 1, 2n + 1)$ ([BHK09]).
- (Scaling property) If A is a sectorial operator of angle β , then A^{α} is a sectorial operator of angle $\alpha\beta$ for $\alpha \in \left(0, \frac{\pi}{\beta}\right)$.

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

- Let α ∈ ℝ⁺ \ {1,3,5,...}. If A generates a bounded group, then (-1)ⁿA^α is a quasi-sectorial operator of angle |α − 2n|^π/₂ for α ∈ (2n − 1, 2n + 1) ([BHK09]).
- (Scaling property) If A is a sectorial operator of angle β , then A^{α} is a sectorial operator of angle $\alpha\beta$ for $\alpha \in \left(0, \frac{\pi}{\beta}\right)$.
- If A is a **bisectorial** operator, then A^2 is a sectorial operator ([AZ10]).

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in (0, \pi/2]$ if and only if -A is a sectorial operator of angle $\frac{\pi}{2} - \delta$.

- Let α ∈ ℝ⁺ \ {1,3,5,...}. If A generates a bounded group, then (-1)ⁿA^α is a quasi-sectorial operator of angle |α − 2n|^π/₂ for α ∈ (2n − 1, 2n + 1) ([BHK09]).
- (Scaling property) If A is a sectorial operator of angle β , then A^{α} is a sectorial operator of angle $\alpha\beta$ for $\alpha \in \left(0, \frac{\pi}{\beta}\right)$.

• If A is a **bisectorial** operator, then A^2 is a sectorial operator ([AZ10]). The functions above satisfy that

$$g_i^{lpha}(z) \sim egin{cases} (-z)^{2lpha} & ext{if } i=1, \ z^{2lpha} & ext{if } i=2, \ z^{lpha}(-z)^{lpha} & ext{if } i=3, \ \end{array}$$
 as $z o \infty.$

10/03/2022

16/31

Spectral properties are good enough, so the generalized Black–Scholes operators may be sectorial. We need to uniformly bound their resolvent.

Sketch of the problem: $\int_0^\infty \frac{1}{1+s} \frac{\lambda}{\lambda+s^\alpha} ds$ is not uniformly bounded as $\lambda \to \infty$.

Idea: $\left\|\frac{\lambda'}{\lambda'+A}\right\| = \left\|\lambda'R(\lambda', -A)\right\|$ is uniformly bounded since A is bisectorial. Then, try, to uniformly bound

$$\|\lambda' R(\lambda', -A)\| + \int_0^\infty \frac{1}{1+s} \left(\frac{\lambda}{\lambda+s^{lpha}} - \frac{\lambda'}{\lambda'+s}\right) ds.$$

Universidad Zaragoza

Key tool

We say that
$$(f^{\lambda})_{\lambda \notin \overline{S_{\beta}}} \subset \mathcal{M}[BS_{\omega,a}]_A$$
 make $\left(\frac{\lambda}{\lambda - g(z)}\right)_{\lambda \notin \overline{S_{\beta}}} \varepsilon$ -uniformly
bounded at $d \in M_A = \{-a, a, \infty\} \cap \widetilde{\sigma}(A)$ if, for any $\varepsilon \in (0, \pi - \beta)$,
 $|f^{\lambda}(z)|$ is uniformly bounded for all $z \in \mathcal{D}(f^{\lambda})$ and $\lambda \notin \overline{S_{\beta + \varepsilon}}$.
 $||f^{\lambda}(A)||_{\mathcal{B}(X)}$ is uniformly bounded for all $\lambda \notin \overline{S_{\beta + \varepsilon}}$.

3 There exists a neighbourhood Ω_d containing d for which

$$\sup_{\lambda \notin \overline{\mathcal{S}_{\beta+\varepsilon}}} \int_{\Gamma \cap \Omega_d} |h_g^{\lambda}(z) - f^{\lambda}(z)| \|R(z,A)\|_{\mathcal{B}(X)} \, |dz| < \infty.$$

• There exists a neighborhood $\Omega_{d'}$ containing each $d' \in M_A \setminus \{d\}$ for which

$$\sup_{\lambda \notin \overline{S_{\beta+\varepsilon}}} \int_{\Gamma \cap \Omega_{d'}} |f^{\lambda}(z)| \|R(z,A)\|_{\mathcal{B}(X)} |dz| < \infty \quad \text{for each } d' \in M \setminus \{d\}.$$

Let $A \in BSect(\omega, a)$, $f \in \mathcal{M}(A)$. We say that f has exactly polynomial limits at $d \in \overline{\mathcal{D}(f)}$ if

$$egin{aligned} |f(z)| &\sim |z-d|^lpha, & ext{ as } z o d, \, d
eq \infty, \ |f(z)| &\sim |z|^lpha, & ext{ as } z o \infty, \, d = \infty \end{aligned}$$

for some $\alpha \in \mathbb{R}$.

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

10/03/2022 20/31

→ ∃ >

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

For any ε > 0, one can find φ ∈ (0,ω) for which g(BS_{φ,a}) ⊂ S_{β+ε} ∪ {∞}.

→ ∃ >

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

- For any ε > 0, one can find φ ∈ (0, ω) for which g(BS_{φ,a}) ⊂ S_{β+ε} ∪ {∞}.
- 2 g is quasi-regular at $M_A = \{-a, a, \infty\} \cap \widetilde{\sigma}(A)$.

.

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

- For any ε > 0, one can find φ ∈ (0, ω) for which g(BS_{φ,a}) ⊂ S_{β+ε} ∪ {∞}.
- 2 g is quasi-regular at $M_A = \{-a, a, \infty\} \cap \widetilde{\sigma}(A)$.
- **3** g has exactly polynomial limits at $M_A \cap g^{-1}(\{0,\infty\})$.

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

- For any ε > 0, one can find φ ∈ (0, ω) for which g(BS_{φ,a}) ⊂ S_{β+ε} ∪ {∞}.
- 2 g is quasi-regular at $M_A = \{-a, a, \infty\} \cap \widetilde{\sigma}(A)$.
- **3** g has exactly polynomial limits at $M_A \cap g^{-1}(\{0,\infty\})$.

Then, g(A) is a sectorial operator of angle β .

→ ∃ →

Let $\omega \in (0, \pi/2]$, $a \ge 0$ and $\beta \in [0, \pi)$. Let $A \in \mathsf{BSect}(\omega, a)g \in \mathcal{M}(A)$. If

- For any ε > 0, one can find φ ∈ (0, ω) for which g(BS_{φ,a}) ⊂ S_{β+ε} ∪ {∞}.
- 2 g is quasi-regular at $M_A = \{-a, a, \infty\} \cap \widetilde{\sigma}(A)$.
- **3** g has exactly polynomial limits at $M_A \cap g^{-1}(\{0,\infty\})$.

Then, g(A) is a sectorial operator of angle β .

Corollary (O.-M., M. Warma)

Let $a \ge 0$, $A \in BSect(\pi/2, a)$, and let $\alpha \in \mathbb{R}^+ \setminus \{1, 3, 5, ...\}$. Then $(-1)^n (A + al)^{\alpha}$ is quasi-sectorial operator of angle $\pi |\frac{\alpha}{2} - n|$ for $\alpha \in (2n - 1, 2n + 1)$.

Jesús Oliva-Maza (Unizar - IUMA)

< □ > < 同 > < 回 > < 回 > < 回 >

Domain properties

Proposition (O.-M., M. Warma)

Let A, g be as above. If $g^{-1}(\infty) \cap M_A = \emptyset$, then $\overline{\mathcal{D}(g(A))} = X$. Otherwise,

$$\overline{\mathcal{D}(g(A))} = \bigcap_{d \in g^{-1}(\infty) \cap M_A} \overline{\mathcal{R}(dI - A)},$$

where $\mathcal{R}(\infty - A) := \mathcal{D}(A)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Proposition (O.-M., M. Warma)

Let A, g be as above. If $g^{-1}(\infty) \cap M_A = \emptyset$, then $\overline{\mathcal{D}(g(A))} = X$. Otherwise,

$$\overline{\mathcal{D}(g(A))} = \bigcap_{d \in g^{-1}(\infty) \cap M_A} \overline{\mathcal{R}(dI - A)},$$

where $\mathcal{R}(\infty - A) := \mathcal{D}(A)$.

Theorem (O.-M., M. Warma)

Let β , A, g be as above with $\beta \in (0, \frac{\pi}{2})$, so -g(A) generates a holomorphic semigroup T_g of angle $\frac{\pi}{2} - \beta$. Then, for any $w \in S_{\pi/2-\beta}$, we have that $\exp_{-w} \circ g \in \mathcal{M}_A$ and

$$T_g(w) = (\exp_{-w} \circ g)(A).$$

Let *E* be a $(L^1 - L^\infty)$ -interpolation space. *E* is said to have an **order continuous norm** if $||f_n||_E \to 0$ for every sequence of functions $E \supset |f_n| \downarrow 0$ a.e.

Let *E* be a $(L^1 - L^\infty)$ -interpolation space. *E* is said to have an **order continuous norm** if $||f_n||_E \to 0$ for every sequence of functions $E \supset |f_n| \downarrow 0$ a.e. (Af)(x) = -xf'(x). Set $A_E := A|_E$, so A_E generates an exponentially bounded group $(T_E(t)f)(x) = f(e^{-t}x)$.

Let *E* be a $(L^1 - L^\infty)$ -interpolation space. *E* is said to have an **order continuous norm** if $||f_n||_E \to 0$ for every sequence of functions $E \supset |f_n| \downarrow 0$ a.e. (Af)(x) = -xf'(x). Set $A_E := A|_E$, so A_E generates an exponentially bounded group $(T_E(t)f)(x) = f(e^{-t}x)$. Let

$$\underline{\alpha}_{E} := -\lim_{t \to \infty} \frac{\log \|T_{E}(-t)\|}{t}, \quad \overline{\alpha}_{E} := \lim_{t \to \infty} \frac{\log \|T_{E}(t)\|}{t}$$

Let *E* be a $(L^1 - L^\infty)$ -interpolation space. *E* is said to have an **order continuous norm** if $||f_n||_E \to 0$ for every sequence of functions $E \supset |f_n| \downarrow 0$ a.e. (Af)(x) = -xf'(x). Set $A_E := A|_E$, so A_E generates an exponentially bounded group $(T_E(t)f)(x) = f(e^{-t}x)$. Let

$$\underline{\alpha}_{\mathcal{E}} := -\lim_{t \to \infty} \frac{\log \|T_{\mathcal{E}}(-t)\|}{t}, \quad \overline{\alpha}_{\mathcal{E}} := \lim_{t \to \infty} \frac{\log \|T_{\mathcal{E}}(t)\|}{t}$$

Then ([ADP02])

T_E is strongly continuous if and only if E has order continuous norm.

Generalized Black–Scholes equation on order continuous norm interpolation spaces

Theorem (O.-M., M. Warma)

Let E be a $(L^1 - L^{\infty})$ -interpolation space with order continuous norm and let $n \in \mathbb{N}$ and $\alpha > 0$. Then the following assertions hold.

- If $\overline{\alpha}_E < 1$ and $\alpha \in (n \frac{1}{2}, n + \frac{1}{2})$, then (ACP₀) is well-posed with $B_E = (-1)^{n+1}g_1^{\alpha}(A_E)$.
- If $\underline{\alpha}_E > 0$ and $\alpha \in (n \frac{1}{2}, n + \frac{1}{2})$, then (ACP₀) is well-posed with $B_E = (-1)^{n+1}g_2^{\alpha}(A_E)$.

◎ If $\overline{\alpha}_E < 1$ and $\underline{\alpha}_E > 0$, then (ACP₀) is well-posed with $B_E = g_3^{\alpha}(A_E)$. In any case, identifying u(t, x) = u(t)(x), we obtain that $u \in C^{\infty}((0, \infty) \times (0, \infty))$.

Universidad

- W. Arendt and B. De Pagter, Spectrum and asymptotics of the Black–Scholes partial differential equation in (L^1, L^∞) -interpolation spaces, Pacific J. Math. **202** (2002), no. 1, 1–36.
- W. Arendt and A. Zamboni, *Decomposing and twisting bisectorial operators*, Studia Math. **3** (2010), no. 197, 205–227.
 - B. Baeumer, M. Haase, and M. Kovács, *Unbounded functional calculus for bounded groups with applications*, J. Evol. Equ. **9** (2009), no. 1, 171–195.

The End

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

< □ > < □ > < □ > < □ > < □ >

$$\begin{split} \left(\mathcal{T}_{(-1)^{n+1}g_{1}^{\alpha}(\mathcal{A}_{E})}(w)f \right)(x) &= \frac{1}{2\pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty} \left(\frac{s}{x}\right)^{iu} \\ &= \exp\left(\left(-1\right)^{n+1} w \left(1 - \frac{1}{\alpha \mathbb{B}(1 - iu, \alpha)}\right)^{2} \right) \, duds, \\ \left(\mathcal{T}_{(-1)^{n+1}g_{2}^{\alpha}(\mathcal{A}_{E})}(w)f \right)(x) &= \frac{1}{2\pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty} \left(\frac{s}{x}\right)^{iu+\delta} \\ &= \exp\left(\left(-1\right)^{n+1} w \left(\alpha \mathbb{B}(iu + \delta, \alpha)\right)^{-2} \right) \, duds, \\ \left(\mathcal{T}_{g_{3}^{\alpha}(\mathcal{A}_{E})}(w)f \right)(x) &= \frac{1}{2\pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty} \left(\frac{s}{x}\right)^{iu+\delta} \\ &= \exp\left(\frac{w}{\alpha \mathbb{B}(\delta + iu, \alpha)} \left(1 - \frac{1}{\alpha \mathbb{B}(1 - \delta - iu_{x}, \alpha)} \right) \right) \, duds \end{split}$$

・ロト ・日下・ ・ ヨト・

$$(T_{B_E}(w)f)(x) = \frac{1}{2\pi} \int_0^\infty \frac{f(s)}{s} \int_{-\infty}^\infty \left(\frac{s}{x}\right)^{iu} \exp\left(-wu^2\right) \, duds$$
$$= \frac{1}{\sqrt{4\pi w}} \int_0^\infty \exp\left(-\frac{(\log x - \log s)^2}{4w}\right) \frac{f(s)}{s} \, ds, \qquad x > 0,$$

Jesús Oliva-Maza (Unizar - IUMA)

Generalized Black-Scholes

> < ≣ > ≣ ∽ Q 10/03/2022 27/3

・ロト ・日下・ ・ ヨト・

 We say that a function f is regular at d ∈ {-a, a} if lim_{z→d} f(z) =: c_d ∈ C exists and, for some ε > 0, φ < ω,
 f (z) - c_d
 if (z) - c_d
 if

$$\int_{\partial (BS_{\omega',a} \cap \{|z-d| < \varepsilon\}} \left| \frac{r(z) - c_d}{z - d} \right| |dz| < \infty, \quad \text{for all } \omega' \in \left(\varphi, \frac{\pi}{2}\right).$$

< □ > < 同 > < 三 > <

- We say that a function f is regular at $d \in \{-a, a\}$ if $\lim_{z \to d} f(z) =: c_d \in \mathbb{C}$ exists and, for some $\varepsilon > 0$, $\varphi < \omega$, $\int_{\partial (BS_{\omega',a} \cap \{|z-d| < \varepsilon\}} \left| \frac{f(z) - c_d}{z - d} \right| |dz| < \infty$, for all $\omega' \in \left(\varphi, \frac{\pi}{2}\right)$.
- We say that f is regular at ∞ if lim_{z→∞} f(z) =: c_∞ ∈ C exists and, for some R > 0, φ < ω,</p>

$$\int_{\partial BS_{\omega',a}, |z|>R} \left|\frac{f(z)-c}{z}\right| |dz| < \infty, \quad \text{for all } \omega' \in \left(\varphi, \frac{\pi}{2}\right).$$

- We say that a function f is regular at $d \in \{-a, a\}$ if $\lim_{z \to d} f(z) =: c_d \in \mathbb{C}$ exists and, for some $\varepsilon > 0$, $\varphi < \omega$, $\int_{\partial (BS_{\omega',a} \cap \{|z-d| < \varepsilon\}} \left| \frac{f(z) - c_d}{z - d} \right| |dz| < \infty$, for all $\omega' \in \left(\varphi, \frac{\pi}{2}\right)$.
- We say that f is regular at ∞ if lim_{z→∞} f(z) =: c_∞ ∈ C exists and, for some R > 0, φ < ω,</p>

$$\int_{\partial BS_{\omega',a}, |z|>R} \left|\frac{f(z)-c}{z}\right| |dz| < \infty, \quad \text{for all } \omega' \in \left(\varphi, \frac{\pi}{2}\right).$$

③ We say that f is quasi-regular at $d \in M_A$ if f or 1/f is regular at d.

- 4 個 ト 4 ヨ ト 4 ヨ

- We say that a function f is regular at $d \in \{-a, a\}$ if $\lim_{z \to d} f(z) =: c_d \in \mathbb{C}$ exists and, for some $\varepsilon > 0$, $\varphi < \omega$, $\int_{\partial (BS_{\omega',a} \cap \{|z-d| < \varepsilon\}} \left| \frac{f(z) - c_d}{z - d} \right| |dz| < \infty$, for all $\omega' \in \left(\varphi, \frac{\pi}{2}\right)$.
- We say that f is regular at ∞ if lim_{z→∞} f(z) =: c_∞ ∈ C exists and, for some R > 0, φ < ω,</p>

$$\int_{\partial BS_{\omega',a}, |z|>R} \left|\frac{f(z)-c}{z}\right| |dz| < \infty, \quad \text{for all } \omega' \in \left(\varphi, \frac{\pi}{2}\right).$$

③ We say that f is quasi-regular at $d \in M_A$ if f or 1/f is regular at d.

Proposition

Let $A \in BSect(\omega, a)$, and take $f \in M_A$ to be quasi-regular at M_A . Then

$$\widetilde{\sigma}(f(A)) \subset f(\widetilde{\sigma}(A)).$$

Jesús Oliva-Maza (Unizar - IUMA)

Köthe dual

Theorem above does not hold for a $(L^1 - L^{\infty})$ -interpolation space E which has no order continuous norm. Consider the Köthe dual E^* of E, given by

$$E^{\star} := \left\{ g : (0,\infty) o \mathbb{C} \text{ measurable and}
ight.$$

 $\int_{0}^{\infty} |f(x)g(x)| \ dx < \infty \quad ext{for all } f \in E
ight\}.$

Every $g \in E^*$ defines a bounded (order continuous) linear functional φ_g on E, given by

$$\langle f, \varphi_g \rangle_{E,E^\star} := \int_0^\infty f(x)g(x) \, dx$$
 for all $f \in E$.

Jesús Oliva-Maza (Unizar - IUMA)

10/03/2022

29/31

Next, consider the following abstract Cauchy problem:

$$\begin{cases} u \in C^{1}((0,\infty); E), & u(t) \in \mathcal{D}(B_{E}), \quad t > 0, \\ u'(t) = B_{E}u(t), & t > 0, \\ \lim_{t \downarrow 0} \langle u(t), \varphi \rangle_{E,E^{\star}} = \langle f, \varphi \rangle_{E,E^{\star}}, \quad f \in E \text{ and for all } \varphi \in E^{\star}. \end{cases}$$
(ACP₁)

Again, we say that (ACP_1) is well-posed if, for any $f \in E$, there exists a unique u which is solution of (ACP_1) .

Generalized Black–Scholes equation on arbitrary interpolation spaces

Theorem (O.-M., M. Warma)

Let E be a $(L^1 - L^{\infty})$ -interpolation space and let $n \in \mathbb{N}$ and $\alpha > 0$. Then the following assertions hold.

- If $\overline{\alpha}_E < 1$ and if $\alpha \in (n \frac{1}{2}, n + \frac{1}{2})$, then (ACP₁) is well-posed with $B_E = (-1)^{n+1}g_1^{\alpha}(A_E)$.
- If $\underline{\alpha}_E > 0$ and if $\alpha \in (n \frac{1}{2}, n + \frac{1}{2})$, then (ACP₁) is well-posed with $B_E = (-1)^{n+1}g_2^{\alpha}(A_E)$.

③ If $\overline{\alpha}_E < 1$ and $\underline{\alpha}_E > 0$, then (ACP₁) is well-posed with $B_E = g_3^{\alpha}(A_E)$. In any case, identifying u(t, x) = u(t)(x), we obtain that $u \in C^{\infty}((0, \infty) \times (0, \infty))$.

(日) (同) (三) (三)

Universidad Zaragoza