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1 Introduction

Basic Idea: study what happens to the Hodge structure (MHS) of a projective manifold as
it degenerates to a singular variety.

Let X be a complex manifold, ∆ ⊂ C a disk around 0 and f : X → ∆ be a proper
holomorphic map that is smooth over the puncutured disk ∆∗.

X0

0

Xt

Figure 1: 1-parameter degeneration.

We know the cohomology of a generic fibre Xt := f−1(t) carries a pure Hodge structure
with Hn(Xt) having weight n. In 1970 Griffiths conjectured that the monodromy around
0 could be used to define a weight filtration W on HQ := Hn(Xt,Q) with t close to 0 and
a Hodge filtration F on HQ so that the triple (HQ,W, F ) defines a mixed Hodge structure.
This amounts to saying that F defines a pure Hodge structure of weight k + n on the k-th
graded piece of GrWk HQ.

Most of this talk will be devoted to define this mixed Hodge structure, with some
examples illustrating how it works and some simple applications, the next talks will expand
upon this.
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We have the following goals for now:

• Define a mixed Hodge structure on HQ,

• study the properties of this mixed Hodge structure to draw some connection between
cohomology of X0 and Xt.

• Enhance the construction to get a motivic construction.

2 Milnor fibres and the nearby cycle complex
We will now refine a bit our setup. As before let X be complex manifold and f : X → ∆
a proper surjective morphism with connected fibres such that over ∆∗ the punctured disk
the function is smooth.

Furthermore, using Mumford’s semistable reduction theorem [KKMSD06, Ch. 2], after
a series of blow-ups and base changes, normalising if necessary and further shrinking the
base we may assume that the special fibre has reduced structure and satisfies

X0 = ∪i∈IEi is a divisor with simple normal crossings (snc) on X.

Moreover, by Ehresmann’s theorem [PS08, Theorem C.10] we know that over the punctured
disk f defines a locally trivial differential fibration. Finally, we will later assume that the
fibres are projective, assuming Kähler fibres would actually be sufficient.

Let x ∈ X0 we can define the Milnor fibre of f at x, Milf,x, as a representative of

Xt ∩B(x, r)

for t very close to 0, η := d(t, 0), 0 < η � r � 1. Milnor showed that the diffeomorphism
type of this manifold does not depend on r, η (cf. [Mil68]) Moreover, from his work we also
get the following:

Proposition 1. [PS08, Proposition C.11] Let X be a manifold, f : X −→ ∆ be a proper
map which is smooth over ∆∗. There is a fibrewise retraction r : X → X0. In particular
the homotopy type of X is that of the central fibre.

Let it : Xt ↪→ X be the inclusion. If x is an isolated singularity we may choose a
retraction s.t. the inclusion (r ◦ it)−1x ↪→ Milf,x is a homotopy equivalence.

This motivates the following construction: We define the (topological) complex of
sheaves of nearby cycles as the complex of sheaves on X0 defined as

(Rrt)∗QXt

here (Rrt)∗ here denotes the right derived pushforward and Q
Xt

the constant sheaf on Xt.
Now we can compute the hypercohomology of this complex as

Hk(X0, (Rrt)∗QXt
) = Hk(Xt,QXt

) = Hk(Xt;Q). (2.1)

This seems like a good step for our plan of relating the cohomology of the smooth fibre
to the one of the singular one. By the previous proposition, we can relate the cohomology
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of the Milnor fibre and Xt. But first we make this construction more canonical, for this
consider the specialization diagram:

X∞ X X0

h ∆ {0}

f∞

k i

exp

f

Here h denotes the complex upper half plane and X∞ := X ×∆∗ h and exp is the map
z 7→ e2πiz. Recall that h

exp−→ ∆∗ is a universal covering. It turns out that the manifold
X∞ actually retracts onto any of the smooth fibres, as f∞ is differentiably a product and
so can be seen as an object in the homotopy category which is canonically associated to the
smooth part of the family.

As X0 is snc for any point x ∈ X0 we can choose a system of local coordinates on
U(x) ⊂ X centered at x such that f(z0, ..., xn) = z0 · · · zk and define

Vr,η = {z ∈ U : ||z|| < r and |f(z)| < η}.

These form a fundamental system of neighbourhoods of x in X. The Milnor fibre embeds
in k−1Vr,η via the map z 7→

(
z, log t2πi

)
this can be seen to be a homotopy equivalence thus

using what we’ve seen so far we get

(Hq(X0, (Rrt)∗QXt
))x = Hq(Milf,x;Q) ' lim

r,η
Hq(k−1(Vr,η)) =

(
(Rqk)∗QX∞

)
x
.

So we can define a canonical object, the (analytic) nearby cycle complex on X0:

ψfQX0
:= i∗Rk∗(k

∗Q
X
)1. (2.2)

Notice that Hq(i∗Rk∗(k
∗Q

X
))x = ((Rqk)∗QX∞

)x and as a consequence we get a cumbersome
way to compute the cohomology of the smooth fibre:

Hq(X0, ψfQX0
) = Hk(Xt;Q).

This same construction can be extended giving a functor ψf : D+(X) → D+(X0), defined
by F• 7→ i∗Rk∗(k

∗F•). In particular we can define: ψfCX0
.

We will now want to give a mixed Hodge structure2 to this complex which will be called
the Hodge-theoretic nearby cycle complex:

ψHdg
f = ((ψfQX0

,W ), (ψfCX0
,W, F ), α).

We call the filtrations F and W the limit Hodge filtrations. We write Hk(X∞) for the
mixed Hodge structure which this complex puts on Hk(X0, ψfQX

), we will also call this the
limit mixed Hodge structure.

1The notation might be a bit confusing but we choose it this way to highlight that it is a complex of
sheaves on X0.

2These were defined on an earlier talk see [PS08] for a definition.
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3 Construction of the Hodge-theoretic nearby cycle complex.
To construct a MHS we are going to define a much more intuitive complex of sheaves quasi-
isomorphic to the nearby cycle complex (cf. [PS08, Chapter 11] and [Ste76]). First we recall
that that 2 talks ago for a divisor with simple normal crossings Y ⊂ X we constructed the
following:

Definition 2. The holomorphic de Rham complex with logarithmic poles along Y ,
denoted by Ω•

X(log Y ), is given on U ⊂ X by sections which are holomorphic forms on U\Y
and meromorphic with at most simple poles on Y . If locally around P ∈ Y the coordinate
description is given by

Y ∩ U =

{
z ∈ U :

ν∏
i=1

zi = 0

}
then at the stalk (Ωp

X(log Y ))P is the module freely generated by dz1
z1
, ..., dzτzτ

, dzν+1, ..., dzn
over OX,P .

On an earlier talk we also defined a weight filtration for this complex

WkΩ
p
X(log Y ) := Ωk

X(log Y ) ∧ Ωp−k
X .

This we may think of as the meromorphic forms on Y with exactly k terms of the form
dzi/zi. Moreover we define as ascending filtration simply the trivial filtration

F kΩ•
X(log Y ) = Ω•≥k(log Y ). (3.1)

This is a good approximation but it is still not enough as we would like to also encapsule the
information coming from the fibration for this. So define the relative de Rham complex
on X with logarithmic poles along X0

Ω•
X/∆(logX0) := Ω•

X(logX0)/(f
∗Ω1

∆(log 0) ∧ Ω•−1
X (logX0)).

It can be seen that ψfCX is actually quasi-isomorphic to Ω•
X/∆(logX0) ⊗ OX0 . The proof

is out of the scope of this talk for time reasons, but it is a very nice proof so we encourage
listeners to take a look at it (cf. [PS08, Theorem 11.16])

Locally near x there is a system of coordinates such that f(z0, ..., zn) = z0 · · · zν then
Ω1
X/∆(logX0) we obtain as in the non-relative case the module freely generated by dz1

z1
, ..., dzτzτ

, dzν+1, ..., dzn

but subject to the relations
∑ dzi

zi
= 0 (cf. [Ste76, 1.4]). This gives us a much more geo-

metric picture of the nearby cycle complex.
One could naively assume that the filtrations defined earlier would give us a MHS for

Ω•
X/∆(logX0)⊗OX0 , unfortunately this turns out to be impossible. Fortunately just taking

it a step further is enough. Consider the bi-filtered double complex of sheaves on X0

Ap,q := Ωp+q+1
X (logX0)/WqΩ

p+q+1
X (logX0), p, q ≥ 0

here the degree (1, 0) differential is given by the usual de Rham differential and the other
by ω 7→ (dt/t)∧ω, here t ∈ ∆ but it can be seen that this construction does not depend on
t.

Let A• = Tot(A•,•), the total complex. Then for the increasing filtration choose

F rA• =
⊕
p

⊕
q≥r

Ap,q
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pick the trivial or stupid filtration (as in 3.1) and for the weight filtration choose

WkA
r =

⊕
p+q=r

W2q+k+1A
p,q =

⊕
p+q=r

W2q+k+1Ω
p+q+1
X (logX0)/WqΩ

p+q+1
X (logX0).

This weight filtration is also called the monodromy weight filtration, we will see later why.
These two define a mixed Hodge structure on A•. Moreover via the map Ωq

X/∆(logX0) ⊗
OX0 → A0,q defined via ω 7→ (−1)q(dt/t)∧ω mod W0 we get a bi-filtered quasi-isomorphism

µ(Ωq
X/∆(logX0)⊗OX0 ,W, F ) −→ (A•,W, F ).

Hence φfCX ' A• in D+(X0). We claim (A•,W, F ) is a mixed Hodge complex of sheaves
so this is the Hodge-theoretic nearby cycle complex we were looking for (see Theorem 9).

How do the weight pieces of the monodromy weight filtration look like? Briefly recall that
for Y = ∪i∈IEi snc divisor we defined on a previous talk EJ := ∩j∈JEj , E(n) :=

∐
|J |=mEJ

and an : E(n) ↪→ Y J ⊆ I. Using this notation we can write the k-th graded piece of this
complex as Moreover as the differential of degree (0, 1) satisfies that dWr ⊂Wr−1 we get:

GrWk A• '
⊕

k≥0,−r

GrWr+2k+1Ω
•
X(logX0)[1] '

⊕
k≥0,−r

(ar+2k+1)∗Ω
•
E(r+2k+1)[−r − 2k]). (3.2)

The second equality follows from the fact we saw a couple of talks ago thatGrWq ΩX(logX0) '
(am)∗Ω

•
E(q)[−q]. This description will be used later on for computations.

Remark 3. There is a rational analogue construction of a logarithmic de Rham complex,
call it K•

p satisfying K•
p ⊗Q C 'WpΩ

•
X , taking K•

∞ = lim→
p
K•

p ' ψfQX
, with filtration

WrK
•
∞ = Im(K•

r ↪→ K•
∞).

We get an induced filtered quasi-isomorphism between them. So we can repeat the con-
struction of Ap,q, by setting:

Cp,q = (i∗Kp+q+1
∞ /i∗Kp+q+1

p )(p+ 1), p ≥ 0, p+ q ≥ −1

the same tecniques as before allow us to define a weight filtration with very similar properties
(cf. [PS08, 11.2.6]) Unfortunately we do not have enough time to discuss it.

Remark 4. We did not talk about the pseudo-morphism included in the definition of mixed
Hodge complex of sheaves, simply because it is not very interesting, take the natural map
Q

X
↪→ CX and the apply the functor ψf , this induces the pseudo-morphism necessary to

complete the Hodge structure.

4 The limit mixed Hodge structure and the monodromy
We have succesfully constructed the limit mixed Hodge structure for ψfCX0

, unfortunately
it does not have a simple description. To solve this problem we turn to study the action of
the monodromy of the punctured disk on the fibres and see how it relates to the MHS. For
this we go back to our original setting of a degeneration.
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Notice that the map h : X∞ → X∞ given by (x, u) 7→ (x, u + 1) satisfies k ◦ h = k,
where k : X∞ → X, on the punctured disk. This amounts to circling around the center
which defines an element of π1(∆∗). This defines an action of the fundamental group
on the cohomology which translates into an automorphism h∗ : H∗(Xt) → H∗(Xt). This
construction extends to a automorphism on ψfCX0

and ψfQX0
. So define the monodromy

operator
T := (h∗)−1 : ψfK• −→ ψfK•.

Example 5. Consider a complex torus and the cycle degenerating as in Figure 2, i.e. the
so called Dehn twist. Then we get that X0 only has one ordinary double point so there is
exactly one vanishing cycle. The Picard-Lefschetz formula [PS08, Theorem C.20] gives that
for the vanishing cycle δ03 the action of the monodromy is:

T0 : H
1(Xt;Q) −→ H1(Xt;Q), α 7−→ α+ (−1)

1
2
(1+1)(1+2)〈α, δ0〉δ∨0 . (4.1)

Then δ0 7→ δ0 and δ∨0 7→ δ0 − δ∨0 . Thus the monodromy operator acts on H1(Xt,Q) via the
matrix

T0 =

(
1 −1
0 1

)
.

Figure 2: Degeneration of a torus.

Remark 6. We may relate T to the double complex we defined for ψfCX0
. Define a

morphism ν : Ap,q → Ap−1,q+1

Ωp+q+1
X (logX0)/WqΩ

p+q+1
X (logX0)

ν−→ Ωp+q+1
X (logX0)/Wq+1Ω

p+q+1
X (logX0)

ω 7−→ ω mod Wq+1
.

This morphism commutes with both differentials and so it induces a morphism on the total
complex. Now one can show using the Gauss-Manin connection that this operator is related
to the monodromy operator T via the equality:

log T = 2πiν.

Now we turn to the study of our monodromy operator T .

Theorem 7 (Monodromy Theorem (weak version)). [Pet10, Lemma 7.11] If T is quasi-
unipotent, i.e. there exists n, k ∈ N s.t. (Tn − I)k = 0 and all multiplicities of f along Ei

are 1 then it is unipotent, i.e. n = 14

This implies then that using the Taylor expansion N = log T is well-defined and it is
nilpotent.

3〈−,−〉 is the Kronecker duality pairing.
4The statement of the Monodromy Theorem [PS08, Corollary 11.42] is: Suppose that for k, l ∈ Z one has

that Hp,k−p(Xt) = 0 for all p > k/2 + l then N l+1 = 0 on Hk(X∞), where N = log T . The weak version
follows easily.
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Lemma 8. [Sch73, Lemma 6.4] Let N be a nilpotent endomorphism of a finite dimensional
Q-vector space H, there is a unique increasing filtration W := W (N) on H such that
N(WjH) ⊂Wj−2H and N j : GrWj → GrW−jH is an isomorphism for all j ≥ 0.

The shifted W [k] filtration given by the lemma on Hk(X∞) is called the monodromy
weight filtration. This existence via linear algebra may not be very satisfying but there
is nice geometric description to it. Pick t ∈ ∆ non-zero, fix a choice of logarithm and set
z := 2πi log(t). The generic fibre carries naturally a pure Hodge structure with Hodge
filtration F •. Let F p(z) = F pHk(Xz) ⊂ Hk(X∞)⊗ C, observe that

exp(−(z + 1)N) = exp(−zN)T−1

so we have
exp(−(z + 1)N)F p(z + 1) = exp(−zN)F p(z) ⊂ Hk(X∞).

Set F p(t) := exp(−zN) as a subspace of Hk(X∞)⊗C, this subspace converges in the sense
of points in a Grassmannian to a limit F p

∞ when t approaches 0 along radii (cf. [Sch73,
Theorem 6.16]).

Theorem 9 (Steenbrink-Schmid). [Pet10, 7.1.3] The Hodge-theoretic nearby cycle complex
ψHdg
f as described before is a mixed complex of sheaves on X0. The Hodge-theoretic nearby

cycle complex puts a mixed Hodge structure on the cohomology groups Hk(X∞), the weight
filtration is the monodromy filtration and the limit Hodge filtration coincides with the above
limit on F •Hk(Xt), in particular

dimF pHk(X∞) = dimF pHk(Xt).

Corollary 10. One has that hp,q(Xs) =
∑

s≥0 h
p,s(Hp+q(X∞)).

Example 11. N puts a pure Hodge structure on the central fibre if and only if N = 0, for
example if the fibre is smooth.

Example 12. Continuing Example 5 we observe that

N = log(T ) = log

(
I +

(
0 −1
0 0

))
=

(
0 −1
0 0

)
=⇒ N2 = 0.

In particular notice that the invariant class for the N is δ0, which is precisely what we
expected from our geometric description. Out of the 2 homology 1-cycles of the torus one
degenerates and the other is left invariant in this case, then we dualize and we get that δ0
was left invariant.

Turns out that this is true in much generality and can be described with the following
theorem:

Theorem 13 (Local invariant cycle theorem). [PS08, Theorem 11.43] Let f : X → ∆ be a
projective one-parameter Kähler degeneration. For all k ≥ 0 the sequence:

Hk(X0;Q)
sp−→ Hk(X∞;Q)

T−I−→ Hk(X∞;Q)

is exact. Here sp denotes the specialization map, i.e., the map induced by rt : X0 → Xt.
In particular, the invariant classes of X∞ are the classes in the image of the specialization
map, i.e., the classes which come from restricting classes in the total space.
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Note that assuming that T is unipotent we get in particular that kerN = ker(log T ) =
ker(T − I). So kerN consists exactly of the vanishing cycles.

The limit Hodge structure satisfies the following decomposition theorem.

Lemma 14. [Sch73, Lemma 6.4] There is a Lefschetz type decomposition

Hk(X∞) =

k⊕
l=0

l⊕
r=0

N rPk+l

where Pk+l is of pure weight k + l and N has dimPk+m−1 Jordan blocs of size m.

Example 15. Substituting in the formula we get for H1(X∞):

H1(X∞) =

1︷︸︸︷
P1 ⊕

2︷ ︸︸ ︷
P2 ⊕NP2

there are dimGrW2 Jordan blocs of size 2 and dimGrW1 ones of size 1. So then we get
kerN = NP2 ⊕ P1, and so W0 ∩ kerN = NP2 =W0H

1(X∞) 'W0H
1(X0).

For H2(X∞) we get a similar situation.

2•
P2

1•
NP3

3•
P3

0•
N2P4

2•
NP4

4•
P4

NN

N
.

Here the numbers over the points denote in which GrrPW they live. In particular notice
that GrW1 H2(X∞) = NP3 ⊕NP4 and so GrW1 kerN = NP3 = Gr1H

2(X0)

5 The motivic nearby cycle

Now we want to compute χHdg(ψ
Hdg
f ) and carry our construction to motives. Following

[PS08, Corollary 11.23] we note that a decreasing finite filtration F on a complex K• induces
a spectral sequence satisfying {

Ep,q
0 = GrFp (K

p+q)

Ep,q
1 = Hp+q(GrFp (K

•)).

Moreover one can show that:

Ep,q
r =⇒ GrFp H

p+q(K•).

We want to apply this to the Hodge filtration on GrWp (ψHdg
f ). From this construction,

equation 3.2 and Remark 3 we obtain

GrWs (ψHdg
f ) '

⊕
k

Q
E(2k+s+1)

[s+ 2k](−s− k)
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and then the E1 is the graded Hodge structure:

E−s,q+s
1 =

⊕
k≥0,−s

Hq−s−2k(E(2k + s+ 1);Q)(−s− k) =⇒ Hq(X∞).

Example 16. Suppose we have a plane curve degenerating to d P1’s intersecting at m
points with no triple points we compute the spectral sequence of this degeneration. The
only intersections that are non-trivial are the total space E(1) and the intersection points
E(2). {

2k + 1 + s = 1 =⇒ 2k + s = 0
k≥0,−s
=⇒ k = s = 0

2k + s+ 1 = 2 =⇒ 2k + s = 1 then s ∈ {−1, 1}.

So then we get an E1 page as

E−1,•
1 E0,•

1 E1,•
1

E•,2
1 H0(E(2)) H2(E(1)) H2(E(2))

E•,1
1 0 H1(E(1)) 0

E•,0
1 0 H0(E(1)) H0(E(2))

−→

E−1,•
1 E0,•

1 E1,•
1

E•,2
1 Qm Qd 0

E•,1
1 0 0 0

E•,0
1 0 Qd Qm

with maps Qd → Qm one induced by pushforward and the other by restrictions. Now we
know the sequence converges in E2 to Hp+q(X∞)

E−1,•
2 E0,•

2 E1,•
2

E•,2
2 ? Q 0

E•,1
2 0 0 0

E•,0
2 0 Q ?.

Then as Q is the kernel of Qd → Qm and using symmetry we deduce that

E−1,•
2 E0,•

2 E1,•
2

E•,2
2 Qm−(d−1) Q 0

E•,1
2 0 0 0

E•,0
2 0 Q Qm−(d−1).

When we defined the Hodge characteristic on a previous talk we associated a variety to a
mixed Hodge structure and then we took the associated class in K0(hs), the Grothendieck
ring over the category of Hodge structures hs. We could skip this step, by definition
E1-page is a complex with cohomology E2-page, this spectral sequence abouts at E2 so
[E2] = [E3] = ... = [E∞], here [...] denotes the class in K0(hs). So then we can compute
the Hodge characteristic of ψHdg

f , to do so first we set:
a := s+ k

b := 2 + s+ 1

c := q − s− 2k

from the MHS we deduce that a, c ≥ 0, b ≥ 1.

Since k = b− a− 1 we get that 0 ≤ a ≤ b− 1 so

χHdg(X∞) =
∑

b≥1,c≥0

b−1∑
a=0

(−1)c+b+1[Hc(E(b))(−a)] =
∑
b≥1

(−1)b+1χHdg(E(b))

[
b−1∑
a=0

La

]
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here L denotes the Lefschetz motive, i.e. the class of A1. Now using as fact from an earlier
talk that [Pk] = (1 + L+ ...+ Lk) we get that

χHdg(X∞) =
∑
b≥1

(−1)b+1χHdg(E(b)× Pb−1) (5.1)

which suggests the following definition.

Definition 17. Define the motivic nearby fibre of f as

ψmot
f :=

∑
m≥1

(−1)m−1[E(m)× Pm−1] ∈ K0(V ar).

Proposition 18. [Pet10, Lemma 7.2.2] Suppose that σ : Y → X is a bimeromorphic map
which is an isomorphism over X\X0. Put g = f ◦ σ and assume that g−1(0) is a divisor
with strict normal crossings. Then

ψf = ψg

Proof. Using the weak factorization theorem [AKMW02, Theorem 0.1.1], it suffices to prove
this for σ being the blow-up of X along a connected submanifold Z ⊂ X0, with the following
property. As X0 is snc we write X0 = ∪i∈IEi, we have A ⊂ I be the set of indices satisfying
that Z intersects the divisor ∪i/∈AEi transversely. In particular Z ∩ ∪i/∈AEi is snc.

For simplicity assume that |A| = 1 and so Z is contained in a divisor E1 and that
E2 is the only component of X0 intersecting Z. Let c = codimZ X and so codimZ E1 =
codimZ∩E2 E12 = c − 1 and codimZ∩E2 E2 = c. Now g−1(0) has as extra component, the
exceptional divisor E′

1. Similarly denote the proper transforms of Ej as E′
j . After blowing

up we have two new double intersections E′
01 and E′

02 and a new triple intersection E′
012.

Then

ψg − ψf = ([E′
1]− [E1]) + ([E′

2]− [E2]) + [E′
0]− ([E′

12]− [E12])

+ ([E′
01] + [E′

02])× [P1] + [E′
012]× [P2]

now the full exceptional divisor E′
0 is a Pc−1 bundle over Z; E′

01 is a Pc−2 bundle over Z;
E′

02 is a Pc−1 bundle over Z ∩ E2 and E′
012 is a Pc−2 bundle over Z ∩ E2. So we can make

use of the following fact:

Fact 19. [Pet10, Example 2.1.7] Let E → Y be a Pk-bundle over Y , a projective variety.
The scissor relations imply that

[E] = [Y ] · [Pk] = [Y ] · (1 + L+ ...+ Lk).

From this we deduce that the [Z] coefficient is

[Pc−1] + ([Pc−2]− 1)− [Pc−2] · [P1] = 0

and the coefficient of [Z ∩ E2] is

([Pc−1]− 1) + ([Pc−2]− 1 + [Pc−1]) · [P1] + [Pc−2] · [P2] = 0.

Corollary 20.
χHdg(ψ

mot
f ) = χHdg(X∞)

10



Example 21. Suppose that we have a planar curve degenerating to d P1’s only intersecting
pairwise. So they intersect at d(d− 1)/2 and there are no triple intersections. Then we can
compute the Hodge characteristic of the motivic nearby fibre

χHdg(X∞) = d · χHdg(P1)−
∑
i

χHdg(E(i)× P1) =

= d · χHdg(P1)− d(d− 1)

2
· χHdg(P1) =

3d− d2

2
· χHdg(P1).

Recall we had a commutative diagram:

K0(V ar) K0(hs)

Z
χc

χHdg

dim

thus we obtain

(3d− d2) = 3d− d2

2
dim(χHdg(P1)) = dim(χHdg(X∞)) = χc(Xt) = 2− 2g

Were g is the genus so we obtained g = (d−1)(d−2)
2 . We were able to compute the genus of

the curve only having information about its degeneration.

Example 22. Let F,L1, ..., Ld ∈ C[X0, X1, X2] be homogeneous forms with degree degF =
d and degLi = 1, such that F ·L1 · · ·Ld = 0 defines a reduced divisor with normal crossings
on P2. Now consider

X =

{
([x0, x1, x2]) ∈ P2 ×∆ :

d∏
i=1

Li(x) + tF (x) = 0

}

X is smooth and the projection on ∆ has fibre over 0 E1 ∪ ... ∪ Ed of the lines such that
Ei : Li = 0. So the Hodge characteristic of the motivic nearby fibre (5.1) is

χHdg(ψ
mot
f ) = (1− g)(1 + L)

where g =
(
d−1
2

)
is the genus of the generic fibre, as it is a smooth projective curve of degree

d.
The weights are shown in Figure 3. One sees that there are only even weight terms for

H0 H1 H2

weight 0 1 g 0
weight 2 0 g(L) L

Figure 3: Dimensions of limit mixed Hodge structure of Example 22

H1(X∞) and its only primitive subspace has weight 2 and dimension g, since dimH1(X∞) =
2g. In particular N has g blocs of size 2, so it is maximally unipotent. Moreover the
monodromy diagram is 0•

g

N← 2•
g·L

.
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