Generalized Black-Scholes PDEs by bisectorial operators

Jesús Oliva-Maza

Universidad de Zaragoza
Instituto Universitario de investigación en Matemáticas y Aplicaciones
XVII Encuentro de la Red de Análisis Funcional y Aplicaciones
joliva@unizar.es
Joint work with M. Warma
10/03/2022
"N." Universidad
III Zaragoza

Black Scholes equation

The Black-Scholes equation is a degenerate parabolic PDE, given by

$$
\begin{equation*}
u_{t}=x^{2} u_{x x}+x u_{x}=B u, \quad t, x>0 \tag{BS}
\end{equation*}
$$

where $(B f)(x)=x^{2} f^{\prime \prime}(x)+x f^{\prime}(x)$. (BS) is used in mathematical finance for the modelling of the price of European-style options.
$\overline{7 N}$ Universidad
III Zaragoza

C_{0}-semigroups on a complex Banach space I

Definition (C_{0}-semigroup of operators)

A family $T=(T(t))_{t \in \mathbb{R}^{+}}$in $\mathcal{B}(X)$ is called a semigroup if the following properties are satisfied:
(1) $T(0)=1_{X}$, the identity operator on X.
(2) $T(t+s)=T(t) T(s)$, for every $t, s \in \mathbb{R}^{+}$.

We will say that T is a C_{0}-semigroup (or strongly continuous) if in addition, it holds that
(3) $\lim _{t \rightarrow 0}\|T(t) x-x\|=0$, for all $x \in X$.

C_{0}-semigroups on a complex Banach space II

Definition (Infinitesimal generator)

Let $(T(t))_{t \in \mathbb{R}^{+}}$be a semigroup of operators. Then, we set the infinitesimal generator $\Lambda: \mathcal{D}(\Lambda) \rightarrow X$,

$$
\Lambda x:=\lim _{\varepsilon \rightarrow 0} \frac{T(\varepsilon) x-x}{\varepsilon} .
$$

where $\mathcal{D}(\Lambda):=\{x \in X \mid$ limit above exists $\}$.
$\overline{\text { "In }}$ Universidad
III Zaragoza

C_{0}-semigroups on a complex Banach space II

Definition (Infinitesimal generator)

Let $(T(t))_{t \in \mathbb{R}^{+}}$be a semigroup of operators. Then, we set the infinitesimal generator $\Lambda: \mathcal{D}(\Lambda) \rightarrow X$,

$$
\Lambda x:=\lim _{\varepsilon \rightarrow 0} \frac{T(\varepsilon) x-x}{\varepsilon}
$$

where $\mathcal{D}(\Lambda):=\{x \in X \mid$ limit above exists $\}$.
One has that

$$
T(t) x \rightarrow x \text { as } t \rightarrow 0 \Longleftrightarrow x \in \overline{\mathcal{D}(\Lambda)}
$$

So T is strongly continuous if and only if $\overline{\mathcal{D}(\Lambda)}=X$.

Abstract Cauchy problem

Let B be a closed operator on a Banach space X, and consider the following abstract Cauchy problem:

$$
\begin{cases}u \in C^{1}((0, \infty) ; X), \quad u(t) \in \mathcal{D}(B), \quad t>0 \tag{0}\\ u^{\prime}(t)=B u(t), & t>0 \\ \lim _{t \downarrow 0} u(t)=f \in X, & \end{cases}
$$

We say that the Cauchy problem $\left(A C P_{0}\right)$ is well-posed if for for any $f \in X$, there exists a unique solution u.

퓨N Universidad
III Zaragoza

Abstract Cauchy problem

Let B be a closed operator on a Banach space X, and consider the following abstract Cauchy problem:

$$
\begin{cases}u \in C^{1}((0, \infty) ; X), \quad u(t) \in \mathcal{D}(B), \quad t>0 \tag{0}\\ u^{\prime}(t)=B u(t), & t>0 \\ \lim _{t \downarrow 0} u(t)=f \in X, & \end{cases}
$$

We say that the Cauchy problem $\left(A C P_{0}\right)$ is well-posed if for for any $f \in X$, there exists a unique solution u.

Theorem

The abstract Cauchy problem $A C P_{0}$ is well-posed if and only if B is the infinitesimal generator of a C_{0}-semigroup T. In that case, the solution is given by $u(t)=T(t) f$.

Black Scholes equation

Recall the Black-Scholes equation given by

$$
\begin{equation*}
u_{t}=x^{2} u_{x x}+x u_{x}=B u, \quad t, x>0 \tag{BS}
\end{equation*}
$$

Black Scholes equation

Recall the Black-Scholes equation given by

$$
\begin{equation*}
u_{t}=x^{2} u_{x x}+x u_{x}=B u, \quad t, x>0 \tag{BS}
\end{equation*}
$$

In [ADP02], (BS) is studied in order continuous norm $\left(L^{1}-L^{\infty}\right)$-interpolation spaces on $(0, \infty)$ by means of the relation

$$
B=A^{2}, \quad(A f)(x)=-x f^{\prime}(x), \quad x>0
$$

Black Scholes equation

Recall the Black-Scholes equation given by

$$
\begin{equation*}
u_{t}=x^{2} u_{x x}+x u_{x}=B u, \quad t, x>0 \tag{BS}
\end{equation*}
$$

In [ADP02], (BS) is studied in order continuous norm $\left(L^{1}-L^{\infty}\right)$-interpolation spaces on $(0, \infty)$ by means of the relation

$$
B=A^{2}, \quad(A f)(x)=-x f^{\prime}(x), \quad x>0
$$

where A generates the C_{0}-group $(T(t) f)(x)=f\left(e^{-t} x\right), \quad x>0, t \in \mathbb{R}$.

Black Scholes equation

Recall the Black-Scholes equation given by

$$
\begin{equation*}
u_{t}=x^{2} u_{x x}+x u_{x}=B u, \quad t, x>0 \tag{BS}
\end{equation*}
$$

In [ADP02], (BS) is studied in order continuous norm $\left(L^{1}-L^{\infty}\right)$-interpolation spaces on $(0, \infty)$ by means of the relation

$$
B=A^{2}, \quad(A f)(x)=-x f^{\prime}(x), \quad x>0
$$

where A generates the C_{0}-group $(T(t) f)(x)=f\left(e^{-t} x\right), \quad x>0, t \in \mathbb{R}$.

Proposition

If A generates a C_{0}-group, then A^{2} generates a C_{0}-semigroup.

Generalized Cesàro operator \mathcal{C}

For $\alpha>0$, one can define the generalized Cesàro operator $\mathcal{C}_{\alpha}, \mathcal{C}_{\alpha}^{*}$,

$$
\begin{aligned}
& \left(\mathcal{C}_{\alpha} f\right)(x):=\frac{\alpha}{x^{\alpha}} \int_{0}^{x}(x-y)^{\alpha-1} f(y) d y, \quad x>0 \\
& \left(\mathcal{C}_{\alpha}^{*} f\right)(x):=\alpha \int_{x}^{\infty} \frac{(x-y)^{\alpha-1}}{y^{\alpha}} f(y) d y, \quad x>0
\end{aligned}
$$

Generalized Cesàro operator \mathcal{C}

For $\alpha>0$, one can define the generalized Cesàro operator $\mathcal{C}_{\alpha}, \mathcal{C}_{\alpha}^{*}$,

$$
\begin{array}{ll}
\left(\mathcal{C}_{\alpha} f\right)(x):=\frac{\alpha}{x^{\alpha}} \int_{0}^{x}(x-y)^{\alpha-1} f(y) d y, & x>0 \\
\left(\mathcal{C}_{\alpha}^{*} f\right)(x):=\alpha \int_{x}^{\infty} \frac{(x-y)^{\alpha-1}}{y^{\alpha}} f(y) d y, \quad x>0
\end{array}
$$

If $\alpha=1$, one obtains the classical Cesàro operator \mathcal{C}_{1} and its adjoint \mathcal{C}_{1}^{*}

$$
\left(\mathcal{C}_{1} f\right)(x)=\frac{1}{x} \int_{0}^{x} f(y) d y, \quad\left(\mathcal{C}_{1}^{*} f\right)(x)=\int_{x}^{\infty} \frac{f(y)}{y} d y, \quad x>0
$$

Generalized Black-Scholes equations

The Black-Scholes operators satisfies that

$$
B=\left(1-\mathcal{C}_{1}^{-1}\right)^{2}=\left(\mathcal{C}_{1}^{*}\right)^{-2}=\left(\mathcal{C}_{1}^{*}\right)^{-1}\left(1-\mathcal{C}_{1}^{-1}\right)
$$

Generalized Black-Scholes equations

The Black-Scholes operators satisfies that

$$
B=\left(1-\mathcal{C}_{1}^{-1}\right)^{2}=\left(\mathcal{C}_{1}^{*}\right)^{-2}=\left(\mathcal{C}_{1}^{*}\right)^{-1}\left(1-\mathcal{C}_{1}^{-1}\right)
$$

With an arbitrary $\alpha>0$, one obtains the following PDEs

$$
\begin{aligned}
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{\alpha} D^{\alpha}\left(x^{\alpha} u\right)\right)-\frac{2}{\Gamma(\alpha+1)} D^{\alpha}\left(x^{\alpha} u\right)+u \\
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} x^{\alpha} W^{\alpha}\left(x^{\alpha} W^{\alpha} u\right) \\
& u_{t}=-\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{2 \alpha} W^{\alpha} u\right)+\frac{1}{\Gamma(\alpha+1)} x^{\alpha} W^{\alpha} u
\end{aligned}
$$

where D^{α} and W^{α} stand for the Riemann-Liouville and Weyl fractional derivatives of order α, respectively.

Bisectorial operators

Next, for any $\omega \in(0, \pi / 2]$ and $a \geq 0$ a real number, we set

$$
B S_{\omega, a}:= \begin{cases}\left(-a+S_{\pi-\omega}\right) \cap\left(a-S_{\pi-\omega}\right) & \text { if } \omega<\pi / 2 \text { or } a>0 \\ i \mathbb{R} & \text { if } \omega=\pi / 2 \text { and } a=0 .\end{cases}
$$

$\overline{7 i n}$ Universidad
III Zaragoza

Bisectorial operators

Definition

Let $\omega \in(o, \pi / 2]$, $a \geq 0, A \in \mathcal{C}(X)$. A is a bisectorial operator $\in \operatorname{BSect}(\omega, a)$ if:

- $\sigma(A) \subset \overline{B S_{\omega, a}}$.
- Fix any $\omega^{\prime} \in(0, \omega)$. Then

$$
\|R(\lambda, A)\|_{\mathcal{B}(X)} \leq \frac{K_{\omega^{\prime}}}{\min \{|\lambda-a|,|\lambda+a|\}} \quad \lambda \notin \overline{B S_{\omega^{\prime}, a}}
$$

for some $K_{\omega^{\prime}}>0$.

Natural functional calculus of bisectorial operators I

Idea: For $A \in \operatorname{BSect}(\omega, a)$ set

$$
\begin{gathered}
\mathcal{E}(A):=\left\{f \in H^{\infty}\left(B S_{\varphi, a}\right): \int_{\Gamma}\left|\frac{f(z)}{\min \{|\lambda-a|,|\lambda+a|\}}\right||d z|<\infty, \varphi<\omega\right. \\
\text { and some extra properties... }\}
\end{gathered}
$$

Natural functional calculus of bisectorial operators I

Idea: For $A \in \operatorname{BSect}(\omega, a)$ set

$$
\begin{gathered}
\mathcal{E}(A):=\left\{f \in H^{\infty}\left(B S_{\varphi, a}\right): \int_{\Gamma}\left|\frac{f(z)}{\min \{|\lambda-a|,|\lambda+a|\}}\right||d z|<\infty, \varphi<\omega\right. \\
\text { and some extra properties... }\}
\end{gathered}
$$

and set

$$
f(A):=\frac{1}{2 \pi i} \int_{\Gamma} f(z) R(z, A) d z \in \mathcal{B}(X), \quad f \in \mathcal{E}(A)
$$

Natural functional calculus of bisectorial operators II

Definition

Let $A \in \operatorname{BSect}(\omega, a)$ and $\varphi<\omega$. Let $f \in \mathcal{M}\left(B S_{\varphi, a}\right)$ be such that there exists $e \in \mathcal{E}(A)$ for which
(1) ef $\in \mathcal{E}(A)$.
(2) $e(A)$ is injective.

Then we say that f is regularizable, $f \in \mathcal{M}(A)$ and set

$$
f(A):=e(A)^{-1}(e f)(A)
$$

Generalized Black-Scholes through functional calculus

The generalized Black-Scholes equations

$$
\begin{aligned}
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{\alpha} D^{\alpha}\left(x^{\alpha} u\right)\right)-\frac{2}{\Gamma(\alpha+1)} D^{\alpha}\left(x^{\alpha} u\right)+u, \\
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} x^{\alpha} W^{\alpha}\left(x^{\alpha} W^{\alpha} u\right), \\
& u_{t}=-\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{2 \alpha} W^{\alpha} u\right)+\frac{1}{\Gamma(\alpha+1)} x^{\alpha} W^{\alpha} u
\end{aligned}
$$

Tin Universidad
III Zaragoza

Generalized Black-Scholes through functional calculus

The generalized Black-Scholes equations

$$
\begin{aligned}
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{\alpha} D^{\alpha}\left(x^{\alpha} u\right)\right)-\frac{2}{\Gamma(\alpha+1)} D^{\alpha}\left(x^{\alpha} u\right)+u \\
& u_{t}=\frac{1}{\Gamma(\alpha+1)^{2}} x^{\alpha} W^{\alpha}\left(x^{\alpha} W^{\alpha} u\right) \\
& u_{t}=-\frac{1}{\Gamma(\alpha+1)^{2}} D^{\alpha}\left(x^{2 \alpha} W^{\alpha} u\right)+\frac{1}{\Gamma(\alpha+1)} x^{\alpha} W^{\alpha} u
\end{aligned}
$$

can be respectively written as

$$
\begin{aligned}
& u_{t}=\left(1-(\alpha \mathbb{B}(I-A, \alpha))^{-1}\right)^{2} u:=g_{1}^{\alpha}(A) u, \\
& u_{t}=(\alpha \mathbb{B}(A, \alpha))^{-2} u:=g_{2}^{\alpha}(A) u, \\
& u_{t}=(\alpha \mathbb{B}(A, \alpha))^{-1}\left(1-(\alpha \mathbb{B}(I-A, \alpha))^{-1}\right) u:=g_{3}^{\alpha}(A) u,
\end{aligned}
$$

where \mathbb{B} denotes the Beta-Euler function.
$\overline{\text { in }}$ Universidad ill Zaragoza

Holomorphic semigroups

For $\varphi \in(0, \pi)$, set the sector $S_{\varphi}:=\{z \in \mathbb{C}:|\arg (z)|<\varphi\}$, and $S_{0}:=(0, \infty)$.

Definition

Let $\delta \in(0, \pi / 2]$. A mapping $T: S_{\delta} \rightarrow \mathcal{B}(X)$ is called an exponentially bounded holomorphic semigroup (of angle δ):
(1) $T(z) T\left(z^{\prime}\right)=T\left(z+z^{\prime}\right)$ for all $z, z^{\prime} \in S_{\delta}$.
(2) $T: S_{\delta} \rightarrow \mathcal{B}(X)$ is holomorphic.
(3) For each $\delta^{\prime} \in(0, \delta)$,

$$
\|T(w)\|_{\mathcal{B}(X)} \leq M_{\delta^{\prime}} e^{\rho_{\delta^{\prime}} \Re w}, \quad w \in S_{\delta^{\prime}} .
$$

Holomorphic semigroups

For $\varphi \in(0, \pi)$, set the sector $S_{\varphi}:=\{z \in \mathbb{C}:|\arg (z)|<\varphi\}$, and $S_{0}:=(0, \infty)$.

Definition

Let $\delta \in(0, \pi / 2]$. A mapping $T: S_{\delta} \rightarrow \mathcal{B}(X)$ is called an exponentially bounded holomorphic semigroup (of angle δ):
(1) $T(z) T\left(z^{\prime}\right)=T\left(z+z^{\prime}\right)$ for all $z, z^{\prime} \in S_{\delta}$.
(2) $T: S_{\delta} \rightarrow \mathcal{B}(X)$ is holomorphic.
(3) For each $\delta^{\prime} \in(0, \delta)$,

$$
\|T(w)\|_{\mathcal{B}(X)} \leq M_{\delta^{\prime}} e^{\rho_{\delta^{\prime}} \Re w}, \quad w \in S_{\delta^{\prime}} .
$$

If $\rho_{\delta^{\prime}}=0$, then T is a bounded holomorphic semigroup.

Sectorial operators

Let $B \in \mathcal{C}(X)$
with domain $\mathcal{D}(B)$ is said to be a sectorial operator (of angle φ) if
$\sup \|\lambda R(\lambda, A)\|<\infty$

Sectorial operators

Let $B \in \mathcal{C}(X)$
with domain $\mathcal{D}(B)$ is said to be a sectorial operator (of angle φ) if
(1) $\sigma(B) \subset \overline{S_{\varphi}}$ for some $\varphi \in[0, \pi)$.

Sectorial operators

Let $B \in \mathcal{C}(X)$
with domain $\mathcal{D}(B)$ is said to be a sectorial operator (of angle φ) if
(1) $\sigma(B) \subset \overline{S_{\varphi}}$ for some $\varphi \in[0, \pi)$.
$\sup \|\lambda R(\lambda, A)\|<\infty$
(2) Fix $\varphi^{\prime} \in(\varphi, \pi)$. Then
$\|R(\lambda, B)\|_{\mathcal{B}(X)} \leq \frac{K_{\varphi^{\prime}}}{\lambda}, \quad \lambda \in \mathbb{C} \backslash S_{\varphi^{\prime}}$,
for some $K_{\varphi^{\prime}}>0$.

Holomorphic semigroups and sectorial operators

Theorem
 A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.

Holomorphic semigroups and sectorial operators

Theorem
 A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.

Holomorphic semigroups and sectorial operators

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.
(1) Let $\alpha \in \mathbb{R}^{+} \backslash\{1,3,5, \ldots\}$. If A generates a bounded group, then $(-1)^{n} A^{\alpha}$ is a quasi-sectorial operator of angle $|\alpha-2 n| \frac{\pi}{2}$ for $\alpha \in(2 n-1,2 n+1)$ ([BHK09]).

Holomorphic semigroups and sectorial operators

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.
(1) Let $\alpha \in \mathbb{R}^{+} \backslash\{1,3,5, \ldots\}$. If A generates a bounded group, then $(-1)^{n} A^{\alpha}$ is a quasi-sectorial operator of angle $|\alpha-2 n| \frac{\pi}{2}$ for $\alpha \in(2 n-1,2 n+1)$ ([BHK09]).
(2) (Scaling property) If A is a sectorial operator of angle β, then A^{α} is a sectorial operator of angle $\alpha \beta$ for $\alpha \in\left(0, \frac{\pi}{\beta}\right)$.

Holomorphic semigroups and sectorial operators

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.
(1) Let $\alpha \in \mathbb{R}^{+} \backslash\{1,3,5, \ldots\}$. If A generates a bounded group, then $(-1)^{n} A^{\alpha}$ is a quasi-sectorial operator of angle $|\alpha-2 n| \frac{\pi}{2}$ for $\alpha \in(2 n-1,2 n+1)$ ([BHK09]).
(2) (Scaling property) If A is a sectorial operator of angle β, then A^{α} is a sectorial operator of angle $\alpha \beta$ for $\alpha \in\left(0, \frac{\pi}{\beta}\right)$.
(3) If A is a bisectorial operator, then A^{2} is a sectorial operator ([AZ10]).

Holomorphic semigroups and sectorial operators

Theorem

A closed operator A generates a bounded holomorphic semigroup of angle $\delta \in(0, \pi / 2]$ if and only if $-A$ is a sectorial operator of angle $\frac{\pi}{2}-\delta$.
(1) Let $\alpha \in \mathbb{R}^{+} \backslash\{1,3,5, \ldots\}$. If A generates a bounded group, then $(-1)^{n} A^{\alpha}$ is a quasi-sectorial operator of angle $|\alpha-2 n| \frac{\pi}{2}$ for $\alpha \in(2 n-1,2 n+1)$ ([BHK09]).
(2) (Scaling property) If A is a sectorial operator of angle β, then A^{α} is a sectorial operator of angle $\alpha \beta$ for $\alpha \in\left(0, \frac{\pi}{\beta}\right)$.
(3) If A is a bisectorial operator, then A^{2} is a sectorial operator ([AZ10]).

The functions above satisfy that

$$
g_{i}^{\alpha}(z) \sim\left\{\begin{array}{ll}
(-z)^{2 \alpha} & \text { if } i=1, \\
z^{2 \alpha} & \text { if } i=2, \\
z^{\alpha}(-z)^{\alpha} & \text { if } i=3,
\end{array} \quad \text { as } z \rightarrow \infty .\right.
$$

Inin
III
Zaragoza

Idea of the method

Spectral properties are good enough, so the generalized Black-Scholes operators may be sectorial. We need to uniformly bound their resolvent.

Sketch of the problem: $\int_{0}^{\infty} \frac{1}{1+s} \frac{\lambda}{\lambda+s^{\alpha}} d s$ is not uniformly bounded as $\lambda \rightarrow \infty$.

Idea: $\left\|\frac{\lambda^{\prime}}{\lambda^{\prime}+A}\right\|=\left\|\lambda^{\prime} R\left(\lambda^{\prime},-A\right)\right\|$ is uniformly bounded since A is bisectorial. Then, try, to uniformly bound

$\left\|\lambda^{\prime} R\left(\lambda^{\prime},-A\right)\right\|+\int_{0}^{\infty} \frac{1}{1+s}\left(\frac{\lambda}{\lambda+s^{\alpha}}-\frac{\lambda^{\prime}}{\lambda^{\prime}+s}\right) d s$.

NN Universidad
III Zaragoza

Key tool

We say that $\left(f^{\lambda}\right)_{\lambda \notin \overline{S_{\beta}}} \subset \mathcal{M}\left[B S_{\omega, a}\right]_{A}$ make $\left(\frac{\lambda}{\lambda-g(z)}\right)_{\lambda \notin \overline{S_{\beta}}} \varepsilon$-uniformly bounded at $d \in M_{A}=\{-a, a, \infty\} \cap \tilde{\sigma}(A)$ if, for any $\varepsilon \in(0, \pi-\beta)$,
(1) $\left|f^{\lambda}(z)\right|$ is uniformly bounded for all $z \in \mathcal{D}\left(f^{\lambda}\right)$ and $\lambda \notin \overline{S_{\beta+\varepsilon}}$.
(2) $\left\|f^{\lambda}(A)\right\|_{\mathcal{B}(X)}$ is uniformly bounded for all $\lambda \notin \overline{S_{\beta+\varepsilon}}$.
(3) There exists a neighbourhood Ω_{d} containing d for which

$$
\sup _{\lambda \notin \bar{S}_{\beta+\varepsilon}} \int_{\Gamma \cap \Omega_{d}}\left|h_{g}^{\lambda}(z)-f^{\lambda}(z)\right|\|R(z, A)\|_{\mathcal{B}(X)}|d z|<\infty .
$$

(9) There exists a neighborhood $\Omega_{d^{\prime}}$ containing each $d^{\prime} \in M_{A} \backslash\{d\}$ for which

$$
\sup _{\lambda \notin \overline{S_{\beta+\varepsilon}}} \int_{\Gamma \cap \Omega_{d^{\prime}}}\left|f^{\lambda}(z)\right|\|R(z, A)\|_{\mathcal{B}(X)}|d z|<\infty \quad \text { for each } d^{\prime} \in M \backslash\{d\} .
$$

Exactly polynomially behaviour

Let $A \in \operatorname{BSect}(\omega, a), f \in \mathcal{M}(A)$. We say that f has exactly polynomial limits at $d \in \overline{\mathcal{D}(f)}$ if

$$
\begin{aligned}
& |f(z)| \sim|z-d|^{\alpha}, \quad \text { as } z \rightarrow d, d \neq \infty, \\
& |f(z)| \sim|z|^{\alpha}, \quad \text { as } z \rightarrow \infty, d=\infty
\end{aligned}
$$

for some $\alpha \in \mathbb{R}$.
"NㅔN Universidad
III Zaragoza

Main result

Theorem (O.-M., M. Warma)
 Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If
(1) For any $\varepsilon>0$, one can find $\varphi \in(0, \omega)$ for which $g\left(B S_{\varphi, a}\right) \subset \overline{S_{\beta+\varepsilon}} \cup\{\infty\}$.
"N" Universidad
III Zaragoza

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If
(1) For any $\varepsilon>0$, one can find $\varphi \in(0, \omega)$ for which $g\left(B S_{\varphi, a}\right) \subset \overline{S_{\beta+\varepsilon}} \cup\{\infty\}$.
(2) g is quasi-regular at $M_{A}=\{-a, a, \infty\} \cap \tilde{\sigma}(A)$.

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If
(1) For any $\varepsilon>0$, one can find $\varphi \in(0, \omega)$ for which

$$
g\left(B S_{\varphi, a}\right) \subset \overline{S_{\beta+\varepsilon}} \cup\{\infty\}
$$

(2) g is quasi-regular at $M_{A}=\{-a, a, \infty\} \cap \widetilde{\sigma}(A)$.
(3) g has exactly polynomial limits at $M_{A} \cap g^{-1}(\{0, \infty\})$.

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If
(1) For any $\varepsilon>0$, one can find $\varphi \in(0, \omega)$ for which

$$
g\left(B S_{\varphi, a}\right) \subset \overline{S_{\beta+\varepsilon}} \cup\{\infty\}
$$

(2) g is quasi-regular at $M_{A}=\{-a, a, \infty\} \cap \tilde{\sigma}(A)$.
(3) g has exactly polynomial limits at $M_{A} \cap g^{-1}(\{0, \infty\})$.

Then, $g(A)$ is a sectorial operator of angle β.

Main result

Theorem (O.-M., M. Warma)

Let $\omega \in(0, \pi / 2], a \geq 0$ and $\beta \in[0, \pi)$. Let $A \in \operatorname{BSect}(\omega, a) g \in \mathcal{M}(A)$. If
(1) For any $\varepsilon>0$, one can find $\varphi \in(0, \omega)$ for which $g\left(B S_{\varphi, a}\right) \subset \overline{S_{\beta+\varepsilon}} \cup\{\infty\}$.
(2) g is quasi-regular at $M_{A}=\{-a, a, \infty\} \cap \tilde{\sigma}(A)$.
(3) g has exactly polynomial limits at $M_{A} \cap g^{-1}(\{0, \infty\})$.

Then, $g(A)$ is a sectorial operator of angle β.

Corollary (O.-M., M. Warma)

Let $a \geq 0, A \in \operatorname{BSect}(\pi / 2, a)$, and let $\alpha \in \mathbb{R}^{+} \backslash\{1,3,5, \ldots\}$. Then
$(-1)^{n}(A+a l)^{\alpha}$ is quasi-sectorial operator of angle $\pi\left|\frac{\alpha}{2}-n\right|$ for $\alpha \in(2 n-1,2 n+1)$.

Domain properties

Proposition (O.-M., M. Warma)

Let A, g be as above. If $g^{-1}(\infty) \cap M_{A}=\emptyset$, then $\overline{\mathcal{D}(g(A))}=X$. Otherwise,

$$
\overline{\mathcal{D}(g(A))}=\bigcap_{d \in g^{-1}(\infty) \cap M_{A}} \overline{\mathcal{R}(d l-A)},
$$

where $\mathcal{R}(\infty-A):=\mathcal{D}(A)$.

Tin Universidad
III Zaragoza

Domain properties

Proposition (O.-M., M. Warma)

Let A, g be as above. If $g^{-1}(\infty) \cap M_{A}=\emptyset$, then $\overline{\mathcal{D}(g(A))}=X$. Otherwise,

$$
\overline{\mathcal{D}(g(A))}=\bigcap_{d \in g^{-1}(\infty) \cap M_{A}} \overline{\mathcal{R}(d I-A)},
$$

where $\mathcal{R}(\infty-A):=\mathcal{D}(A)$.

Theorem (O.-M., M. Warma)

Let β, A, g be as above with $\beta \in\left(0, \frac{\pi}{2}\right)$, so $-g(A)$ generates a holomorphic semigroup T_{g} of angle $\frac{\pi}{2}-\beta$. Then, for any $w \in S_{\pi / 2-\beta}$, we have that $\exp _{-w} \circ g \in \mathcal{M}_{A}$ and

$$
T_{g}(w)=\left(\exp _{-w} \circ g\right)(A)
$$

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space. E is said to have an order continuous norm if $\left\|f_{n}\right\|_{E} \rightarrow 0$ for every sequence of functions $E \supset\left|f_{n}\right| \downarrow 0$ a.e.

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space. E is said to have an order continuous norm if $\left\|f_{n}\right\|_{E} \rightarrow 0$ for every sequence of functions $E \supset\left|f_{n}\right| \downarrow 0$ a.e.
$(A f)(x)=-x f^{\prime}(x)$. Set $A_{E}:=\left.A\right|_{E}$, so A_{E} generates an exponentially bounded group $\left(T_{E}(t) f\right)(x)=f\left(e^{-t} x\right)$.

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space. E is said to have an order continuous norm if $\left\|f_{n}\right\|_{E} \rightarrow 0$ for every sequence of functions $E \supset\left|f_{n}\right| \downarrow 0$ a.e.
$(A f)(x)=-x f^{\prime}(x)$. Set $A_{E}:=\left.A\right|_{E}$, so A_{E} generates an exponentially bounded group $\left(T_{E}(t) f\right)(x)=f\left(e^{-t} x\right)$. Let

$$
\underline{\alpha}_{E}:=-\lim _{t \rightarrow \infty} \frac{\log \left\|T_{E}(-t)\right\|}{t}, \quad \bar{\alpha}_{E}:=\lim _{t \rightarrow \infty} \frac{\log \left\|T_{E}(t)\right\|}{t} .
$$

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space. E is said to have an order continuous norm if $\left\|f_{n}\right\|_{E} \rightarrow 0$ for every sequence of functions $E \supset\left|f_{n}\right| \downarrow 0$ a.e.
$(A f)(x)=-x f^{\prime}(x)$. Set $A_{E}:=\left.A\right|_{E}$, so A_{E} generates an exponentially bounded group $\left(T_{E}(t) f\right)(x)=f\left(e^{-t} x\right)$. Let

$$
\underline{\alpha}_{E}:=-\lim _{t \rightarrow \infty} \frac{\log \left\|T_{E}(-t)\right\|}{t}, \quad \bar{\alpha}_{E}:=\lim _{t \rightarrow \infty} \frac{\log \left\|T_{E}(t)\right\|}{t} .
$$

Then ([ADP02])
(1) $\sigma\left(A_{E}\right)=\left\{\lambda \mid \underline{\alpha}_{E} \leq \Re \lambda \leq \bar{\alpha}_{E}\right\}$.
(2) T_{E} is strongly continuous if and only if E has order continuous norm.

Generalized Black-Scholes equation on order continuous norm interpolation spaces

Theorem (O.-M., M. Warma)

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space with order continuous norm and let $n \in \mathbb{N}$ and $\alpha>0$. Then the following assertions hold.
(1) If $\bar{\alpha}_{E}<1$ and $\alpha \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, then $\left(A C P_{0}\right)$ is well-posed with

$$
B_{E}=(-1)^{n+1} g_{1}^{\alpha}\left(A_{E}\right)
$$

(2) If $\underline{\alpha}_{E}>0$ and $\alpha \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, then $\left(A C P_{0}\right)$ is well-posed with

$$
B_{E}=(-1)^{n+1} g_{2}^{\alpha}\left(A_{E}\right)
$$

(3) If $\bar{\alpha}_{E}<1$ and $\underline{\alpha}_{E}>0$, then $\left(A C P_{0}\right)$ is well-posed with $B_{E}=g_{3}^{\alpha}\left(A_{E}\right)$. In any case, identifying $u(t, x)=u(t)(x)$, we obtain that $u \in C^{\infty}((0, \infty) \times(0, \infty))$.

References I

宣
W. Arendt and B. De Pagter, Spectrum and asymptotics of the Black-Scholes partial differential equation in $\left(L^{1}, L^{\infty}\right)$-interpolation spaces, Pacific J. Math. 202 (2002), no. 1, 1-36.

园
W. Arendt and A. Zamboni, Decomposing and twisting bisectorial operators, Studia Math. 3 (2010), no. 197, 205-227.
B. Baeumer, M. Haase, and M. Kovács, Unbounded functional calculus for bounded groups with applications, J. Evol. Equ. 9 (2009), no. 1, 171-195.

The End

Explicit solutions

$$
\begin{aligned}
&\left(T_{(-1)^{n+1} g_{1}^{\alpha}\left(A_{E}\right)}(w) f\right)(x)= \frac{1}{2 \pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty}\left(\frac{s}{x}\right)^{i u} \\
& \exp \left((-1)^{n+1} w\left(1-\frac{1}{\alpha \mathbb{B}(1-i u, \alpha)}\right)^{2}\right) d u d s, \\
&\left(T_{(-1)^{n+1} g_{2}^{\alpha}\left(A_{E}\right)}(w) f\right)(x)= \frac{1}{2 \pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty}\left(\frac{s}{x}\right)^{i u+\delta} \\
& \exp \left((-1)^{n+1} w(\alpha \mathbb{B}(i u+\delta, \alpha))^{-2}\right) d u d s, \\
&\left(T_{g_{3}^{\alpha}\left(A_{E}\right)}(w) f\right)(x)= \frac{1}{2 \pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty}\left(\frac{s}{x}\right)^{i u+\delta} \\
& \exp \left(\frac{w}{\alpha \mathbb{B}(\delta+i u, \alpha)}\left(1-\frac{1}{\alpha \mathbb{B}\left(1-\delta-i u x_{\text {in }} \alpha\right)}\right)\right) d u \\
& \text { Univerdiad }
\end{aligned}
$$

Classical Black-Scholes

$$
\begin{aligned}
\left(T_{B_{E}}(w) f\right)(x) & =\frac{1}{2 \pi} \int_{0}^{\infty} \frac{f(s)}{s} \int_{-\infty}^{\infty}\left(\frac{s}{x}\right)^{i u} \exp \left(-w u^{2}\right) d u d s \\
& =\frac{1}{\sqrt{4 \pi w}} \int_{0}^{\infty} \exp \left(-\frac{(\log x-\log s)^{2}}{4 w}\right) \frac{f(s)}{s} d s, \quad x>0
\end{aligned}
$$

Regularity conditions and spectral inclusion

(1) We say that a function f is regular at $d \in\{-a, a\}$ if $\lim _{z \rightarrow d} f(z)=: c_{d} \in \mathbb{C}$ exists and, for some $\varepsilon>0, \varphi<\omega$,

$$
\int_{\partial\left(B S_{\omega^{\prime}, a} \cap\{|z-d|<\varepsilon\}\right.}\left|\frac{f(z)-c_{d}}{z-d}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

Regularity conditions and spectral inclusion

(1) We say that a function f is regular at $d \in\{-a, a\}$ if $\lim _{z \rightarrow d} f(z)=: c_{d} \in \mathbb{C}$ exists and, for some $\varepsilon>0, \varphi<\omega$,

$$
\int_{\partial\left(B S_{\omega^{\prime}, \AA} \cap\{|z-d|<\varepsilon\}\right.}\left|\frac{f(z)-c_{d}}{z-d}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

(2) We say that f is regular at ∞ if $\lim _{z \rightarrow \infty} f(z)=: c_{\infty} \in \mathbb{C}$ exists and, for some $R>0, \varphi<\omega$,

$$
\int_{\partial B S_{\omega^{\prime}, a},|z|>R}\left|\frac{f(z)-c}{z}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

Regularity conditions and spectral inclusion

(1) We say that a function f is regular at $d \in\{-a, a\}$ if $\lim _{z \rightarrow d} f(z)=: c_{d} \in \mathbb{C}$ exists and, for some $\varepsilon>0, \varphi<\omega$,

$$
\int_{\partial\left(B S_{\omega^{\prime}, \AA} \cap\{|z-d|<\varepsilon\}\right.}\left|\frac{f(z)-c_{d}}{z-d}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

(2) We say that f is regular at ∞ if $\lim _{z \rightarrow \infty} f(z)=: c_{\infty} \in \mathbb{C}$ exists and, for some $R>0, \varphi<\omega$,

$$
\int_{\partial B S_{\omega^{\prime}, a},|z|>R}\left|\frac{f(z)-c}{z}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right)
$$

(3) We say that f is quasi-regular at $d \in M_{A}$ if f or $1 / f$ is regular at d.

Regularity conditions and spectral inclusion

(1) We say that a function f is regular at $d \in\{-a, a\}$ if $\lim _{z \rightarrow d} f(z)=: c_{d} \in \mathbb{C}$ exists and, for some $\varepsilon>0, \varphi<\omega$,

$$
\int_{\partial\left(B S_{\omega^{\prime}, a} \cap\{|z-d|<\varepsilon\}\right.}\left|\frac{f(z)-c_{d}}{z-d}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

(2) We say that f is regular at ∞ if $\lim _{z \rightarrow \infty} f(z)=: c_{\infty} \in \mathbb{C}$ exists and, for some $R>0, \varphi<\omega$,

$$
\int_{\partial B S_{\omega^{\prime}, a},|z|>R}\left|\frac{f(z)-c}{z}\right||d z|<\infty, \quad \text { for all } \omega^{\prime} \in\left(\varphi, \frac{\pi}{2}\right) .
$$

(3) We say that f is quasi-regular at $d \in M_{A}$ if f or $1 / f$ is regular at d.

Proposition

Let $A \in \operatorname{BSect}(\omega, a)$, and take $f \in \mathcal{M}_{A}$ to be quasi-regular at M_{A}. Then

$$
\tilde{\sigma}(f(A)) \subset f(\widetilde{\sigma}(A))
$$

Köthe dual

Theorem above does not hold for a $\left(L^{1}-L^{\infty}\right)$-interpolation space E which has no order continuous norm. Consider the Köthe dual E^{\star} of E, given by

$$
\begin{aligned}
E^{\star}:=\{g:(0, \infty) & \rightarrow \mathbb{C} \text { measurable and } \\
& \left.\int_{0}^{\infty}|f(x) g(x)| d x<\infty \quad \text { for all } f \in E\right\} .
\end{aligned}
$$

Every $g \in E^{\star}$ defines a bounded (order continuous) linear functional φ_{g} on E, given by

$$
\left\langle f, \varphi_{g}\right\rangle_{E, E^{\star}}:=\int_{0}^{\infty} f(x) g(x) d x \text { for all } f \in E
$$

Another abstract Cauchy problem

Next, consider the following abstract Cauchy problem:

$$
\left\{\begin{array}{l}
u \in C^{1}((0, \infty) ; E), \quad u(t) \in \mathcal{D}\left(B_{E}\right), \quad t>0, \\
u^{\prime}(t)=B_{E} u(t), \quad t>0, \\
\lim _{t \downarrow 0}\langle u(t), \varphi\rangle_{E, E^{\star}}=\langle f, \varphi\rangle_{E, E^{\star}}, \quad f \in E \text { and for all } \varphi \in E^{\star} .
\end{array}\right.
$$

Again, we say that $\left(A C P_{1}\right)$ is well-posed if, for any $f \in E$, there exists a unique u which is solution of $\left(A C P_{1}\right)$.

Universidad

Generalized Black-Scholes equation on arbitrary interpolation spaces

Theorem (O.-M., M. Warma)

Let E be a $\left(L^{1}-L^{\infty}\right)$-interpolation space and let $n \in \mathbb{N}$ and $\alpha>0$. Then the following assertions hold.
(1) If $\bar{\alpha}_{E}<1$ and if $\alpha \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, then $\left(A C P_{1}\right)$ is well-posed with

$$
B_{E}=(-1)^{n+1} g_{1}^{\alpha}\left(A_{E}\right)
$$

(2) If $\underline{\alpha}_{E}>0$ and if $\alpha \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, then $\left(A C P_{1}\right)$ is well-posed with

$$
B_{E}=(-1)^{n+1} g_{2}^{\alpha}\left(A_{E}\right)
$$

(3) If $\bar{\alpha}_{E}<1$ and $\underline{\alpha}_{E}>0$, then $\left(A C P_{1}\right)$ is well-posed with $B_{E}=g_{3}^{\alpha}\left(A_{E}\right)$. In any case, identifying $u(t, x)=u(t)(x)$, we obtain that $u \in C^{\infty}((0, \infty) \times(0, \infty))$.

