Nonlocal operators are chaotic

Nerea Alonso Ander Artola Jorge Catarecha Antonio Navas Eduardo Sena

XI Escuela-Taller de Análisis Funcional March, 7-12, 2022 Introduction

Chaos of operators associated to Numerical Schemes

Introduction Chaos of Nonlocal Operators Chaos of operators associated to Numerical Schemes

Chaos of Nonlocal Operators

3 Chaos of operators associated to Numerical Schemes

Nerea Alonso, Ander Artola, Jorge Catarecha, Antonio Navas, Eduardo Sena Nonlocal operators are chaotic

Analize the dynamics of certain nonlocal operators:

- The fractional difference operator in the sense of Riemann-Liouville: Δ^α and the Nabla difference operator ∇^α_a for 0 < α ≤ 1.
- Nonlocal difference operators which arise in the study of time-stepping schemes for fractional operators.

Introduction Chaos of Nonlocal Operators Chaos of operators associated to Numerical Schemes

Linear dynamical systems

Definition

Given X a Banach space and an operator $T : X \rightarrow X$:

- $T: X \to X$ is **hypercyclic**, if there exists a vector $x \in X$ such that $Orb(x, T) = \{T^n x : n \in \mathbb{N}\}$ is dense in *X*.
- *T* is said to have sensitive dependence on initial conditions if there exists some δ > 0 such that, for every x ∈ X and ε > 0, there exists some y ∈ X with d(x, y) < ε such that, for some n ≥ 0, d(Tⁿx, Tⁿy) > δ.

Theorem (Banks, Brooks, Cairns, Davis and Stacey)

Let T be a hypercyclic operator. Then T has sensitive dependence on initial conditions.

Definition

An operator $T : X \to X$ is called **chaotic in the sense of Devaney** if it is hypercyclic, and Per(T) is dense in X, where $Per(T) := \{ \text{periodic points of } T \} = \{ x \in X ; T^n x = x \text{ for some } n \}.$

Theorem (Banks, Brooks, Cairns, Davis and Stacey)

Let T be a hypercyclic operator. Then T has sensitive dependence on initial conditions.

Definition

An operator $T : X \to X$ is called **chaotic in the sense of Devaney** if it is hypercyclic, and Per(T) is dense in X, where $Per(T) := \{ \text{periodic points of } T \} = \{ x \in X ; T^n x = x \text{ for some } n \}.$

Example: Multiples of the backward shift (Rolewicz, 1969)

If $|\lambda| > 1$, the operator $\lambda B : \ell^p \to \ell^p$, $1 \le p < \infty$, $(x_1, x_2, ...) \mapsto (\lambda x_2, \lambda x_3, ...)$ is Devaney chaotic.

Definition

Given two operators *T* and *S* defined on Banach spaces *X* and *Y*, respectively, we say *T* is **quasi-conjugate** to *S* if there exists a continuous map $\Phi : Y \to X$ with dense range such that $T \circ \Phi = \Phi \circ S$.

Usual notions of linear dynamics are preserved under quasiconjugacy: hypercyclicity and Devaney chaos.

Fractional calculus

- Studies differential operators of an <u>arbitrary real order</u> not only integer order.
- In contrast to ordinary derivative operators, fractional operators are non-local and incorporate memory effects into modelling.
- They capture the memory and the heredity of the process. It is an effective tool for revealing phenomena in nature because nature has memory.
- Applications in science, engineering, and mathematics: viscoelasticity, electrical circuits, chemistry, neurology, diffusion, control theory, statistics,....

Some history

- Kutter (1956): Mentioned by the first time differences of fractional order.
- Diaz and Osler (1974): A fractional difference operator as an infinite series.
- Gray and Zhang (1988): A fractional calculus for the discrete nabla (backward) difference operator.
- Miller and Ross (1989): A fractional sum via the solution of a linear difference equation.
- Atici and Eloe (2007): The Riemann-Liouville like fractional difference using the fractional sum of Miller and Ross.
- Anastassiou (2010): The Caputo like fractional difference using the fractional sum from Miller and Ross.

Some history

- Kutter (1956): Mentioned by the first time differences of fractional order.
- Diaz and Osler (1974): A fractional difference operator as an infinite series.
- Gray and Zhang (1988): A fractional calculus for the discrete nabla (backward) difference operator.
- Miller and Ross (1989): A fractional sum via the solution of a linear difference equation.
- Atici and Eloe (2007): The Riemann-Liouville like fractional difference using the fractional sum of Miller and Ross.
- Anastassiou (2010): The Caputo like fractional difference using the fractional sum from Miller and Ross.

Ohaos of operators associated to Numerical Schemes

Nerea Alonso, Ander Artola, Jorge Catarecha, Antonio Navas, Eduardo Sena Nonlocal operators are chaotic

Given $a \in \mathbb{N}$, we denote $\mathbb{N}_a := \{a, a + 1, a + 2, ...\}$. and $s(\mathbb{N}_a)$ the vectorial space consisting of all complex-valued sequences $f : \mathbb{N}_a \to \mathbb{C}$.

Forward Euler operator

 $\Delta_a: s(\mathbb{N}_a)
ightarrow s(\mathbb{N}_a)$ is defined by

$$\Delta_a f(n) := f(n+1) - f(n), \quad n \in \mathbb{N}_a.$$

For $m \in \mathbb{N}_2$, we define recursively $\Delta_a^m : s(\mathbb{N}_a) \to s(\mathbb{N}_a)$ by $\Delta_a^m := \Delta_a^{m-1} \circ \Delta_a$, and is called the *m*-th order forward difference operator.

We denote $\Delta \equiv \Delta_0$ and $\Delta_a^0 \equiv I_a$, with $I_a : s(\mathbb{N}_a) \to s(\mathbb{N}_a)$ the identity operator. For instance, for any $f \in s(\mathbb{N}_0)$, we have

$$\Delta^m f(n) = \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} f(n+j), \quad n \in \mathbb{N}_0.$$

The sequence k^{α}

For any $\alpha \in \mathbb{R} \setminus \{0\}$, we set

$$k^{\alpha}(n) = \left\{ egin{array}{cc} \displaystyle rac{lpha(lpha+1)...(lpha+n-1)}{n!} & n \in \mathbb{N}_0, \ & 0 & otherwise. \end{array}
ight.$$

In case $\alpha = 0$ we define $k^0(n) = 1$ if n = 0 and 0 otherwise. Note that if $\alpha \in \mathbb{R} \setminus \{-1, -2, ..\}$, we have $k^{\alpha}(n) = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)\Gamma(n+1)}$, $n \in \mathbb{N}_0$ where Γ is the Euler gamma function.

Definition (Atici and Eloe (2009))

Let $\alpha > 0$. For any given positive real number *a*, the α -th fractional sum of a function *f* is

$$\nabla_a^{-\alpha}f(n):=\sum_{j=a}^n k^{\alpha}(n-j)f(j).$$

The α -th fractional sum

For each $\alpha > 0$ and a sequence $f \in s(\mathbb{N}_0)$, we define the α -th fractional sum

$$\Delta^{-\alpha}f(n):=(k^{lpha}*f)(n)=\sum_{j=0}^nk^{lpha}(n-j)f(j),\quad n\in\mathbb{N}_0.$$

The fractional difference operator in the Riemann-Liouville sense

The fractional difference operator $\Delta^{\alpha} : s(\mathbb{N}_0) \to s(\mathbb{N}_0)$ of order $\alpha > 0$ (in the sense of Riemann-Liouville) is defined by

$$\Delta^{\alpha} f(n) := \Delta^{m} \circ \Delta^{-(m-\alpha)} f(n), \quad n \in \mathbb{N}_{0},$$

where $m - 1 < \alpha < m$, $m := \lceil \alpha \rceil$.

$\mathbf{0} < \alpha < \mathbf{1}$

For every $n \in \mathbb{N}_0$,

$$\Delta^{\alpha} u(n) = \Delta(k^{1-\alpha} * u)(n) = \sum_{j=0}^{n+1} k^{1-\alpha}(n+1-j)u(j) - \sum_{j=0}^{n} k^{1-\alpha}(n-j)u(j).$$

Nabla fractional difference operator

The nabla fractional difference operator $\nabla^{\alpha} : s(\mathbb{N}_a) \to s(\mathbb{N}_a)$ of order $\alpha > 0$ is defined by

$$abla_a^{lpha}f(t) = \Delta_a^m \circ
abla_a^{-(m-lpha)}f(t), \quad t \in \mathbb{N}_a,$$

where $m - 1 < \alpha < m$, $m = \lceil \alpha \rceil$.

Nabla fractional difference operator

The nabla fractional difference operator $\nabla^{\alpha} : s(\mathbb{N}_a) \to s(\mathbb{N}_a)$ of order $\alpha > 0$ is defined by

$$abla^{lpha} f(t) = \Delta^m_a \circ \nabla^{-(m-lpha)}_a f(t), \quad t \in \mathbb{N}_a,$$

where $m - 1 < \alpha < m$, $m = \lceil \alpha \rceil$.

Transference principle

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Proof:

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Proof:

$$\tau_a \circ \nabla_a^{-\alpha} f(n) = \nabla_a^{-\alpha} f(n+a) = \sum_{s=a}^{n+a} k^{\alpha} (n+a-s) f(s)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Proof:

$$\tau_a \circ \nabla_a^{-\alpha} f(n) = \nabla_a^{-\alpha} f(n+a) = \sum_{s=a}^{n+a} k^{\alpha} (n+a-s) f(s)$$
$$\stackrel{j:=s-a}{=} \sum_{j=0}^{n} k^{\alpha} (n-j) f(j+a)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Proof:

$$\tau_a \circ \nabla_a^{-\alpha} f(n) = \nabla_a^{-\alpha} f(n+a) = \sum_{s=a}^{n+a} k^{\alpha} (n+a-s) f(s)$$

$$\stackrel{j:=s-a}{=} \sum_{j=0}^{n} k^{\alpha} (n-j) f(j+a)$$

$$= \sum_{i=0}^{n} k^{\alpha} (n-j) \tau_a f(j)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

Proof:

$$\tau_{a} \circ \nabla_{a}^{-\alpha} f(n) = \nabla_{a}^{-\alpha} f(n+a) = \sum_{s=a}^{n+a} k^{\alpha} (n+a-s) f(s)$$

$$\stackrel{j:=s-a}{=} \sum_{j=0}^{n} k^{\alpha} (n-j) f(j+a) \qquad (1)$$

$$= \sum_{j=0}^{n} k^{\alpha} (n-j) \tau_{a} f(j)$$

$$= (k^{\alpha} * \tau_{a} f)(n) = \Delta^{-\alpha} \circ \tau_{a} f(n).$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\tau_a \circ \nabla_a^{\alpha} f(n) = (\tau_a \circ (\Delta_a^m \circ \nabla_a^{-(m-\alpha)}) f)(n) = (\Delta_a^m \circ \nabla_a^{-(m-\alpha)} f)(n+a)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\tau_a \circ \nabla_a^{\alpha} f(n) = (\tau_a \circ (\Delta_a^m \circ \nabla_a^{-(m-\alpha)}) f)(n) = (\Delta_a^m \circ \nabla_a^{-(m-\alpha)} f)(n+a)$$
$$= \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} (\nabla_a^{-(m-\alpha)} f)(n+a+j)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\begin{aligned} \tau_{a} \circ \nabla_{a}^{\alpha} f(n) &= (\tau_{a} \circ (\Delta_{a}^{m} \circ \nabla_{a}^{-(m-\alpha)}) f)(n) = (\Delta_{a}^{m} \circ \nabla_{a}^{-(m-\alpha)} f)(n+a) \\ &= \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} (\nabla_{a}^{-(m-\alpha)} f)(n+a+j) \\ &= \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} (\tau_{a} \circ \nabla_{a}^{-(m-\alpha)} f)(n+j) \end{aligned}$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\begin{aligned} \tau_{a} \circ \nabla_{a}^{\alpha} f(n) &= (\tau_{a} \circ (\Delta_{a}^{m} \circ \nabla_{a}^{-(m-\alpha)}) f)(n) = (\Delta_{a}^{m} \circ \nabla_{a}^{-(m-\alpha)} f)(n+a) \\ &= \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} (\nabla_{a}^{-(m-\alpha)} f)(n+a+j) \\ &= \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} (\tau_{a} \circ \nabla_{a}^{-(m-\alpha)} f)(n+j) \\ &\stackrel{(1)}{=} \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} (\Delta^{-(m-\alpha)} \circ \tau_{a} f)(n+j) \end{aligned}$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\tau_a \circ \nabla_a^{\alpha} f(n) \stackrel{(1)}{=} \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} (\Delta^{-(m-\alpha)} \circ \tau_a f)(n+j)$$

Let $\alpha > 0$ and $a \in \mathbb{R}$ be given. Then we have

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a},$$

where $\tau_a : s(\mathbb{N}_a) \to s(\mathbb{N}_0)$ by $\tau_a g(n) := g(a+n), \quad n \in \mathbb{N}_0.$

$$\begin{aligned} \tau_a \circ \nabla_a^{\alpha} f(n) &\stackrel{(1)}{=} \quad \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} (\Delta^{-(m-\alpha)} \circ \tau_a f)(n+j) \\ &= \quad \Delta^m (\Delta^{-(m-\alpha)} \circ \tau_a f)(n) = (\Delta^{\alpha} \circ \tau_a f)(n). \end{aligned}$$

Complex analysis

Toeplitz operators

The Hardy space is defined as

$$H^{2}(\mathbb{D}) = \{ f \in H(\mathbb{D}) ; \ \|f\| := \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{2} d\theta \right)^{1/2} < \infty \}.$$

Let $P : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the projection. Any $g \in L^{\infty}(\mathbb{T})$ defines a multiplication operator M_g on $L^2(\mathbb{T})$.

The Toeplitz operator with symbol g is defined as

$$T_g = P \circ M_g.$$

Complex analysis

Toeplitz operators

The Hardy space is defined as

$$H^{2}(\mathbb{D}) = \{ f \in H(\mathbb{D}) ; \ \|f\| := \sup_{0 < r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{2} d\theta \right)^{1/2} < \infty \}.$$

Let $P : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the projection. Any $g \in L^{\infty}(\mathbb{T})$ defines a multiplication operator M_g on $L^2(\mathbb{T})$.

The Toeplitz operator with symbol g is defined as

$$T_g = P \circ M_g.$$

A bounded operator on H^2 is Toeplitz if and only if its matrix representation in the basis $\{z^n ; n \ge 0\}$ has constant diagonals.

In what follows we denote by $\widehat{\mathbb{D}}=\mathbb{C}\backslash\overline{\mathbb{D}}.$

Theorem (Baranov and Lishanskii (2016) and L.M.P (2020))

Let $\Phi(z) = \frac{\gamma}{z} + \varphi(z)$ with $\gamma \in \mathbb{C}$ and $\varphi \in A(\overline{\mathbb{D}}) = H^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ satisfying

(i) the function Φ is univalent (injective) in $\overline{\mathbb{D}} \setminus \{0\}$;

(ii) $\mathbb{D} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$ and $\widehat{\mathbb{D}} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$.

Then the Toeplitz operator $T_{\Phi}: \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0)$ is Devaney chaotic.

In what follows we denote by $\widehat{\mathbb{D}}=\mathbb{C}\backslash\overline{\mathbb{D}}.$

Theorem (Baranov and Lishanskii (2016) and L.M.P (2020))

Let $\Phi(z) = \frac{\gamma}{z} + \varphi(z)$ with $\gamma \in \mathbb{C}$ and $\varphi \in A(\overline{\mathbb{D}}) = H^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ satisfying

(i) the function Φ is univalent (injective) in $\overline{\mathbb{D}} \setminus \{0\}$;

(ii) $\mathbb{D} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$ and $\widehat{\mathbb{D}} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$. Then the Toeplitz operator $T_{\Phi} : \ell^{2}(\mathbb{N}_{0}) \to \ell^{2}(\mathbb{N}_{0})$ is Devaney chaotic.

Theorem (Ganigi and Uralegaddi, 1989)

Let M_n denote the class of functions of the form $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ which are regular in 0 < |z| < 1 and satisfy

$$\Re\left(\frac{D^{n+1}f(z)}{D^nf(z)}-2\right) < -\frac{n}{n+1}, \text{ for } |z| < 1,$$

where $D^n f(z) = \frac{1}{z} (z^{n+1} \frac{f(z)}{n!})^{(n)}$, $n \in \mathbb{N}_0$. Then $M_{n+1} \subset M_n$ for all $n \in \mathbb{N}_0$ and all functions in M_n are univalent.

Lemma (Matrix representation of Δ^{α})

The representation of Δ^{α} in the canonical basis $\{e_l(j)\}_{j,l\in\mathbb{N}_0}$ of $\ell^2(\mathbb{N}_0)$ is a **Toeplitz matrix**. For $0 < \alpha < 1$ we have

$$\Delta^{\alpha} \mathbf{e}_{l}(n) = \begin{cases} -\alpha \frac{k^{1-\alpha}(n-l)}{n-l+1} & \text{if } n \ge l \\ 1 & \text{if } n = l-1 \\ 0 & \text{if } n < l-1. \end{cases}$$

The symbol of Δ^{α} as a Toeplitz operator is $\Phi(z) = \frac{(1-z)^{\alpha}}{z}$.

Proof: In general, if $f \in \ell^2(\mathbb{N}_0)$:

$$\Delta^{\alpha} f(n) = \Delta(k^{1-\alpha} * f)(n) = \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) f(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) f(j).$$

Proof: In general, if $f \in \ell^2(\mathbb{N}_0)$:

$$\Delta^{\alpha} f(n) = \Delta(k^{1-\alpha} * f)(n) = \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) f(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) f(j).$$

Let $I \in \mathbb{N}_0$:

● Case *l* ≤ *n*:

$$\begin{aligned} \Delta^{\alpha} e_{l}(n) &= \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) e_{l}(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) e_{l}(j) \\ &= k^{1-\alpha} (n+1-l) - k^{1-\alpha} (n-l) \\ &= k^{1-\alpha} (n-l) \left(\frac{1-\alpha+n-l}{n-l+1} - 1 \right) \\ &= -\alpha \frac{k^{1-\alpha} (n-l)}{n-l+1}. \end{aligned}$$

$$\Delta^{\alpha} e_{i}(n) = \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) e_{i}(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) e_{i}(j)$$

= $k^{1-\alpha}(0) = 1.$

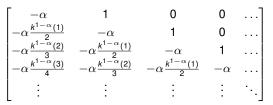
$$\Delta^{\alpha} e_{l}(n) = \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) e_{l}(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) e_{l}(j)$$

= $k^{1-\alpha}(0) = 1.$

$$\Delta^{\alpha} e_{i}(n) = \sum_{j=0}^{n+1} k^{1-\alpha} (n+1-j) e_{i}(j) - \sum_{j=0}^{n} k^{1-\alpha} (n-j) e_{i}(j)$$

= 0.

To sum up:



Consequently the symbol is

$$\Phi(z) = \frac{1}{z} - \alpha - \alpha \frac{k^{1-\alpha}(1)}{2} z - \alpha \frac{k^{1-\alpha}(2)}{3} - \dots$$
$$= \frac{1}{z} \left(1 - \alpha \sum_{j=0}^{\infty} \frac{k^{1-\alpha}(j)}{j+1} z^{j+1} \right)$$

$$\Phi(z) = \frac{1}{z} \left(1 - \alpha \int \sum_{j=0}^{\infty} k^{1-\alpha}(j) z^j dz \right)$$
$$= \frac{1}{z} \left(1 - \alpha \int \frac{1}{(1-z)^{1-\alpha}} dz \right)$$
$$= \frac{1}{z} \left(1 + (1-z)^{\alpha} + C \right)$$
$$= \frac{(1-z)^{\alpha}}{z}.$$

For any $0 < \alpha \leq 1$, the operator Δ^{α} defines a Devaney chaotic Toeplitz operator on $\ell^2(\mathbb{N}_0)$ with symbol $\Phi(z) = \frac{(1-z)^{\alpha}}{z}$.

For any $0 < \alpha \leq 1$, the operator Δ^{α} defines a Devaney chaotic Toeplitz operator on $\ell^2(\mathbb{N}_0)$ with symbol $\Phi(z) = \frac{(1-z)^{\alpha}}{z}$.

Proof:

۱

1 For
$$0 < \alpha < 1$$
 and $u \in \ell^2(\mathbb{N}_0)$:

$$\Delta^{\alpha} u = \Delta(k^{1-\alpha} * u) = \Delta k^{1-\alpha} * u + \tau_1 u,$$

where τ_{1} denotes the translation operator. Using Young's convolution inequality:

$$\|\Delta^{\alpha} u\|_{2} \leq \|\Delta k^{1-\alpha} * u\|_{2} + \|u\|_{2} \leq \|\Delta k^{1-\alpha}\|_{1} \|u\|_{2} + \|u\|_{2},$$

where $\Delta k^{1-\alpha}(n) \sim \frac{c}{n^{\alpha+1}}.$

Theorem (Ganigi and Uralegaddi, 1989)

Let M_n denote the class of functions of the form $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ which are regular in 0 < |z| < 1 and satisfy

$$\Re\left(\frac{D^{n+1}f(z)}{D^nf(z)}-2\right) < -\frac{n}{n+1}, \text{ for } |z| < 1,$$

where $D^n f(z) = \frac{1}{z} (z^{n+1} \frac{f(z)}{n!})^{(n)}$, $n \in \mathbb{N}_0$. Then $M_{n+1} \subset M_n$ for all $n \in \mathbb{N}_0$ and all functions in M_n are univalent.

Theorem (Ganigi and Uralegaddi, 1989)

Let M_n denote the class of functions of the form $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ which are regular in 0 < |z| < 1 and satisfy

$$\Re\left(\frac{D^{n+1}f(z)}{D^nf(z)}-2\right)<-\frac{n}{n+1}, \text{ for } |z|<1,$$

where $D^n f(z) = \frac{1}{z} (z^{n+1} \frac{f(z)}{n!})^{(n)}$, $n \in \mathbb{N}_0$. Then $M_{n+1} \subset M_n$ for all $n \in \mathbb{N}_0$ and all functions in M_n are univalent.

2 Using the criterion by Ganigi and Uralegaddi for univalence: given z = a + ib with $z \in \mathbb{D}$:

$$\Re\left(\frac{D^{1}\Phi(z)}{\Phi(z)}-2\right) = \Re\left(-1-\frac{\alpha z}{1-z}\right) = \frac{(1-a)(-1+a(1-\alpha))-2b^{2}}{(1-a)^{2}+b^{2}} < 0.$$
(2)

Theorem (Baranov and Lishanskii (2016) and L.M.P (2020))

Let $\Phi(z) = \frac{\gamma}{z} + \varphi(z)$ with $\gamma \in \mathbb{C}$ and $\varphi \in A(\overline{\mathbb{D}}) = H^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ satisfying

(i) the function Φ is univalent (injective) in $\overline{\mathbb{D}} \setminus \{0\}$;

(ii) $\mathbb{D} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$ and $\widehat{\mathbb{D}} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$.

Then the Toeplitz operator $T_{\Phi}: \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0)$ is Devaney chaotic.

Theorem (Baranov and Lishanskii (2016) and L.M.P (2020))

Let $\Phi(z) = \frac{\gamma}{z} + \varphi(z)$ with $\gamma \in \mathbb{C}$ and $\varphi \in A(\overline{\mathbb{D}}) = H^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ satisfying (i) the function Φ is univalent (injective) in $\overline{\mathbb{D}} \setminus \{0\}$;

- (ii) $\mathbb{D} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$ and $\widehat{\mathbb{D}} \cap (\mathbb{C} \setminus \Phi(\mathbb{D})) \neq \emptyset$. Then the Toeplitz operator $\mathcal{T}_{\Phi} : \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0)$ is Devaney chaotic.
 - 3 Show that $[-2^{\alpha}, 0] \subset \mathbb{C} \setminus \Phi(\mathbb{D})$. Taking the parametrization $z = e^{it}$,

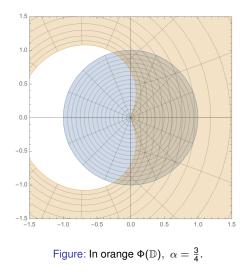
$$\Phi(\boldsymbol{e}^{it}) = \frac{(1-\boldsymbol{e}^{it})^{\alpha}}{\boldsymbol{e}^{it}}$$

$$= 2^{\alpha} \sin(t/2)^{\alpha} \boldsymbol{e}^{i(-\alpha\pi/2+(\alpha/2-1)t)}.$$
(3)

Taking t = 0 and $t = \pi$ in the parametrization, we see that $\{-2^{\alpha}, 0\} \subset \mathbb{C} \setminus \Phi(\mathbb{D}).$

Chaos of Nonlocal Operators

Chaos of operators associated to Numerical Schemes



Corollary

For any $0 < \alpha \leq 1$ and a > 0, the nabla fractional difference operator ∇_a^{α} is chaotic in $\ell^2(\mathbb{N}_a)$.

Proof:

Transference principle:

$$\tau_{a} \circ \nabla_{a}^{\alpha} = \Delta^{\alpha} \circ \tau_{a}.$$

② Devaney chaos is preserved under quasi-conjugacy.

Ohaos of operators associated to Numerical Schemes

Dynamics of operators associated to numerical schemes

We consider the fractional evolution equation for 0 < α < 1

$$\partial_t^{\alpha} u(t) = Au(t) + f(t), \quad t > 0,$$

with initial conditions u(0) = 0 and ∂_t^{α} denotes the Riemann-Liouville fractional derivative:

$$\partial_t^{\alpha} u(t) = \frac{1}{\Gamma(n-\alpha)} \frac{\partial^n}{\partial t^n} \int_0^t (t-s)^{n-\alpha-1} u(s) ds, \quad n-1 < \alpha < n, n \in \mathbb{N}.$$

We study chaos for relevant nonlocal difference operators arising in the study of time-stepping schemes for fractional operators.

Time-stepping schemes for fractional operators

They are defined by a convolution operator $\partial_b^{\alpha}: \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0):$

$$\partial^{\alpha}_{b}u(n):=(b*u)(n)=\sum_{j=0}^{n}b(n-j)u(j),\quad n\in\mathbb{N}_{0},b\in\ell^{1}(\mathbb{N}_{0}).$$

Time-stepping schemes for fractional operators

They are defined by a convolution operator $\partial_b^{\alpha}: \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0)$:

$$\partial^{\alpha}_{b}u(n):=(b*u)(n)=\sum_{j=0}^{n}b(n-j)u(j),\quad n\in\mathbb{N}_{0},b\in\ell^{1}(\mathbb{N}_{0}).$$

Each scheme is uniquely determined by the generating series, called the Gelfand transform of b,

$$\delta(\xi) := \sum_{n=0}^{\infty} b(n)\xi^n, \quad \xi \in \mathbb{T},$$

where $\delta(\xi)$ represents the symbol of the scheme.

Time-stepping schemes for fractional operators

They are defined by a convolution operator $\partial_b^{\alpha}: \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0):$

$$\partial^{\alpha}_{b}u(n):=(b*u)(n)=\sum_{j=0}^{n}b(n-j)u(j),\quad n\in\mathbb{N}_{0},b\in\ell^{1}(\mathbb{N}_{0}).$$

Each scheme is uniquely determined by the generating series, called the Gelfand transform of b,

$$\delta(\xi) := \sum_{n=0}^{\infty} b(n) \xi^n, \quad \xi \in \mathbb{T},$$

where $\delta(\xi)$ represents the symbol of the scheme. The adjoint operator of ∂_b^{α} in $\ell^2(\mathbb{N}_0)$, i.e., $\langle (\partial_b^{\alpha})^* u, v \rangle = \langle u, \partial_b^{\alpha} v \rangle$:

$$(\partial_b^{\alpha})^*u(n)=F_bu(n)=\sum_{j=0}^{\infty}b(j)B^ju(n),\quad n\in\mathbb{N}_0.$$

Let $b \in \ell^1(\mathbb{N}_0)$ be given and $F_b : \ell^2(\mathbb{N}_0) \to \ell^2(\mathbb{N}_0)$ given by

$$F_b u(n) = \sum_{j=0}^\infty b(j) B^j u(n), \quad n \in \mathbb{N}_0,$$

where *B* denotes the backward shift operator. Then F_b defines a bounded operator on $\ell^2(\mathbb{N}_0)$ and the following assertions are equivalent

- (i) *F_b* is chaotic;
- (ii) $\delta(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$.

Corollary

The forward Euler operator, $\Delta u(n) = u(n+1) - u(n)$, is chaotic.

Corollary

The forward Euler operator, $\Delta u(n) = u(n+1) - u(n)$, is chaotic.

Proof: $\Delta = B - I \Rightarrow \delta(z) = z - 1 \Rightarrow \delta(0) = -1 \in \mathbb{T}.$

The Weil fractional difference operator

For the fractional backward Euler scheme: The sequence kernel $b_{\tau}(n) = \tau^{-\alpha} k^{-\alpha}(n)$ defines the scheme and we can consider the nonlocal operator:

$$\partial_k^{\alpha} u(n) = \sum_{j=0}^n \tau^{-\alpha} k^{-\alpha} (n-j) u(j),$$

where $\tau > 0$ denotes the step size of the scheme. The symbol is:

$$\delta(\xi) = \tau^{-\alpha} (1-\xi)^{\alpha}.$$

It is remarkable that $(\partial_k^{\alpha})^* = W_{\tau}^{\alpha}$ corresponds to the Weil fractional difference operator or order $\alpha > 0$.

For any $\alpha > 0$, the Weil difference operator W^{α}_{τ} is chaotic on $\ell^{2}(\mathbb{N}_{0})$ if and only if $0 < \tau < 2$.

Proof:

Note that $w \in \delta_{\tau}(\mathbb{D}) \cap \mathbb{T}$ if and only if

$$w = \tau^{-\alpha} (1 - z)^{\alpha}$$
, where $|w| = 1$, $|z| < 1$.

Then, $|1 - \tau w^{1/\alpha}| = |z|$ shows that the complex number $\tau w^{1/\alpha}$ must belong to the disk of center 1 and radius 1.

Consequently, $0 < \tau < 2$ iff $\delta_{\tau}(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$.

Let $0 < \alpha < 1$. The operator F_b , which is the dual of the operator that defines the fractional second order backward difference scheme with step size τ , is chaotic on $\ell^2(\mathbb{N}_0)$ if and only if $0 < \tau < 4$.

The symbol for the fractional second order backward difference scheme is:

$$\delta(\xi) = au^{-lpha} (rac{3}{2} - 2\xi + rac{1}{2}\xi^2)^{lpha}.$$

Theorem

Let $0 < \alpha < 1$. The operator F_b , which is the dual of the operator that defines the fractional Crank-Nicholson scheme with step size τ , is chaotic on $\ell^2(\mathbb{N}_0)$ if and only if $0 < \tau < \frac{2}{(1-\alpha)^{1/\alpha}}$.

The symbol for the Crank-Nicholson scheme is:

$$\delta(\xi) = \tau^{-\alpha} \frac{(1-\xi)^{\alpha}}{1-\frac{\alpha}{2}+\frac{\alpha}{2}\xi}.$$

References

- A. Baranov and A. Lishanskii. *Hypercyclic Toeplitz Operators.* Results. Math. 70 (2016), 337–347.
- K. G. Grosse-Erdmann and A. Peris Manguillot. *Linear chaos. Universitext, Springer-Verlag London Ltd., London, 2011.*
- B. Jin, B. Li and Z. Zhou. Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138(1) (2018), 101–131.
- C. Lizama, M. Murillo-Arcila and A. Peris. Nonlocal operators are chaotic. Chaos, 30 (2020), 103126.