EL TEOREMA DE KULIKOV-PERSSON-PINKHAM
MITJANCANT ELS MODELS DLT

JOSE GALINDO I JIMENEZ

ABSTRACT. We give an alternative proof of the Kulikov-Persson-Pinkham The-
orem for a Kahler proper degeneration of K-trivial smooth surfaces. After
running the Minimal Model Program, the obtained minimal dlt model has
mild singularities which we resolve via Brieskorn’s simultaneous resolutions
and toric resolutions.

1. INTRODUCCIO

A final dels 70 Kulikov aconsegui una fita important per al progrés de la teoria
de singularitats i I’estudi de les degeneracions. Donada una degeneracié de K3
superficies va poder construir una model semiestable birracional.

Teorema 1.1 (Kulikov [Kul77], Persson-Pinkham [PP81]). Siga f : Y — D un
morfisme semiestable! a un disc complex tal que
(1) Vi és una superficie suau i K-trivial per a t € D,t #0 ¢
(2) totes les components irreductibles de la fibra especial Vo = f~1(0) son
algebraiques.

Aleshores existeiz una degeneracié semiestable birracionalment equivalent f' : X —
D tal que Ky ~p Ox.

A la bibliografia, a una degeneracié f : X — C amb fibres generals X; satisfent
Ky, ~q O, es defineix com a Model de Kulikov si Kx ~q,f Ox. Una caracteris-
tica essencial d’aquests és que poden ser classificats en termes de la dimensié del
complex dual de la fibra central o, de manera equivalent, I’accié de la monodro-
mia sobre H2(X;) (cf. [Kul77, Theorem II] i [Per77, Proposition 3.3.1]. Fent-ne
us foren estudiats amb profunditat a final del segle passat (cf. [Per77] o [FM83]
entre altres). Aix{ mateix, aquest resultar segui clau en el desenvolupament de la
geometria birracional, en particular el naixement del Programa del Model Minimal
(en anglés: Minimal Model Program abreviat com a MMP).

L’autor ha rebut financament del Govern Basc (Eusko Jaurlaritza) a través del pro-
grama BERC 2022-2025 i ’acreditaci6 BCAM Severo Ochoa 2023-2027 financada per MI-
CIU/AEI/10.13039/501100011033.

1fs ben conegut que pel Teorema de Reduccié Semiestable de Mumford (cf. [KKMSD73, Ch.
4]) qualsevol degeneracié propia i plana de espais analitics complexos o esquemes sobre cossos de
caracteristica 0 pot ser transformada en un model semiestable després d’aplicar un canvi de base
surjectiu i finit i modificacions birracionals. A més, aquest es pot fer projectiu si el darrer ho era.
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La demostraci6 original per a K3 superficies de Kulikov (cf. [Kul77]) era rel-
ativament obscura®. Seguint les seues idees el resultat fou generalitzat i la de-
mostracié aclarida per Persson i Pinkham a [PP81]. L’estratégia rau en argu-
ments combinatoris i construccions analitic-complexes prou subtils (freqiientment
no algebraiques) com les contraccions genériques i les quasi-degeneracions. Per tal
d’evitar-les gastarem I’ MMP.

Fujino prova que per a degeneracions de varietats K-trivials es pot aplicar el
MMP, cf. [Fujll, Theorem 1.1]. Hom obté un model minimal dit* des del model
semiestable, essencialment la versi6 MMP feble d’'un model minimal semiestable.
Aquest ha sigut estudiat més enlla i en té aplicacions molt interessants com per
exemple en recents avancos de la conjectura SYZ, cf. [KX16] i [NXY19] entre
altres.

En particular, Kollar, Laza, Sacca i Voisin demostraren que una degeneracié min-
imal dlt de varietats hyper-Kahler manifolds funciona com a analeg n-dimensional
al model de Kulikov. Comparteixen moltes propietats, concretament en relaci6 a
l’acci6 de la monodromia i la topologia dels complexos duals associats, cf. [KLSV18,
Theorem 0.11].

Aco propicia la pregunta: Pot hom obtindre un model de Kulikov des d’aquests
models dlt? FEl cas complex analitic fou estudiat per Iskovkikh i Shokurov, cf.
[IS05, §7], i el d’espais algebraics per Odaka, cf. [Oda21, Appendix A]. Els primers
demostraren que hom pot aplicar el MMP a una 3-varietat projectiva amb fibres
de dimensié de Kodaira no-negativa mantenint-se a la classe de les singularitats
semiestables. Amb aix0 conclouen que el model és suau amb només singularitats
Du Val a I'interior de les components, després les suavitzen amb la Q-factorialitzacid
analitica.

Observacié 1.2. Les singularitats semiestables en sén un cas especial de singular-
itats en dimensié 3. Tenen bones propietats i admeten una descripcié explicita (cf.
[Sho93, §1]). No obstant aixo, no hi sén als reculls populars del MMP (cf. [Kol13],
[KM98] o [BCHM10]). Aixi que romanen desconeguts per a molts.

En contraposicié, estudiem el model minimal amb la descripcié i propietats es-
tandard de les singularitats dlt. Aquestes estan definides a un ambit més general i
han sigut ampliament estudiades. D’aquesta analisi recuperem el Teorema 1.1.

Teorema 1.3. Siga f : Y — C un morfisme propi, pla, dlt i surjectiv d’un espai
analitic complex a una corba suau C. Suposant que

(1) Y és (globalment) Q-factorial i Kihler;
(2) que les fibres generals de f, )V, sobre punts tancats t € C, sén superficies
suaus amb Ky, ~ Oy, fora d’un conjunt finit CV.

Aleshores existeir un canvi de base finit i surjectiv w : C' — C i un mapa birracional
p amb un diagrama commutatiu

2Fins al punt que al moment d’ésser publicada alguns van dubtar sobre la validesa d’aquesta
(veure la ressenya al seu article a Mathematical Reviews 58, # 2208).

3Aci gastem la paraula model en el sentit del MMP [KM98], és a dir una varietat birracional-
ment equivalent amb divisor canonic nef en la mateixa classe de singularitats.
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tal que f': X — C" és un model de Kulikov i p és un isomorfisme sobre 7—1(C\C?).
o denota la projeccié natural a C'.

Observaci6 1.4. Les hipotesi del teorema impliquen que el model té singularitats
semiestables (comparar amb [IS05, Definition 7.2])

La demostracié es du a terme en 3 passos

Pas 1 Comencem amb un model dlt/semiestable d’una degeneracié de superficies
K-trivials i com a [Fuj11] obtenim un model dlt relativament K-trivial dlt
mitjangant el MMP.

Pas 2 Demostrar que aquest model minimal dlt és snc fora dels llocs d’interseccid
de les fibres especials. Concretament, ’espai total en té com a maxim singu-
laritats terminals (no-regulars) sobre singularitats (no-regulars) aillades de
superficie a 'interior de les components irreductibles de les fibres especials,
veure cf. Proposici6 3.4.

Pas 3 Com que les singularitats canoniques de superficie son singularitats Du
Val, les podem resoldre de manera crepant, després d’un canvi de base finit
i surjectiu, mitjancant les resolucions de Brieskorn i les resolucions toriques,
gastant un argument de Friedman.

Observacié 1.5. i. A Dlapéndix del seu article inedit [Oda21], Odaka ho va
provar per a espais algebraics sota unes hipotesis un poc més generals, ac-
ceptant singularitats no Q-factorials, amb una estrategia similar. De fet més
fort puix que al Pas 3 demostra que no cal fer el canvi de base per aplicar la res-
olucié simultania, cf. [Oda21, Lemma A.5]. Per a espais complexos analitics va
observar que deuria ser possible fer el mateix pero no és clar que les referencies
citades I'impliquen directament, cf. [Oda2l, Remark A.6].

ii. El Pas 2 va ser demostrat essencialment amb més generalitat per Nicaise, Xu
i Yue, ells proven que un model minimal dlt (bo) (X, D) per a dimensié arbi-
traria amb Ky + D Cartier és snc al voltant dels estrats lc unidimensionals (cf.
[NXY19, Theorem 4.5]). En la nostra exposicié la geometria de les singularitats
a dimensié 3 ens permeten aplicar un argument més simple, veure Observacid

3.3.

Agraiments. L’autor es sent molt agrait amb Evgeny Shinder i Philip Engel per
la seua ajuda i orientacié. També amb Vyacheslav Shokurov i Yuji Odaka per les
seues observacions, aixi com amb Mattias Jonsson i Hyunsuk Kim per assenyalar
unes errades menors.

2. NOTACIO 1 RESULTATS PRELIMINARS

2.1. Definicions basiques del Programa del Model Minimal. Generalment
gastarem les definicions i notacié de [KM98] i [Kol13].

Un parell (X, A) consisteix d’una varietat complexa analitica normal X i un Q-
(Weil) divisor A sobre aquest. Considerem parells (X, A) sobre una varietat suau
S satisfent les segiients condicions:

(1) X és una varietat normal i propia que en té feix dualitzant wx/g i
(2) siga A =" a;D; la descomposici6 irreductible de A aleshores cap D; té el
seu suport contingut a Sing(X).
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Per a un morfisme birracional f : Y — X, amb divisors excepcionals {E;};cr, si
Kx + A és Q-Cartier hom pot escriure

(1) Ky + [T A~g ff(KEx+A)+ Y aX,AE)E,

E; excepcional
ona(X, E;, A) es diu la discrepincia de F;. A més, establim a(Y, A, D) = —coeffp A
per als divisors no-excepcionals D C Y.

Siga (X, A) un parell, per a tot morfisme birracional f : ¥ — X i per a tot
divisor irreductible £ C Y hom diu que

terminal > ( per a tot E excepcional,
oni > 0 per a tot E excepcional
(X,A) is canome ) if a(X,AE)< — e xeepd n ’
plt or log terminal > —1 per a tot E excepcional,
log canodnic (lc) > —1 per a tot E.

Si A =0, llavors diem que X és terminal (resp. canonic, etc.) si (X, 0) és terminal
(resp. canonic, etc). Localment a un punt (p € X, A) és terminal (resp. canonic,
etc.) si existeix un entorn obert p € U tal que (U, Aly) és terminal (resp. canonic,
etc.).

i. Siga (X,A) un parell lc, aleshores una subvarietat irreductible Z C X és in
centre log canonic or centre lc si existeix un morfisme birracional f : Y — X
i un divisor E C Y tal que a(X,A,E) = —11 f(E)X = Z. Ad GX denota
la clausura analitica. Més en general, per a qualsevol divisor E C Y tal que
WX C Z hom diu que E és un divisor sobre Z.

ii. Diem que (X, A) és d’encreuaments simples i normals o snc, per les seues segles
en anglés (simple normal crossings), si X és suau i A és un divisor d’encreua-
ments normals i simples. L’obert maximal X*"¢ C X tal que (X*"¢, Alxsnc)
és un parell snc es diu lloc d’encreuaments simples i normals o lloc snc. Un
morfisme pla i propi f : X — C es diu semiestable si (X, X;) és snc per a tot
punt tancat t € C, on X; = f~1(¢) amb estructura reduida.

iii. Un centre log canonic es diu divisorial log terminal o dlt si cap centre lc de
(X, A) viu sobre X\ X*"¢. Analogament un morfisme f : X — C es diu dlt si
(X, X}) és dlt per a tot punt tancat t € C.

iv. Un varietat X es diu (globalment) Q-factorial si tot divisor de Weil sobre X
és Q-Cartier.

v. Diem que un parell f: (X, A) — S és minimal si Kx + A és f-nef, és a dir nef
per a tota corba tancada i irreductible continguda en una fibra tancada de f.

vi. Un mapa birracional f : (X,Ax) --» (Y, Ay) es diu crepant® si Kx + Ax ~
F(Ky +Ay) i Ay = f,Ax.

2.2. Parells dlt i el diferent. Repassem algunes propietats dels parells dlt i el

diferent. En general ens interessa tenir control sobre els parells dlt quan A és reduit.
Per aquesta raé considerem

Teorema 2.1. [Koll3, Theorem 4.16] Siga (X,A) un parell dit i V1,...,V, els
divisors irreductibles de A que apareizen amb coeficient 1.

4L’encunyament del terme crepant a ’anglés va ser obra de Reid seguint la logica que no és un
morfisme discrepant (discrepant en catald), ¢d és amb discrepancies (cf. [Koll3, Definition 2.23]).
En catala fem el procés analeg per traduir-lo aixi.
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(1) Els centres lc k-codimensionals de (X, A) sdn precisament les components
irreductibles dels diversos Vi, N...NV;,.

(2) Cada component irreductible de Vi, N...NV;, €és normal de codimensio pura
k.

(3) Siga Z C X qualsevol centre le. Suposant que V; és (Q-)Cartier per a algun
i i Z ¢ V. Llavors cada component irreductible de V;|z és (Q-)Cartier.

Definicié 2.2. Siga un parell (X, A) iV, i € I les components primeres de A. Un
estrat de A és una component connexa de la interseccié esquematica Ay = NjesV;
amb J C I no buit.

En concret, amb les hipotesi del teorema anterior si A és reduit i efectiu les
components irreductibles de cada estrat corresponen als centres log canonics.

A T'hora de treballar amb divisors sempre és ttil tindre algun tipus de formula
d’adjuncié, pero les singularitats obstrueixen la férmula d’adjuncié usual. Afortu-
nadament per als parells dlt existeix un terme corrector per obtenir una adjuncié
(agd esta definit per a hipotesi més amples, veure [Kol13, §4.1])

Def./Prop. 2.3. [Fuj07, Remark 8.2] Siga (X, A) un parell dlt i V' una component
irreductible amb coefficient 1 a A. Llavors existeix un tinic Q-divisor Diffy, (A — V)
sobre V', definit per ’equacio

(Kx +A)|y = Ky + Diffy (A — V),

aquest és conegut com el diferent (en anglés: the different). Addicionalment,
(V,Diffy (A — V)) és un parell dlt.

En particular adoneu-vos-en que el diferent hereta la propietat dlt. Computar
el diferent en general no és gaire facil pero sota bones hipotesi és possible. Hom
dedueix facilment del Teorema 2.1 i [Fuj07, Proposition 9.2] la segiient descripcié
del diferent

Corol-lari 2.4. [KX16, Paragrafs 6 i 15] Siga (X,A) un parell dit tal que A és
efectiu i reduit amb components irreductibles V; i Kx + A és (Q-)Cartier. Siga D;
la suma dels estrats de codimensic 2 de A amb support a V;. Llavors

Diffy, (A —V;) = D;,
i D; és (Q-)Cartier. Conseqiientment, el parell (V;, D;) és dlt i satisfa la formula
d’adjuncio

(Kx +4)

v, = KV,; + Dl
3. DEMOSTRACIO DEL TEOREMA DE KULIKOV-PERSSON-PINKHAM.

Volem seguir-ne 'estrategia disposada a I'introduccié. El primer pas només con-
sistira en aplicar el MMP, per tal d’obtindre un espai complex analitic minimal X
que siga terminal i Q-factorial analytic space X amb (X, X;) sent dlt. El segon con-
sisteix en estudiar la geometria dels parells dlt de la secci6 previa per tal d’obtindre
una descripcié acurada de les seues singularitats.

Proposicié 3.1. Siga X tridimensional i (X, A) un parell dit tal que A és efectiu
i reduit amb components irreductibles V; Q-Cartier®. Suposem que Kx + A és

5En el marc de morfismes dlt i degeneracions aquesta condicié s’esmenta com a verticalment
Q-Cartier (en anglés:vertically Q-Cartier), veure [BFJ16], o un bon model dlt(en anglés:good dit
model), veure [NXY19].
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Cartier, aleshores els V; tenen com a mazxim singularitats aillades canoniques lluny
dels estrats unidimensionals.

Demostracio. Siga D; la suma dels estrats unidimensionals amb suport a V;. Pel
Teorema 2.1 tots els V; en son normals i per tant en tenen com a maxim singularitats
aillades. També ho sén les components irreductibles de D; i per tant sén corbes
suaus.

Pel Corol-lari 2.4 (V;, D;) és dlt i Ky, + D; és Cartier. Per definicié de parell dlt
existeix un tancat Z := V;\V;*"¢ tal que qualsevol divisor sobre Z en té discrepancia
> —1. Com que Ky, + D; és Cartier, per la férmula (1) les discrepancies sén enters
i per tant la discrepancia ha de ser > 0.

Z no pot contenir ni els estrats 0-dimensionals de D; ni una corba irreductible
amb suport a D; ja que aquests sén centres log canonics pel Teorema 2.1. Suposem
que existeix un punt tancat p € Sup D;NZ com que la discrepancia és > 0 el punt és
canonic i per tant regular en V; per [Kol13, Theorem 2.29]. Conseqiientment Sup D;
és al lloc suau de V;. Lluny d’aquest en té com a maxim singularitats canoniques.

O

Corol-lari 3.2. Siga (X, A) un parell dit tal que X és tridimensional i Gorenstein
1 A és efectiu © reduit amb components irreductibles V; Q-Cartier. Suposant que
Kx + A és Cartier i X\ Sup A C X*"¢. Aleshores

X\X°" = U, Sing(V;)

on Sing(V;) consisteix només en singularitats canoniques aillades a linterior de
Vi i X és terminal. En particular si (X,A) és snc a un entorn obert dels estrats
unidimensionals.

Demostracié. Per la proposicié anterior només cal demostrar que els V; sén Cartier
perque llavors un punt no-regular de X també en sera un punt no-regular de V;.

Asseverem que X és terminal. Com que (X, A) és dlt llavors qualsevol divisor
E que no estiga sobre el lloc snc satisfa a(E, X, A) > —1. Pero Kx + A és Cartier
i per tant com abans a(E,X,A) > 0. Com que X\SupA C X*"¢ pel [KM9S,
Lemma 2.27] obtenim a(E, X,0) > 0.

Com que X és tridimensional, terminal i Gorenstein [Kaw88, Lemma 5.1] implica
que tot divisor Q-Cartier sobre X és Cartier. Per tant els V; sén Cartier i hom
dedueix que Sing(X) C U; Sing(V;) i per tant X\ X*"¢ = U; Sing(V;). O

Observacié 3.3. Una asseveracié similar va ser demostrada amb més generalitat
a [NXY19, Theorem 4.5] per a qualsevol dimensié. La demostracié difereix de la
nostra a I’hora de demostrar que els V; sén Cartier al voltant dels estrats unidimen-
sionals. Ells ho proven amb un argument sofisticat pero per al nostre cas és prou
aplicar-ne el lemma de Kawamata.

Proposicié 3.4. Siga f: Y — C un morfisme propi, pla, dit © surjectiu d’un espai
analitic complex a una corba suau C. Suposant que
(1) Y és (globalment) Q-factorial i Kahler;
(2) que les fibres generals de f, Vi sobre punts tancats t € C, sén superficies
suaus amb Ky, ~ Oy, fora d’un conjunt finit CV.
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Aleshores existeix un morfisme birracional p : Y — X i un diagrama commutatiu

y—*f% L x

N

tal que p és un isomorfisme sobre C\C? i
(1) X és terminal, Q-factorial i Kx ~y Ox.
(2) (X,X:) és un parell dit per a tot punt tancat t € C i snc al voltant dels
estrats unidensionals de X;.
(3) Les components irreductibles de Vi of X tenen com a mdzim singularitats

canoniques 1
X\Xsnc = Uiﬂg Slng(v;,ﬂ

Demostracié. Pas 1. Podem aplicar 'MMP, cf. [HP16, Theorem 1.1], i hom obté
f': X — C un morfisme dlt amb X terminal i Q-factorial tal que Ky és f’-nef.
A més, per [Fujll, Theorem 1.1] hom dedueix que si Ky, ~ Oy, per a una fibra
general aleshores Ky ~¢ Oy.

Per a qualsevol fibra tancada X, per adjuncié (cf. [Koll3, Sec 4.1]) obtenim

Ox, ~ (Kx + &i)|x, = Kx, .

Aixi mateix, una fibra general ) és K-trivial i per tant per adjuncié un divi-
sor qualsevol de Ky indueix un divisor principal a ), i com a conseqiiéncia |Ky|
consisteix d’una combinaci6 lineal de les fibres especials. Aixi que Ky interseca triv-
ialment amb qualsevol corba d’una fibra general );. Conseqiilentment, no poden
ser contretes per cap pas del MMP, aixi doncs p és un isomorfisme sobre C\C®.
Pas 2. X és relativament K-trivial de manera que Ky i Ky + X; sén Cartier.
A més a més, cada divisor és Q-Cartier per Q-factorialitat. En conseqiiéncia lluny
de les altres fibres especials en algun entorn U C X de X; el parell (U, X;) satisfa
les hipotesi del Corol-lari 3.2 d’on es dedueix l'asseveracié del teorema.
O

D’aquesta proposicié hom dedueix que I'tinica obstruccié a obtindre un model de
Kulikov genui després d’aplicar el MMP sén les singularitats canoniques restants a
les fibres especials. Aquestes en s6n exactament singularitats Du Val, veure [KM98,
Theorem 4.5] les quals hi admeten una resolucié simultania en familia després d’un
canvi de base surjectiu i finit. Aquest canvi de base en produeix singularitats als
llocs d’interseccié que en resolem crepant-ment amb un truc de Friedman.

Demostracio del Teorema 1.3. Després d’aplicar la Proposicié 3.4 és prou demostrar
que hom pot resoldre totes les singularitats Du Val aillades del model minimal dlt
crepantment.

Pas 3. Sense pérdua de generalitat suposem que només n’hi ha una fibra singular
anomenada ). Tria una singularitat Du Val € V; a la component irreductible
de )y. Llavors existeix un entorn de x € U C Y per al qual només n’hi han
singularitats Du Val. Aleshores per [Bri71] existeix un canvi de base finit, surjectiu



8 J. GALINDO I JIMENEZ

i ramificat 7o : C' — C i un diagrama Cartesia
z 2y
L
C——C
que admet una resoluci6é simultania g

Z-Ysycz - 2ysreuUcy

BJ hl ’ Jfo

C ——C C

= o

Ens hi adonem qué Z és h-trivial ja que el divisor canonic relatiu no hi canvia per
a un canvi de base finit, surjectiu i ramificat. A més ¢ és una resolucié minimal a
cada fibra i per tant ¢ és un isomorfisme en codimensié 1. Aixi doncs ¢*Kz ~ K 5.
Globalment obtenim

Z_9,z_ 9.y

-
EJ/ hJ/ ifo '
C’ E— é T> C

Ara Z pot tenir singularitats sobrevingudes per l'efecte del canvi de base al lloc
d’intersecci6.

Asseveracid. Fuxisteiz un morfisme crepant i birracional

z 7,z
h' %

tal que és un isomorfisme llevat d’un entorn Vy del lloc d’interseccid de Zo; és una
log-resolucid de singularitats a Vo i h' : Z' — C és un morfisme pla i propi.

La demostracié de lasseveraci6 s’obté aplicant els arguments de [Fri83, Propo-
sition 1.2]. Un canvi de base d’ordre n : 1 crea singularitats toriques que localment
analiticament als punts triples en sén aixi

Spec(C[x, Y, z, t]/(a?yz - tn)

i les corbes dobles esdevenen corbes de singularitats A,_1. Aquestes es poden
resoldre amb la resolucié torica estandard obtinguda subdividint els ventalls corre-
sponents. El més important és que aquest procés és crepant. Aco es fa localment
al voltant dels llocs d’intersecci6 lluny de les singularitats canoniques i per tant és
equivalent al cas snc descrit a l'article de Friedman.

Després d’aplicar I'asseveracid, (£’, (Z])) és snc lluny de les singularitats Du Val,
en té una singularitat Du Val manys que (), o) i manté la K-trivialitat. Repetint
aquest procés a (Z', Z]) de forma inductiva dona un morsfisme finit i surjectiu
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7 : C" — C, un mapa birracional

i un morfisme pla i propi f' : X — C’. Ara qualsevol singularitat (z € X) ha
de jaure sobre l'interior de les components irreductibles V; ja que &} és un divisor
Cartier. Ago no ocurreix perquée hem resolt totes les singularitats i per tant X' és
suau, Kx ~ Ox i Xy és un divisor snc g.e.d. ([

Corol-lari 3.5 (Teorema Kulikov-Persson-Pinkham). Siga f: X — D una degen-
eracio Kahler propia de superficies suaus K -trivials sobre el disc complex. Aleshores
ezisteiz un canvi de base surjectiu i finit 7 : D — D, X’ una varietat suau i un
diagrama commutatiu

On p és un mapa birracional tal que és un isomorfisme llevat de a la fibra central i
f': X' = D és una degeneracié semiestable amb Kxr ~p Oxr.

Demostracié. Aplicar el Teorema de Reduccié Semiestable de Mumford [KKMSD73,
Ch. 4] i després el Teorema 1.3. O

Observaci6é 3.6. [Oda21, Remark A.6] Per al Teorema 1.1 originalment a [Kul77]
Persson i Pinkham no hi assumiren que la varietat fos Kédhler només que les fibres
fossen algebraiques. Aquesta hipotesi s’assumeix per tal de poder aplicar I’ MMP
per a espais analitics complexos ja que no ha sigut establert amb la generalitat del
Teorema 1.1.

N’hi ha una obstruccié a la generalitzacié. Una degeneracié de superficies K3 que
no admet cap model de Kulikov va ser construit a [Nis88, §4]. Aquesta degeneracid
satisfa que la fibra central conté una superficie analitica complexa no-algebraica
com a component irreductible (una superficie de classe de Kodaira VII).

Observacié 3.7 (Cas de superficies amb x(Xx;) = 0). Els models de Kulikov no
existeixen sempre per a superficies suaus amb divisor canonic numéricament trivial.
Un contraexemple de degeneracions de superficies d’Enriques ve donat pels “tests
de flors” a [Per77, 3.3 and Appendix 2]. Pel [Fujl1, Theorem 1.2] aplicant el MMP
s’obté un model minimal dlt f : X — C amb Kx ~q,f Ox.

El que fallaria és al segon pas ja que és crucial que Ky siga Cartier: Per deduir
que les discrepancies de (V;, D;) son enters i que les components irreductibles V;
son Cartier.

Observacié 3.8 (Degeneracions maximals de superficies Abelianes). El cas més
interessant de model de Kulikov és 'anomenat de Tipus III, el qual hui dia també
es coneix com a Mazimally Unipotent degeneration (cf. [KLSV18, Definition 6.10])
o mazimally degenerate family (cf. [NXY19, §1.2]). Per a superficies, aixd vol dir
que la accié de la monodromia sobre H?(X;), amb X, una fibra general, té un bloc
de Jordan de rang 2 o, equivalentment, que el complex dual de la fibra té dimensié
2, ¢O és, la fibra singular en té punts triples.
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Donat un model de Kulikov de Tipus III de superficies Abelianes, cada compo-
nent irreductible de la fibra singular és torica; de fet, el complement de les corbes
dobles és isomorf a C* x C* (cf. [FMS83, pp. 21-22]). Per tant, a la prova del
Teorema 1.3 no es resol cap singularitat. Aixi, el model obtés a la Proposicié 3.4
ja és semiestable. Hom dedueix que al cas algebraic de ’observacié anterior també
s’obté un model semiestable.
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