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Abstract. We give an alternative proof of the Kulikov-Persson-Pinkham The-
orem for a Kähler proper degeneration of K-trivial smooth surfaces. After
running the Minimal Model Program, the obtained minimal dlt model has
mild singularities which we resolve via Brieskorn’s simultaneous resolutions
and toric resolutions.

1. Introducció

A final dels 70 Kulikov aconseguí una fita important per al progrés de la teoria
de singularitats i l’estudi de les degeneracions. Donada una degeneració de K3
superfícies va poder construir una model semiestable birracional.

Teorema 1.1 (Kulikov [Kul77], Persson-Pinkham [PP81]). Siga f : Y → D un
morfisme semiestable1 a un disc complex tal que

(1) Yt és una superfície suau i K-trivial per a t ∈ D, t 6= 0 i
(2) totes les components irreductibles de la fibra especial Y0 = f−1(0) són

algebraiques.
Aleshores existeix una degeneració semiestable birracionalment equivalent f ′ : X →
D tal que KX ∼f ′ OX .

A la bibliografia, a una degeneració f : X → C amb fibres generals Xt satisfent
KXt

∼Q OXt
es defineix com a Model de Kulikov si KX ∼Q,f OX . Una caracterís-

tica essencial d’aquests és que poden ser classificats en termes de la dimensió del
complex dual de la fibra central o, de manera equivalent, l’acció de la monodro-
mia sobre H2(Xt) (cf. [Kul77, Theorem II] i [Per77, Proposition 3.3.1]. Fent-ne
ús foren estudiats amb profunditat a final del segle passat (cf. [Per77] o [FM83]
entre altres). Així mateix, aquest resultar seguí clau en el desenvolupament de la
geometria birracional, en particular el naixement del Programa del Model Minimal
(en anglés: Minimal Model Program abreviat com a MMP).

L’autor ha rebut finançament del Govern Basc (Eusko Jaurlaritza) a través del pro-
grama BERC 2022-2025 i l’acreditació BCAM Severo Ochoa 2023-2027 finançada per MI-
CIU/AEI/10.13039/501100011033.

1És ben conegut que pel Teorema de Reducció Semiestable de Mumford (cf. [KKMSD73, Ch.
4]) qualsevol degeneració pròpia i plana de espais analítics complexos o esquemes sobre cossos de
característica 0 pot ser transformada en un model semiestable després d’aplicar un canvi de base
surjectiu i finit i modificacions birracionals. A més, aquest es pot fer projectiu si el darrer ho era.
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La demostració original per a K3 superfícies de Kulikov (cf. [Kul77]) era rel-
ativament obscura2. Seguint les seues idees el resultat fou generalitzat i la de-
mostració aclarida per Persson i Pinkham a [PP81]. L’estratègia rau en argu-
ments combinatoris i construccions analític-complexes prou subtils (freqüentment
no algebraiques) com les contraccions genèriques i les quasi-degeneracions. Per tal
d’evitar-les gastarem l’MMP.

Fujino provà que per a degeneracions de varietats K-trivials es pot aplicar el
MMP, cf. [Fuj11, Theorem 1.1]. Hom obté un model minimal dlt3 des del model
semiestable, essencialment la versió MMP feble d’un model minimal semiestable.
Aquest ha sigut estudiat més enllà i en té aplicacions molt interessants com per
exemple en recents avanços de la conjectura SYZ, cf. [KX16] i [NXY19] entre
altres.

En particular, Kollár, Laza, Saccà i Voisin demostraren que una degeneració min-
imal dlt de varietats hyper-Kähler manifolds funciona com a anàleg n-dimensional
al model de Kulikov. Comparteixen moltes propietats, concretament en relació a
l’acció de la monodromia i la topologia dels complexos duals associats, cf. [KLSV18,
Theorem 0.11].

Açò propicia la pregunta: Pot hom obtindre un model de Kulikov des d’aquests
models dlt? El cas complex analític fou estudiat per Iskovkikh i Shokurov, cf.
[IS05, §7], i el d’espais algebraics per Odaka, cf. [Oda21, Appendix A]. Els primers
demostraren que hom pot aplicar el MMP a una 3-varietat projectiva amb fibres
de dimensió de Kodaira no-negativa mantenint-se a la classe de les singularitats
semiestables. Amb això conclouen que el model és suau amb només singularitats
Du Val a l’interior de les components, després les suavitzen amb la Q-factorialització
analítica.
Observació 1.2. Les singularitats semiestables en són un cas especial de singular-
itats en dimensió 3. Tenen bones propietats i admeten una descripció explícita (cf.
[Sho93, §1]). No obstant això, no hi són als reculls populars del MMP (cf. [Kol13],
[KM98] o [BCHM10]). Així que romanen desconeguts per a molts.

En contraposició, estudiem el model minimal amb la descripció i propietats es-
tàndard de les singularitats dlt. Aquestes estan definides a un àmbit més general i
han sigut àmpliament estudiades. D’aquesta anàlisi recuperem el Teorema 1.1.
Teorema 1.3. Siga f : Y → C un morfisme propi, pla, dlt i surjectiu d’un espai
analític complex a una corba suau C. Suposant que

(1) Y és (globalment) Q-factorial i Kähler;
(2) que les fibres generals de f , Yt sobre punts tancats t ∈ C, són superfícies

suaus amb KYt
∼ OYt

fora d’un conjunt finit C0.
Aleshores existeix un canvi de base finit i surjectiu π : C ′ → C i un mapa birracional
p amb un diagrama commutatiu

X Y ×C C ′

C ′

p

f ′ π2

2Fins al punt que al moment d’ésser publicada alguns van dubtar sobre la validesa d’aquesta
(veure la ressenya al seu article a Mathematical Reviews 58, # 2208).

3Ací gastem la paraula model en el sentit del MMP [KM98], és a dir una varietat birracional-
ment equivalent amb divisor canònic nef en la mateixa classe de singularitats.
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tal que f ′ : X → C ′ és un model de Kulikov i p és un isomorfisme sobre π−1(C\C0).
π2 denota la projecció natural a C ′.

Observació 1.4. Les hipòtesi del teorema impliquen que el model té singularitats
semiestables (comparar amb [IS05, Definition 7.2])

La demostració es du a terme en 3 passos
Pas 1 Comencem amb un model dlt/semiestable d’una degeneració de superfícies

K-trivials i com a [Fuj11] obtenim un model dlt relativament K-trivial dlt
mitjançant el MMP.

Pas 2 Demostrar que aquest model minimal dlt és snc fora dels llocs d’intersecció
de les fibres especials. Concretament, l’espai total en té com a màxim singu-
laritats terminals (no-regulars) sobre singularitats (no-regulars) aïllades de
superfície a l’interior de les components irreductibles de les fibres especials,
veure cf. Proposició 3.4.

Pas 3 Com que les singularitats canòniques de superfície són singularitats Du
Val, les podem resoldre de manera crepant, després d’un canvi de base finit
i surjectiu, mitjançant les resolucions de Brieskorn i les resolucions tòriques,
gastant un argument de Friedman.

Observació 1.5. i. A l’apèndix del seu article inèdit [Oda21], Odaka ho va
provar per a espais algebraics sota unes hipòtesis un poc més generals, ac-
ceptant singularitats no Q-factorials, amb una estratègia similar. De fet més
fort puix que al Pas 3 demostra que no cal fer el canvi de base per aplicar la res-
olució simultània, cf. [Oda21, Lemma A.5]. Per a espais complexos analítics va
observar que deuria ser possible fer el mateix però no és clar que les referències
citades l’impliquen directament, cf. [Oda21, Remark A.6].

ii. El Pas 2 va ser demostrat essencialment amb més generalitat per Nicaise, Xu
i Yue, ells proven que un model minimal dlt (bo) (X , D) per a dimensió arbi-
trària amb KX +D Cartier és snc al voltant dels estrats lc unidimensionals (cf.
[NXY19, Theorem 4.5]). En la nostra exposició la geometria de les singularitats
a dimensió 3 ens permeten aplicar un argument més simple, veure Observació
3.3.

Agraïments. L’autor es sent molt agraït amb Evgeny Shinder i Philip Engel per
la seua ajuda i orientació. També amb Vyacheslav Shokurov i Yuji Odaka per les
seues observacions, així com amb Mattias Jonsson i Hyunsuk Kim per assenyalar
unes errades menors.

2. Notació i resultats preliminars

2.1. Definicions bàsiques del Programa del Model Minimal. Generalment
gastarem les definicions i notació de [KM98] i [Kol13].

Un parell (X,∆) consisteix d’una varietat complexa analítica normal X i un Q-
(Weil) divisor ∆ sobre aquest. Considerem parells (X,∆) sobre una varietat suau
S satisfent les següents condicions:

(1) X és una varietat normal i pròpia que en té feix dualitzant ωX/S i
(2) siga ∆ =

∑
aiDi la descomposició irreductible de ∆ aleshores cap Di té el

seu suport contingut a Sing(X).
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Per a un morfisme birracional f : Y → X, amb divisors excepcionals {Ei}i∈I , si
KX +∆ és Q-Cartier hom pot escriure

(1) KY + f−1
∗ ∆ ∼Q f∗(KX +∆) +

∑
Ei excepcional

a(X,∆, Ei)Ei,

on a(X,Ei,∆) es diu la discrepància de Ei. A més, establim a(Y,∆, D) = − coeffD ∆
per als divisors no-excepcionals D ⊂ Y .

Siga (X,∆) un parell, per a tot morfisme birracional f : Y → X i per a tot
divisor irreductible E ⊂ Y hom diu que

(X,∆) is


terminal
canònic
plt or log terminal
log canònic (lc)

if a(X,∆, E)


> 0 per a tot E excepcional,
≥ 0 per a tot E excepcional,
> −1 per a tot E excepcional,
≥ −1 per a tot E.

Si ∆ = 0, llavors diem que X és terminal (resp. canònic, etc.) si (X, 0) és terminal
(resp. canònic, etc). Localment a un punt (p ∈ X,∆) és terminal (resp. canònic,
etc.) si existeix un entorn obert p ∈ U tal que (U,∆|U ) és terminal (resp. canònic,
etc.).

i. Siga (X,∆) un parell lc, aleshores una subvarietat irreductible Z ⊂ X és in
centre log canònic or centre lc si existeix un morfisme birracional f : Y → X

i un divisor E ⊂ Y tal que a(X,∆, E) = −1 i f(E)
X

= Z. Ací (·)
X

denota
la clausura analítica. Més en general, per a qualsevol divisor E ⊂ Y tal que
f(E)

X
⊆ Z hom diu que E és un divisor sobre Z.

ii. Diem que (X,∆) és d’encreuaments simples i normals o snc, per les seues segles
en anglés (simple normal crossings), si X és suau i ∆ és un divisor d’encreua-
ments normals i simples. L’obert maximal Xsnc ⊂ X tal que (Xsnc,∆|Xsnc)
és un parell snc es diu l loc d’encreuaments simples i normals o l loc snc. Un
morfisme pla i propi f : X → C es diu semiestable si (X,Xt) és snc per a tot
punt tancat t ∈ C, on Xt = f−1(t) amb estructura reduïda.

iii. Un centre log canònic es diu divisorial log terminal o dlt si cap centre lc de
(X,∆) viu sobre X\Xsnc. Anàlogament un morfisme f : X → C es diu dlt si
(X,Xt) és dlt per a tot punt tancat t ∈ C.

iv. Un varietat X es diu (globalment) Q-factorial si tot divisor de Weil sobre X
és Q-Cartier.

v. Diem que un parell f : (X,∆) → S és minimal si KX +∆ és f -nef, és a dir nef
per a tota corba tancada i irreductible continguda en una fibra tancada de f .

vi. Un mapa birracional f : (X,∆X) 99K (Y,∆Y ) es diu crepant4 si KX + ∆X ∼
f∗(KY +∆Y ) i ∆Y = f∗∆X .

2.2. Parells dlt i el diferent. Repassem algunes propietats dels parells dlt i el
diferent. En general ens interessa tenir control sobre els parells dlt quan ∆ és reduït.
Per aquesta raó considerem
Teorema 2.1. [Kol13, Theorem 4.16] Siga (X,∆) un parell dlt i V1, ..., Vr els
divisors irreductibles de ∆ que apareixen amb coeficient 1.

4L’encunyament del terme crepant a l’anglés va ser obra de Reid seguint la lògica que no és un
morfisme discrepant (discrepant en català), çò és amb discrepàncies (cf. [Kol13, Definition 2.23]).
En català fem el procés anàleg per traduir-lo així.
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(1) Els centres lc k-codimensionals de (X,∆) són precisament les components
irreductibles dels diversos Vi1 ∩ ... ∩ Vik .

(2) Cada component irreductible de Vi1 ∩ ...∩Vik és normal de codimensió pura
k.

(3) Siga Z ⊂ X qualsevol centre lc. Suposant que Vi és (Q-)Cartier per a algun
i i Z * Vi. Llavors cada component irreductible de Vi|Z és (Q-)Cartier.

Definició 2.2. Siga un parell (X,∆) i Vi, i ∈ I les components primeres de ∆. Un
estrat de ∆ és una component connexa de la intersecció esquemàtica ∆J = ∩j∈JVj

amb J ⊂ I no buit.

En concret, amb les hipòtesi del teorema anterior si ∆ és reduït i efectiu les
components irreductibles de cada estrat corresponen als centres log canònics.

A l’hora de treballar amb divisors sempre és útil tindre algun tipus de formula
d’adjunció, però les singularitats obstrueixen la fórmula d’adjunció usual. Afortu-
nadament per als parells dlt existeix un terme corrector per obtenir una adjunció
(açò està definit per a hipòtesi més amples, veure [Kol13, §4.1])

Def./Prop. 2.3. [Fuj07, Remark 8.2] Siga (X,∆) un parell dlt i V una component
irreductible amb coefficient 1 a ∆. Llavors existeix un únic Q-divisor DiffV (∆−V )
sobre V , definit per l’equació

(KX +∆)|V = KV +DiffV (∆− V ),

aquest és conegut com el diferent (en anglés: the different). Addicionalment,
(V,DiffV (∆− V )) és un parell dlt.

En particular adoneu-vos-en que el diferent hereta la propietat dlt. Computar
el diferent en general no és gaire fàcil però sota bones hipòtesi és possible. Hom
dedueix fàcilment del Teorema 2.1 i [Fuj07, Proposition 9.2] la següent descripció
del diferent

Corol·lari 2.4. [KX16, Paràgrafs 6 i 15] Siga (X,∆) un parell dlt tal que ∆ és
efectiu i reduït amb components irreductibles Vi i KX +∆ és (Q-)Cartier. Siga Di

la suma dels estrats de codimensió 2 de ∆ amb support a Vi. Llavors
DiffVi

(∆− Vi) = Di,

i Di és (Q-)Cartier. Conseqüentment, el parell (Vi, Di) és dlt i satisfà la fòrmula
d’adjunció

(KX +∆)|Vi
= KVi

+Di.

3. Demostració del Teorema de Kulikov-Persson-Pinkham.

Volem seguir-ne l’estratègia disposada a l’introducció. El primer pas només con-
sistirà en aplicar el MMP, per tal d’obtindre un espai complex analític minimal X
que siga terminal i Q-factorial analytic space X amb (X ,Xt) sent dlt. El segon con-
sisteix en estudiar la geometria dels parells dlt de la secció prèvia per tal d’obtindre
una descripció acurada de les seues singularitats.

Proposició 3.1. Siga X tridimensional i (X,∆) un parell dlt tal que ∆ és efectiu
i reduït amb components irreductibles Vi Q-Cartier5. Suposem que KX + ∆ és

5En el marc de morfismes dlt i degeneracions aquesta condició s’esmenta com a verticalment
Q-Cartier (en anglés:vertically Q-Cartier), veure [BFJ16], o un bon model dlt(en anglés:good dlt
model), veure [NXY19].
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Cartier, aleshores els Vi tenen com a màxim singularitats aïllades canòniques lluny
dels estrats unidimensionals.

Demostració. Siga Di la suma dels estrats unidimensionals amb suport a Vi. Pel
Teorema 2.1 tots els Vi en són normals i per tant en tenen com a màxim singularitats
aïllades. També ho són les components irreductibles de Di i per tant són corbes
suaus.

Pel Corol·lari 2.4 (Vi, Di) és dlt i KVi
+Di és Cartier. Per definició de parell dlt

existeix un tancat Z := Vi\V snc
i tal que qualsevol divisor sobre Z en té discrepància

> −1. Com que KVi
+Di és Cartier, per la fórmula (1) les discrepàncies són enters

i per tant la discrepància ha de ser ≥ 0.
Z no pot contenir ni els estrats 0-dimensionals de Di ni una corba irreductible

amb suport a Di ja que aquests són centres log canònics pel Teorema 2.1. Suposem
que existeix un punt tancat p ∈ SupDi∩Z com que la discrepància és ≥ 0 el punt és
canònic i per tant regular en Vi per [Kol13, Theorem 2.29]. Conseqüentment SupDi

és al lloc suau de Vi. Lluny d’aquest en té com a màxim singularitats canòniques.
�

Corol·lari 3.2. Siga (X,∆) un parell dlt tal que X és tridimensional i Gorenstein
i ∆ és efectiu i reduït amb components irreductibles Vi Q-Cartier. Suposant que
KX +∆ és Cartier i X\ Sup∆ ⊂ Xsnc. Aleshores

X\Xsnc = ∪i Sing(Vi)

on Sing(Vi) consisteix només en singularitats canòniques aïllades a l’interior de
Vi i X és terminal. En particular si (X,∆) és snc a un entorn obert dels estrats
unidimensionals.

Demostració. Per la proposició anterior només cal demostrar que els Vi són Cartier
perquè llavors un punt no-regular de X també en serà un punt no-regular de Vi.

Asseverem que X és terminal. Com que (X,∆) és dlt llavors qualsevol divisor
E que no estiga sobre el lloc snc satisfà a(E,X,∆) > −1. Però KX +∆ és Cartier
i per tant com abans a(E,X,∆) ≥ 0. Com que X\ Sup∆ ⊂ Xsnc pel [KM98,
Lemma 2.27] obtenim a(E,X, 0) > 0.

Com que X és tridimensional, terminal i Gorenstein [Kaw88, Lemma 5.1] implica
que tot divisor Q-Cartier sobre X és Cartier. Per tant els Vi són Cartier i hom
dedueix que Sing(X) ⊂ ∪i Sing(Vi) i per tant X\Xsnc = ∪i Sing(Vi). �

Observació 3.3. Una asseveració similar va ser demostrada amb més generalitat
a [NXY19, Theorem 4.5] per a qualsevol dimensió. La demostració difereix de la
nostra a l’hora de demostrar que els Vi són Cartier al voltant dels estrats unidimen-
sionals. Ells ho proven amb un argument sofisticat però per al nostre cas és prou
aplicar-ne el lemma de Kawamata.

Proposició 3.4. Siga f : Y → C un morfisme propi, pla, dlt i surjectiu d’un espai
analític complex a una corba suau C. Suposant que

(1) Y és (globalment) Q-factorial i Kähler;
(2) que les fibres generals de f , Yt sobre punts tancats t ∈ C, són superfícies

suaus amb KYt
∼ OYt

fora d’un conjunt finit C0.
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Aleshores existeix un morfisme birracional p : Y → X i un diagrama commutatiu

Y X

C

p

f f ′

tal que p és un isomorfisme sobre C\C0 i
(1) X és terminal, Q-factorial i KX ∼f OX .
(2) (X ,Xt) és un parell dlt per a tot punt tancat t ∈ C i snc al voltant dels

estrats unidensionals de Xt.
(3) Les components irreductibles de Vi,t of Xt tenen com a màxim singularitats

canòniques i
X\X snc = ∪i,t Sing(Vi,t).

Demostració. Pas 1. Podem aplicar l’MMP, cf. [HP16, Theorem 1.1], i hom obté
f ′ : X → C un morfisme dlt amb X terminal i Q-factorial tal que KX és f ′-nef.
A més, per [Fuj11, Theorem 1.1] hom dedueix que si KYt ∼ OYt per a una fibra
general aleshores KX ∼f ′ OX .

Per a qualsevol fibra tancada Xt, per adjunció (cf. [Kol13, Sec 4.1]) obtenim
OXt ∼ (KX + Xt)|Xt = KXt .

Així mateix, una fibra general Yt és K-trivial i per tant per adjunció un divi-
sor qualsevol de KY indueix un divisor principal a Yt i com a conseqüència |KY |
consisteix d’una combinació lineal de les fibres especials. Així que KY interseca triv-
ialment amb qualsevol corba d’una fibra general Yt. Conseqüentment, no poden
ser contretes per cap pas del MMP, així doncs p és un isomorfisme sobre C\C0.

Pas 2. X és relativament K-trivial de manera que KX i KX + Xt són Cartier.
A més a més, cada divisor és Q-Cartier per Q-factorialitat. En conseqüència lluny
de les altres fibres especials en algun entorn U ⊂ X de Xt el parell (U ,Xt) satisfà
les hipòtesi del Corol·lari 3.2 d’on es dedueix l’asseveració del teorema.

�

D’aquesta proposició hom dedueix que l’única obstrucció a obtindre un model de
Kulikov genuí després d’aplicar el MMP són les singularitats canòniques restants a
les fibres especials. Aquestes en són exactament singularitats Du Val, veure [KM98,
Theorem 4.5] les quals hi admeten una resolució simultània en família després d’un
canvi de base surjectiu i finit. Aquest canvi de base en produeix singularitats als
llocs d’intersecció que en resolem crepant-ment amb un truc de Friedman.

Demostració del Teorema 1.3. Després d’aplicar la Proposició 3.4 és prou demostrar
que hom pot resoldre totes les singularitats Du Val aïllades del model minimal dlt
crepantment.

Pas 3. Sense pèrdua de generalitat suposem que només n’hi ha una fibra singular
anomenada Y0. Tria una singularitat Du Val x ∈ Vi a la component irreductible
de Y0. Llavors existeix un entorn de x ∈ U ⊆ Y per al qual només n’hi han
singularitats Du Val. Aleshores per [Bri71] existeix un canvi de base finit, surjectiu
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i ramificat π0 : C̃ → C i un diagrama Cartesià

Z Y

C̃ C

g

h
y

f0

π0

que admet una resolució simultània q

Z̃ V ⊂ Z x ∈ U ⊂ Y

C̃ C̃ C

q

h̃

g

h
y

f0

= π0

.

Ens hi adonem què Z és h-trivial ja que el divisor canònic relatiu no hi canvia per
a un canvi de base finit, surjectiu i ramificat. A més q és una resolució minimal a
cada fibra i per tant q és un isomorfisme en codimensió 1. Així doncs q∗KZ ∼ KZ̃ .
Globalment obtenim

Z̃ Z Y

C̃ C̃ C

q

h̃

g

h
y

f0

= π0

.

Ara Z̃ pot tenir singularitats sobrevingudes per l’efecte del canvi de base al lloc
d’intersecció.

Asseveració. Existeix un morfisme crepant i birracional

Z ′ Z̃

C̃

j

h′
h̃

tal que és un isomorfisme llevat d’un entorn V0 del lloc d’intersecció de Z̃0; és una
log-resolució de singularitats a V0 i h′ : Z ′ → C̃ és un morfisme pla i propi.

La demostració de l’asseveració s’obté aplicant els arguments de [Fri83, Propo-
sition 1.2]. Un canvi de base d’ordre n : 1 crea singularitats tòriques que localment
analíticament als punts triples en són així

SpecC[x, y, z, t]/(xyz − tn)

i les corbes dobles esdevenen corbes de singularitats An−1. Aquestes es poden
resoldre amb la resolució tòrica estàndard obtinguda subdividint els ventalls corre-
sponents. El més important és que aquest procés és crepant. Açò es fa localment
al voltant dels llocs d’intersecció lluny de les singularitats canòniques i per tant és
equivalent al cas snc descrit a l’article de Friedman.

Després d’aplicar l’asseveració, (Z ′, (Z ′
0)) és snc lluny de les singularitats Du Val,

en té una singularitat Du Val manys que (Y,Y0) i manté la K-trivialitat. Repetint
aquest procés a (Z ′,Z ′

0) de forma inductiva dona un morsfisme finit i surjectiu
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π : C ′ → C, un mapa birracional

X Y ×C C ′

C ′

p

f ′

i un morfisme pla i propi f ′ : X → C ′. Ara qualsevol singularitat (x ∈ X ) ha
de jaure sobre l’interior de les components irreductibles Vi ja que X0 és un divisor
Cartier. Açò no ocurreix perquè hem resolt totes les singularitats i per tant X és
suau, KX ∼f ′ OX i X0 és un divisor snc q.e.d. �

Corol·lari 3.5 (Teorema Kulikov-Persson-Pinkham). Siga f : X → D una degen-
eració Kähler pròpia de superfícies suaus K-trivials sobre el disc complex. Aleshores
existeix un canvi de base surjectiu i finit π : D → D, X ′ una varietat suau i un
diagrama commutatiu

X ′ X ×D D

D

p

f ′ π2

.

On p és un mapa birracional tal que és un isomorfisme llevat de a la fibra central i
f ′ : X ′ → D és una degeneració semiestable amb KX ′ ∼f ′ OX ′ .

Demostració. Aplicar el Teorema de Reducció Semiestable de Mumford [KKMSD73,
Ch. 4] i després el Teorema 1.3. �

Observació 3.6. [Oda21, Remark A.6] Per al Teorema 1.1 originalment a [Kul77]
Persson i Pinkham no hi assumiren que la varietat fos Kähler només que les fibres
fossen algebraiques. Aquesta hipòtesi s’assumeix per tal de poder aplicar l’MMP
per a espais analítics complexos ja que no ha sigut establert amb la generalitat del
Teorema 1.1.

N’hi ha una obstrucció a la generalització. Una degeneració de superfícies K3 que
no admet cap model de Kulikov va ser construït a [Nis88, §4]. Aquesta degeneració
satisfà que la fibra central conté una superfície analítica complexa no-algebraica
com a component irreductible (una superfície de classe de Kodaira VII).

Observació 3.7 (Cas de superfícies amb κ(Xt) = 0). Els models de Kulikov no
existeixen sempre per a superfícies suaus amb divisor canònic numèricament trivial.
Un contraexemple de degeneracions de superfícies d’Enriques ve donat pels “tests
de flors” a [Per77, 3.3 and Appendix 2]. Pel [Fuj11, Theorem 1.2] aplicant el MMP
s’obté un model minimal dlt f : X → C amb KX ∼Q,f OX .

El que fallaria és al segon pas ja que és crucial que KX siga Cartier: Per deduir
que les discrepàncies de (Vi, Di) són enters i que les components irreductibles Vi

són Cartier.

Observació 3.8 (Degeneracions maximals de superfícies Abelianes). El cas més
interessant de model de Kulikov és l’anomenat de Tipus III, el qual hui dia també
es coneix com a Maximally Unipotent degeneration (cf. [KLSV18, Definition 6.10])
o maximally degenerate family (cf. [NXY19, §1.2]). Per a superfícies, això vol dir
que la acció de la monodromia sobre H2(Xt), amb Xt una fibra general, té un bloc
de Jordan de rang 2 o, equivalentment, que el complex dual de la fibra té dimensió
2, çò és, la fibra singular en té punts triples.
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Donat un model de Kulikov de Tipus III de superfícies Abelianes, cada compo-
nent irreductible de la fibra singular és tòrica; de fet, el complement de les corbes
dobles és isomorf a C∗ × C∗ (cf. [FM83, pp. 21-22]). Per tant, a la prova del
Teorema 1.3 no es resol cap singularitat. Així, el model obtés a la Proposició 3.4
ja és semiestable. Hom dedueix que al cas algebraic de l’observació anterior també
s’obté un model semiestable.
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