Banach-Stone theorem for free Banach lattices

Pedro Tradacete

Instituto de Ciencias Matemáticas (ICMAT), Madrid

Based on joint work with T. Oikhberg, M. Taylor and V. G. Troitsky

XVII Encuentro de la Red de Análisis Funcional y Aplicaciones
La Laguna
10 March 2022

$$
\text { Banach lattice }=\text { Banach space }+ \text { vector lattice }+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]
$$

$$
\text { Banach lattice }=\text { Banach space }+ \text { vector lattice }+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]
$$

T lattice homomorphism: T linear $+|T x|=T|x|$

Examples:

- $L_{p}(\mu)$ (and other function spaces such as Orlicz, Lorentz...) - $\ell_{p}, c_{0} \ldots$ (any space with unconditional basis) Non-examples:
- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarilv indecomoosable spaces.

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$

Examples:

- $C(K)$
- $L_{p}(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- $\ell_{p}, c_{0} \ldots$ (any space with unconditional basis)
- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

Banach lattice $=$ Banach space + vector lattice $+[|x| \leq|y| \Rightarrow\|x\| \leq\|y\|]$
T lattice homomorphism: T linear $+|T x|=T|x|$
Examples:

- $C(K)$
- $L_{p}(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- $\ell_{p}, c_{0} \ldots$ (any space with unconditional basis)

Non-examples:

- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

The free Banach lattice generated by a Banach space Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]:$
$F B L[E]$

The free Banach lattice generated by a Banach space
Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]:$

FBL[E]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]:$
\forall Banach lattice X and $T: E \rightarrow X \exists$ unique lattice homomorphism $\hat{T}: F B L[E] \rightarrow X$ making the diagram commute and $\|\hat{T}\|=\|T\|$.

The free Banach lattice generated by a Banach space

Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]:$

\forall Banach lattice X and $T: E \rightarrow X \exists$ unique lattice homomorphism $\hat{T}: F B L[E] \rightarrow X$ making the diagram commute and $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]$:
\forall Banach lattice X and $T: E \rightarrow X \exists$ unique lattice homomorphism $\hat{T}: F B L[E] \rightarrow X$ making the diagram commute and $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]$:
\forall Banach lattice X and $T: E \rightarrow X \exists$ unique lattice homomorphism $\hat{T}: F B L[E] \rightarrow X$ making the diagram commute and $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- $F B L[E]$ for every Banach space E. [Avilés-Rodríguez-T, 2018]
- $F B L\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]

The free Banach lattice generated by a Banach space

 Let E be a Banach space. $F B L[E]$ is a Banach lattice, with a linear isometric embedding $\delta: E \rightarrow F B L[E]$:
\forall Banach lattice X and $T: E \rightarrow X \exists$ unique lattice homomorphism $\hat{T}: F B L[E] \rightarrow X$ making the diagram commute and $\|\hat{T}\|=\|T\|$.

- $F B L\left[\ell_{1}(A)\right]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- $F B L\langle L\rangle$ for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

For $x \in E$, let $\delta_{x} \in C_{p h}\left(B_{E^{*}}\right)$, given by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$.

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

For $x \in E$, let $\delta_{x} \in C_{p h}\left(B_{E^{*}}\right)$, given by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$.
Theorem (Avilés-Rodríguez-T, 2018)
$F B L[E]$ is the $\|\cdot\|_{F B L[E]}$-closed sublattice generated by $\left(\delta_{X}\right)_{x \in E}$ in $C_{p h}\left(B_{E^{*}}\right)$.

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

For $x \in E$, let $\delta_{x} \in C_{p h}\left(B_{E^{*}}\right)$, given by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

$F B L[E]$ is the $\|\cdot\|_{F B L[E]}$-closed sublattice generated by $\left(\delta_{x}\right)_{x \in E}$ in $C_{p h}\left(B_{E^{*}}\right)$.

Notice:

- $\delta: E \rightarrow F B L[E]$ with $\delta(x)=\delta_{x}$ is a linear isometry.

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

For $x \in E$, let $\delta_{x} \in C_{p h}\left(B_{E^{*}}\right)$, given by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

$F B L[E]$ is the $\|\cdot\|_{F B L[E]}$-closed sublattice generated by $\left(\delta_{x}\right)_{x \in E}$ in $C_{p h}\left(B_{E^{*}}\right)$.

Notice:

- $\delta: E \rightarrow F B L[E]$ with $\delta(x)=\delta_{x}$ is a linear isometry.
- $\|f\|_{\infty} \leq\|f\|_{F B L[E]}$, so $F B L[E] \hookrightarrow C_{p h}\left(B_{E^{*}}\right)$

Let $C_{p h}\left(B_{E^{*}}\right)$ be the space of positively homogeneous w^{*}-continuous functions on $B_{E^{*}}$.
For $f \in C_{p h}\left(B_{E^{*}}\right)$, let

$$
\|f\|_{F B L[E]}=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}^{*}\right)\right|: \sup _{x \in B_{E}} \sum_{i=1}^{n}\left|x_{i}^{*}(x)\right| \leq 1\right\} .
$$

For $x \in E$, let $\delta_{x} \in C_{p h}\left(B_{E^{*}}\right)$, given by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

$F B L[E]$ is the $\|\cdot\|_{F B L[E]}$-closed sublattice generated by $\left(\delta_{X}\right)_{x \in E}$ in $C_{p h}\left(B_{E^{*}}\right)$.

Notice:

- $\delta: E \rightarrow F B L[E]$ with $\delta(x)=\delta_{x}$ is a linear isometry.
- $\|f\|_{\infty} \leq\|f\|_{F B L[E]}$, so $F B L[E] \hookrightarrow C_{p h}\left(B_{E^{*}}\right)$
- $F B L[E]=C_{p h}\left(B_{E^{*}}\right)$ iff $\operatorname{dim}(E)<\infty$.

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

(1) T is injective iff \bar{T} is injective.

In particular, if E and F are linearly isomorphic (resp. isometric), then $F B L[E]$ and $F B L[F]$ are lattice isomorphic (resp. isometric).

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

$$
\begin{aligned}
& F B L[E]-\bar{T}_{-} \rightarrow F B L[F] \\
& \underset{T}{\delta_{E} \uparrow}{ }_{T}{ }^{\delta_{F} \uparrow} \uparrow
\end{aligned}
$$

Proposition

(1) T is injective iff \bar{T} is injective.
(2) T is surjective iff \bar{T} is surjective.

Every linear operator $T: E \rightarrow F$ between Banach spaces extends uniquely to a lattice homomorphism \bar{T} as follows

Proposition

(1) T is injective iff \bar{T} is injective.
(2) T is surjective iff \bar{T} is surjective.

In particular, if E and F are linearly isomorphic (resp. isometric), then $F B L[E]$ and $F B L[F]$ are lattice isomorphic (resp. isometric).

Suppose $T: F B L[E] \rightarrow F B L[F]$ is a lattice homomorphism.

Suppose $T: F B L[E] \rightarrow F B L[F]$ is a lattice homomorphism. Note $\varphi \in F B L[E]^{*}$ is a lattice homomorphism iff $\varphi=\widehat{x^{*}}$ for some $x^{*} \in E^{*}\left(\right.$ i.e. $\left.\varphi(f)=f\left(x^{*}\right)\right)$

Suppose $T: F B L[E] \rightarrow F B L[F]$ is a lattice homomorphism. Note $\varphi \in F B L[E]^{*}$ is a lattice homomorphism iff $\varphi=\widehat{x^{*}}$ for some $x^{*} \in E^{*}\left(\right.$ i.e. $\left.\varphi(f)=f\left(x^{*}\right)\right)$
Hence, for every $y^{*} \in F^{*}$ the composition $\widehat{y^{*}} \circ T$ corresponds to $\widehat{x^{*}}$ for some $x^{*} \in E^{*}$.

Suppose $T: F B L[E] \rightarrow F B L[F]$ is a lattice homomorphism. Note $\varphi \in F B L[E]^{*}$ is a lattice homomorphism iff $\varphi=\widehat{x^{*}}$ for some $x^{*} \in E^{*}\left(\right.$ i.e. $\left.\varphi(f)=f\left(x^{*}\right)\right)$
Hence, for every $y^{*} \in F^{*}$ the composition $\widehat{y^{*}} \circ T$ corresponds to $\widehat{x^{*}}$ for some $x^{*} \in E^{*}$.
Thus, we can define $\Phi_{T}: F^{*} \rightarrow E^{*}$ by

$$
\Phi_{T} y^{*}(x):=T \delta_{x}\left(y^{*}\right) \quad y^{*} \in F^{*}, x \in E .
$$

Suppose $T: F B L[E] \rightarrow F B L[F]$ is a lattice homomorphism. Note $\varphi \in F B L[E]^{*}$ is a lattice homomorphism iff $\varphi=\widehat{x^{*}}$ for some $x^{*} \in E^{*}\left(\right.$ i.e. $\left.\varphi(f)=f\left(x^{*}\right)\right)$
Hence, for every $y^{*} \in F^{*}$ the composition $\widehat{y^{*}} \circ T$ corresponds to $\widehat{x^{*}}$ for some $x^{*} \in E^{*}$.
Thus, we can define $\Phi_{T}: F^{*} \rightarrow E^{*}$ by

$$
\Phi_{T} y^{*}(x):=T \delta_{x}\left(y^{*}\right) \quad y^{*} \in F^{*}, x \in E .
$$

Lemma (Laustsen-T)

$\Phi_{T}: F^{*} \rightarrow E^{*}$ satisfies
(1) is positively homogeneous, $\Phi_{T}\left(\lambda y^{*}\right)=\lambda \Phi_{T}\left(y^{*}\right)$ for $\lambda \geq 0$;
(2) is weak* to weak ${ }^{*}$ continuous on bounded sets;
(3) For $\left(y_{i}^{*}\right)_{i=1}^{m} \subset F^{*}$:
$\max _{\varepsilon_{i} \in\{-1,1\}}\| \| \sum_{i=1}^{m} \varepsilon_{i} \Phi_{T}\left(y_{i}^{*}\right)\|\leq\| T\left\|\max _{\varepsilon_{i} \in\{-1,1\}}\right\| \sum_{i=1}^{m} \varepsilon_{i} y_{i}^{*} \|$
(4) $T f=f \circ \Phi_{T}$ for $f \in F B L[E]$.

Theorem

Suppose E, F are Banach spaces so that E^{*}, F^{*} are smooth. $T: F B L[E] \rightarrow F B L[F]$ is a surjective lattice isometry iff $T=\bar{U}$, for some surjective isometry $U: E \rightarrow F$.

Theorem

Suppose E, F are Banach spaces so that E^{*}, F^{*} are smooth. $T: F B L[E] \rightarrow F B L[F]$ is a surjective lattice isometry iff $T=\bar{U}$, for some surjective isometry $U: E \rightarrow F$.

Since E^{*} is smooth, for every $x^{*} \in E^{*} \backslash\{0\}$ there is a unique $f_{x^{*}} \in E^{* *}$ such that $\left\|f_{x^{*}}\right\|=\left\|x^{*}\right\|=\sqrt{f_{X^{*}}\left(X^{*}\right)}$.

Theorem

Suppose E, F are Banach spaces so that E^{*}, F^{*} are smooth. $T: F B L[E] \rightarrow F B L[F]$ is a surjective lattice isometry iff $T=\bar{U}$, for some surjective isometry $U: E \rightarrow F$.

Since E^{*} is smooth, for every $x^{*} \in E^{*} \backslash\{0\}$ there is a unique $f_{x^{*}} \in E^{* *}$ such that $\left\|f_{x^{*}}\right\|=\left\|x^{*}\right\|=\sqrt{f_{x^{*}}\left(x^{*}\right)}$.

Let us define the semi-inner product on E^{*} :

$$
\left[y^{*}, x^{*}\right]=\left\{\begin{array}{cc}
f_{x^{*}}\left(y^{*}\right) & x^{*} \neq 0 \\
0 & x^{*}=0 .
\end{array}\right.
$$

Theorem

Suppose E, F are Banach spaces so that E^{*}, F^{*} are smooth. $T: F B L[E] \rightarrow F B L[F]$ is a surjective lattice isometry iff $T=\bar{U}$, for some surjective isometry $U: E \rightarrow F$.

Since E^{*} is smooth, for every $x^{*} \in E^{*} \backslash\{0\}$ there is a unique $f_{x^{*}} \in E^{* *}$ such that $\left\|f_{x^{*}}\right\|=\left\|x^{*}\right\|=\sqrt{f_{X^{*}}\left(x^{*}\right)}$.

Let us define the semi-inner product on E^{*} :

$$
\left[y^{*}, x^{*}\right]=\left\{\begin{array}{cc}
f_{x^{*}}\left(y^{*}\right) & x^{*} \neq 0 \\
0 & x^{*}=0 .
\end{array}\right.
$$

Theorem (Ilišević-Turnšek '20)

X, Y smooth spaces, $F: X \rightarrow Y$ surjective with $|[F x, F y]|=|[x, y]|$ for all $x, y \in X$. Then there is a phase $\sigma: X \rightarrow\{-1,1\}$ and a linear surjective isometry $U: X \rightarrow Y$ with

$$
F(x)=\sigma(x) U x .
$$

Lemma

Let $x^{*}, y^{*} \in E^{*}$ of norm 1.

$$
\lim _{t \rightarrow 0} \frac{\max _{ \pm}\left\|x^{*} \pm t y^{*}\right\|-\left\|x^{*}\right\|-\left|\left[y^{*}, x^{*}\right] t\right|}{t}=0
$$

Lemma

Let $x^{*}, y^{*} \in E^{*}$ of norm 1.

$$
\lim _{t \rightarrow 0} \frac{\max _{ \pm}\left\|x^{*} \pm t y^{*}\right\|-\left\|x^{*}\right\|-\left|\left[y^{*}, x^{*}\right] t\right|}{t}=0
$$

Proposition

$$
\left|\left[\Phi_{T} x^{*}, \Phi_{T} y^{*}\right]\right|=\left|\left[x^{*}, y^{*}\right]\right|
$$

Lemma

Let $x^{*}, y^{*} \in E^{*}$ of norm 1.

$$
\lim _{t \rightarrow 0} \frac{\max _{ \pm}\left\|x^{*} \pm t y^{*}\right\|-\left\|x^{*}\right\|-\left|\left[y^{*}, x^{*}\right] t\right|}{t}=0
$$

Proposition

$$
\left|\left[\Phi_{T} x^{*}, \Phi_{T} y^{*}\right]\right|=\left|\left[x^{*}, y^{*}\right]\right|
$$

$\ldots \Phi_{T}= \pm U^{*}$ for some linear isometry $U: E \rightarrow F$.

Thank you for your attention!

Research funded by Grants CEX2019-000904-S and PID2020-116398GB-I00 funded by: MCIN/AEI/ 10.13039/501100011033.
https://www.icmat.es/congresos/2022/BSBL/

