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1 Introduction

Basic Idea: study what happens to the Hodge structure (MHS) of a projective manifold as
it degenerates to a singular variety.

Let X be a complex manifold, A C C a disk around 0 and f : X — A be a proper
holomorphic map that is smooth over the puncutured disk A*.
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Figure 1: 1-parameter degeneration.

We know the cohomology of a generic fibre X; := f~!(t) carries a pure Hodge structure
with H™(X;) having weight n. In 1970 Griffiths conjectured that the monodromy around
0 could be used to define a weight filtration W on Hg := H"(X;, Q) with ¢ close to 0 and
a Hodge filtration F' on Hg so that the triple (Hg, W, F') defines a mixed Hodge structure.
This amounts to saying that F' defines a pure Hodge structure of weight k + n on the k-th
graded piece of GT‘]ZVHQ.

Most of this talk will be devoted to define this mixed Hodge structure, with some
examples illustrating how it works and some simple applications, the next talks will expand
upon this.



We have the following goals for now:
e Define a mixed Hodge structure on Hg,

o study the properties of this mixed Hodge structure to draw some connection between
cohomology of Xy and X;.

e Enhance the construction to get a motivic construction.

2 Milnor fibres and the nearby cycle complex

We will now refine a bit our setup. As before let X be complex manifold and f: X — A
a proper surjective morphism with connected fibres such that over A* the punctured disk
the function is smooth.

Furthermore, using Mumford’s semistable reduction theorem [KKMSDO06, Ch. 2], after
a series of blow-ups and base changes, normalising if necessary and further shrinking the
base we may assume that the special fibre has reduced structure and satisfies

Xo = Ujer E; is a divisor with simple normal crossings (snc) on X.

Moreover, by Ehresmann’s theorem [PS08, Theorem C.10] we know that over the punctured
disk f defines a locally trivial differential fibration. Finally, we will later assume that the
fibres are projective, assuming Kéahler fibres would actually be sufficient.

Let x € Xy we can define the Milnor fibre of f at z, Mil;,, as a representative of
X:N B(z,r)

for ¢ very close to 0, n := d(¢,0), 0 < n < r < 1. Milnor showed that the diffeomorphism
type of this manifold does not depend on 7,7 (cf. [Mil68]) Moreover, from his work we also
get the following:

Proposition 1. [PS08, Proposition C.11] Let X be a manifold, f : X — A be a proper
map which is smooth over A*. There is a fibrewise retraction r : X — Xg. In particular
the homotopy type of X is that of the central fibre.

Let iy : Xy — X be the inclusion. If x is an isolated singularity we may choose a
retraction s.t. the inclusion (r o) "'z < Mils, is a homotopy equivalence.

This motivates the following construction: We define the (topological) complex of
sheaves of nearby cycles as the complex of sheaves on X defined as

(th)*QXt

here (Rr¢), here denotes the right derived pushforward and Q , the constant sheaf on X.
Now we can compute the hypercohomology of this complex as

H* (Xo, (Rrt)«Qy,) = H¥ (X, Q) = H* (X5 Q). (2.1)

This seems like a good step for our plan of relating the cohomology of the smooth fibre
to the one of the singular one. By the previous proposition, we can relate the cohomology



of the Milnor fibre and X;. But first we make this construction more canonical, for this
consider the specialization diagram:

Xoo o x4t X,

fool / |

b —p A< {0}

Here b denotes the complex upper half plane and X := X xa~ b and exp is the map
z > €2™% Recall that h =5 A* is a universal covering. It turns out that the manifold
X actually retracts onto any of the smooth fibres, as f,, is differentiably a product and
so can be seen as an object in the homotopy category which is canonically associated to the
smooth part of the family.

As Xy is snc for any point z € Xy we can choose a system of local coordinates on
U(z) C X centered at x such that f(zo,...,2n) = 20 - 2z and define

Vim=A{2€U: ||z|| <rand |f(z)| <n}.

These form a fundamental system of neighbourhoods of x in X. The Milnor fibre embeds

logt
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in k_le7 via the map z — (z > this can be seen to be a homotopy equivalence thus

using what we’ve seen so far we get
(HY(Xo, (Rri).Qy,))e = HY(Mily: Q) = lim HO (k™) (V) = ((RR).Qy ) -
) </ x
So we can define a canonical object, the (analytic) nearby cycle complex on Xj:

UrQy =" REL (K Q)" (2.2)

Notice that H?(i* Rk, (k*Q,. )z = ((R7k).Q, ), and as a consequence we get a cumbersome

way to compute the cohomology of the smooth fibre:
H(Xo,9;Qy, ) = H*(X4; Q).

This same construction can be extended giving a functor ¢y : D (X) — D" (Xj), defined
by F*® — i* Rk.(k*F*). In particular we can define: ¢;Cy, .

We will now want to give a mixed Hodge structure? to this complex which will be called
the Hodge-theoretic nearby cycle complex:

U = (4Qy, W), (0r s W, F), ).

We call the filtrations F' and W the limit Hodge filtrations. We write H*(X,) for the
mixed Hodge structure which this complex puts on H¥ (Xo0,vrQ X), we will also call this the
limit mixed Hodge structure.

The notation might be a bit confusing but we choose it this way to highlight that it is a complex of
sheaves on Xj.
2These were defined on an earlier talk see [PS08] for a definition.



3 Construction of the Hodge-theoretic nearby cycle complex.

To construct a MHS we are going to define a much more intuitive complex of sheaves quasi-
isomorphic to the nearby cycle complex (cf. [PS08, Chapter 11] and [Ste76]). First we recall
that that 2 talks ago for a divisor with simple normal crossings Y C X we constructed the
following;:

Definition 2. The holomorphic de Rham complex with logarithmic poles along Y,
denoted by Q% (logY'), is given on U C X by sections which are holomorphic forms on U\Y
and meromorphic with at most simple poles on Y. If locally around P € Y the coordinate

description is given by
v
YﬁU:{ZEU: Hzi:0}
=1

then at the stalk (% (logY))p is the module freely generated by dz—zll, veey %,dz,,ﬂ, ey dzp
over Ox p.

On an earlier talk we also defined a weight filtration for this complex
W2 (log Y) := Q% (log V') A Q5.

This we may think of as the meromorphic forms on Y with exactly k terms of the form
dz;/z;. Moreover we define as ascending filtration simply the trivial filtration

FFQ%(logY) = Q*=*(log Y). (3.1)

This is a good approximation but it is still not enough as we would like to also encapsule the
information coming from the fibration for this. So define the relative de Rham complex
on X with logarithmic poles along X

0%/ (log Xo) := Q% (log Xo)/(f*Q4 (log 0) A Q% (log Xo)).

It can be seen that ¢;Cy is actually quasi-isomorphic to 2% A (log Xo) ® Ox,. The proof
is out of the scope of this talk for time reasons, but it is a very nice proof so we encourage
listeners to take a look at it (cf. [PS08, Theorem 11.16])

Locally near x there is a system of coordinates such that f(zo,...,2n) = 20--- 2, then

Qﬁ( A (log X) we obtain as in the non-relative case the module freely generated by dz—zll, e %, dzyy1, -, dzy

but subject to the relations ) dz—zj = 0 (cf. [Ste76, 1.4]). This gives us a much more geo-
metric picture of the nearby cycle complex.

One could naively assume that the filtrations defined earlier would give us a MHS for
Q% N (log Xo) ® Ox,, unfortunately this turns out to be impossible. Fortunately just taking
it a step further is enough. Consider the bi-filtered double complex of sheaves on X

AP = QBT (log Xo) /W, Q% 7 (log Xo), p,g >0

here the degree (1,0) differential is given by the usual de Rham differential and the other
by w +— (dt/t) Aw, here t € A but it can be seen that this construction does not depend on
t.

Let A® = Tot(A**), the total complex. Then for the increasing filtration choose

Fra* =P are

P q>r
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pick the trivial or stupid filtration (as in 3.1) and for the weight filtration choose

Wi A" = @ Wogtkt1 AP = @ Wagak 1% T (log Xo) /W Q5 7 (log Xo).
ptq=r ptg=r

This weight filtration is also called the monodromy weight filtration, we will see later why.
These two define a mixed Hodge structure on A®. Moreover via the map Q% N (log Xo) ®

Ox, — A% defined via w +— (—1)%(dt/t)Aw mod Wy we get a bi-filtered quasi-isomorphism

105

X/A(logXU) ®OXO,VV,F) — (A.,W, F)

Hence ¢;Cy ~ A® in D1 (Xy). We claim (A®, W, F) is a mixed Hodge complex of sheaves
so this is the Hodge-theoretic nearby cycle complex we were looking for (see Theorem 9).
How do the weight pieces of the monodromy weight filtration look like? Briefly recall that
for Y = Ujer E; snc divisor we defined on a previous talk E; := N;c E;, E(n) := ]_[|J|:m E;
and ay, : E(n) — Y J C I. Using this notation we can write the k-th graded piece of this
complex as Moreover as the differential of degree (0, 1) satisfies that dW,. C W,_1 we get:

GV A = @ Gl Qog Xo)1] = @D (arsais1)- Loy — 2K). (3:2)

k>0,—r k>0,—r

The second equality follows from the fact we saw a couple of talks ago that G’I”ZVQ x (log Xo) ~
(am)*QJ’E(q) [—¢]. This description will be used later on for computations.

Remark 3. There is a rational analogue construction of a logarithmic de Rham complex,
call it K satisfying K ®q C =~ W)Q%, taking K3, = lim7 Ky ~¢;Q ., with filtration

W,KS =Im(K® < K2).

We get an induced filtered quasi-isomorphism between them. So we can repeat the con-
struction of AP, by setting:

CPO = (KT TR (p+1), p>0, ptg> -1

the same tecniques as before allow us to define a weight filtration with very similar properties
(cf. [PS08, 11.2.6]) Unfortunately we do not have enough time to discuss it.

Remark 4. We did not talk about the pseudo-morphism included in the definition of mixed
Hodge complex of sheaves, simply because it is not very interesting, take the natural map
Qy < Cx and the apply the functor ¢y, this induces the pseudo-morphism necessary to
complete the Hodge structure.

4 The limit mixed Hodge structure and the monodromy

We have succesfully constructed the limit mixed Hodge structure for 1;Cy, , unfortunately
it does not have a simple description. To solve this problem we turn to study the action of
the monodromy of the punctured disk on the fibres and see how it relates to the MHS. For
this we go back to our original setting of a degeneration.



Notice that the map h : Xoo — X given by (z,u) — (x,u + 1) satisfies k o h = k,
where £ : Xoo — X, on the punctured disk. This amounts to circling around the center
which defines an element of m1(A*). This defines an action of the fundamental group
on the cohomology which translates into an automorphism h* : H*(X;) — H*(X;). This
construction extends to a automorphism on ¢ ;Cx  and ¢;Q Xo' So define the monodromy
operator

T = (h*) "1 K — hpke.

Example 5. Consider a complex torus and the cycle degenerating as in Figure 2, i.e. the
so called Dehn twist. Then we get that Xy only has one ordinary double point so there is
exactly one vanishing cycle. The Picard-Lefschetz formula [PS08, Theorem C.20] gives that
for the vanishing cycle 6> the action of the monodromy is:

Ty : HY(X1;Q) — HY(X;;Q), ar— a+ (=1)20002) 4 50057, (4.1)

Then &y +— dp and d§ +— dp — &5 . Thus the monodromy operator acts on H'(X¢, Q) via the

matrix
1 -1
T, = (0 1 ) |

(O > >

Figure 2: Degeneration of a torus.

Remark 6. We may relate T' to the double complex we defined for ¢yCy, . Define a
morphism v : AP? — Ap~La+l

v

QR (log Xo) /W, Q5 1 (log Xo) 2 Q8T (log Xo) /W11 Q% 9T (log Xo)
w — w mod Wyiq

This morphism commutes with both differentials and so it induces a morphism on the total
complex. Now one can show using the Gauss-Manin connection that this operator is related
to the monodromy operator 1" via the equality:

logT = 2miv.
Now we turn to the study of our monodromy operator 7.

Theorem 7 (Monodromy Theorem (weak version)). [Pet10, Lemma 7.11] If T is quasi-
unipotent, i.e. there exists n,k € N s.t. (T" — I)k = 0 and all multiplicities of f along E;
are 1 then it is unipotent, i.e. n = 1*

This implies then that using the Taylor expansion N = logT is well-defined and it is
nilpotent.

3(—, —) is the Kronecker duality pairing.

4The statement of the Monodromy Theorem [PS08, Corollary 11.42] is: Suppose that for k,I € Z one has
that HP*"P(X,) = 0 for all p > k/2 + 1 then N'*' = 0 on H*(Xw), where N = log7. The weak version
follows easily.



Lemma 8. [Sch73, Lemma 6.4] Let N be a nilpotent endomorphism of a finite dimensional
Q-vector space H, there is a unique increasing filtration W := W(N) on H such that
N(W;H) C Wj_oH and N7 - GT‘}/V — GT‘ZH is an isomorphism for all 7 > 0.

The shifted W[k] filtration given by the lemma on H¥(X,,) is called the monodromy
weight filtration. This existence via linear algebra may not be very satisfying but there
is nice geometric description to it. Pick ¢ € A non-zero, fix a choice of logarithm and set
z = 2milog(t). The generic fibre carries naturally a pure Hodge structure with Hodge
filtration F®. Let FP(z) = FPH*(X,) C H*(X,) ® C, observe that

exp(—(z +1)N) = exp(—zN)T~!

so we have
exp(—(z + 1)N)FP (2 + 1) = eap(—=N)FP() C H*(Xo0).

Set FP(t) := exp(—2zN) as a subspace of H*(X,) ® C, this subspace converges in the sense
of points in a Grassmannian to a limit F% when t approaches 0 along radii (cf. [Sch73,
Theorem 6.16]).

Theorem 9 (Steenbrink-Schmid). [Pet10, 7.1.3] The Hodge-theoretic nearby cycle complex
@b?dg as described before is a mized complex of sheaves on Xy. The Hodge-theoretic nearby

cycle complex puts a mized Hodge structure on the cohomology groups H*(Xy.), the weight
filtration is the monodromy filtration and the limit Hodge filtration coincides with the above
limit on F*H*(X}), in particular

dim FPH*(X ) = dim FPH*(X;).
Corollary 10. One has that hP9(Xs) = 37 5 WP (HPT (X )).

Example 11. N puts a pure Hodge structure on the central fibre if and only if N = 0, for
example if the fibre is smooth.

Example 12. Continuing Example 5 we observe that

N =log(T) = log <I+ (g _01)> = (8 _01> — N2 =0.

In particular notice that the invariant class for the N is &g, which is precisely what we
expected from our geometric description. Out of the 2 homology 1-cycles of the torus one
degenerates and the other is left invariant in this case, then we dualize and we get that &g
was left invariant.

Turns out that this is true in much generality and can be described with the following
theorem:

Theorem 13 (Local invariant cycle theorem). [PS08, Theorem 11.43] Let f : X — A be a
projective one-parameter Kdhler degeneration. For all k > 0 the sequence:
H*(X0;Q) 5 H*(Xo0; Q) = H(Xo; Q)

is exact. Here sp denotes the specialization map, i.e., the map induced by ry : Xg — X;.
In particular, the invariant classes of Xoo are the classes in the image of the specialization
map, i.e., the classes which come from restricting classes in the total space.



Note that assuming that T is unipotent we get in particular that ker N = ker(logT") =
ker(T — I). So ker N consists exactly of the vanishing cycles.
The limit Hodge structure satisfies the following decomposition theorem.

Lemma 14. [Sch73, Lemma 6.4] There is a Lefschetz type decomposition

k l
H*(Xoo) = B EP NP

=0 r=0
where Pyyy is of pure weight k +1 and N has dim Py4,,—1 Jordan blocs of size m.
Example 15. Substituting in the formula we get for H'(Xo):

1 2

1 N —
H (Xx)= P PO NP,

there are dim Gry Jordan blocs of size 2 and dim Gr!V ones of size 1. So then we get
ker N = NP, @ P;, and so WoNker N = NP, = WoHY(Xo) ~ WoH(Xp).
For H?(X,) we get a similar situation.

2
[ ]
P
1 3
[} [
NP N P
0 2 4
[ [ ] [ ]
N2Py N NPy N Py

Here the numbers over the points denote in which Gr, PW they live. In particular notice
that Gr}Y H?(Xs) = NP3 @® NPy and so Grl¥ ker N = NP3 = Gri H?(X))

5 The motivic nearby cycle

Now we want to compute XHdg(lb}ng ) and carry our construction to motives. Following
[PS08, Corollary 11.23] we note that a decreasing finite filtration F' on a complex K*® induces
a spectral sequence satisfying

Eg’q = Grg(Kerq)

EPT = HPT(Gri(K®)).
Moreover one can show that:

EPY = Gr] HPTU(K®).
Hdg)

We want to apply this to the Hodge filtration on Grl‘,/v (¢ k
equation 3.2 and Remark 3 we obtain

Gry(wfdg) = @QE(%—Q—&H)[S +2k|(=s — k)

From this construction,
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and then the F; is the graded Hodge structure:

E7 = B HOHEQRE+ s +1);Q)(—s — k) = HY(Xo).
k>0,—s

Example 16. Suppose we have a plane curve degenerating to d P!’s intersecting at m
points with no triple points we compute the spectral sequence of this degeneration. The
only intersections that are non-trivial are the total space F(1) and the intersection points
E(2).

U+ 1lts=1=2%+s5=0"25"k=5=0

2k+s+1=2=2k+s=1thense {-1,1}.

So then we get an F; page as

El—l,o E%. Ell,o El—l,o E?,O Ell,O
Ey? HY(BE(2) HXE()) HBE(Q) _ E* Q" Q' 0
Ep! 0 HY(E(1)) 0 EYY 0 0 0
g 0 HYEBQ) H'E@) B 0 Q! Qn

with maps Q% — Q™ one induced by pushforward and the other by restrictions. Now we
know the sequence converges in Fy to HPT9(X )
E;l" Eg,. E21,.
Ey? 7 Q 0
Eyt 0 0 0
B 0 Q

Then as Q is the kernel of Q¢ — Q™ and using symmetry we deduce that

—1,e 0, 1,0
E2 E2 E2

E;’Q me(dfl) Q 0
Eyt 0 0 0
E;’O 0 Q me(dfl)'

When we defined the Hodge characteristic on a previous talk we associated a variety to a
mixed Hodge structure and then we took the associated class in Ky(hs), the Grothendieck
ring over the category of Hodge structures hs. We could skip this step, by definition
Fr-page is a complex with cohomology Fs-page, this spectral sequence abouts at Fy so
[E2] = [E3] = ... = [Ex), here [...] denotes the class in Ky(hs). So then we can compute
the Hodge characteristic of wfdg , to do so first we set:

a:=s+k
b:=24+s+1 from the MHS we deduce that a,c > 0,b > 1.
c:=q—s—2k

Since k =b—a—1 we get that 0 < a <b—1 so

b—1 b—1
Xrdg(Xoo) = D D (=D TFHHYE®)(—a)] = > (=1)"  xrag(B®)) | YL
b>1,c>0 a=0 b>1 a=0



here L denotes the Lefschetz motive, i.e. the class of Al. Now using as fact from an earlier
talk that [P¥] = (1 + L + ... + L¥) we get that

Xidg(Xoo) = Y (1" xrag(B(b) x P') (5.1)
b>1

which suggests the following definition.
Definition 17. Define the motivic nearby fibre of [ as

PPt =3 (=)™ E(m) x P! € Ko(Var).

m>1

Proposition 18. [Pet10, Lemma 7.2.2] Suppose that o : Y — X is a bimeromorphic map
which is an isomorphism over X\Xo. Put g = f oo and assume that g~1(0) is a divisor
with strict normal crossings. Then

wf:¢g

Proof. Using the weak factorization theorem [AKMWO02, Theorem 0.1.1], it suffices to prove
this for o being the blow-up of X along a connected submanifold Z C Xy, with the following
property. As Xj is snc we write Xog = U;c7 F;, we have A C I be the set of indices satisfying
that Z intersects the divisor U;jg 4 E; transversely. In particular Z NU;¢ 4 E; is snc.

For simplicity assume that |A| = 1 and so Z is contained in a divisor F; and that
FE5 is the only component of Xg intersecting Z. Let ¢ = codimz X and so codimy F; =
codimyznpg, F1a = ¢ — 1 and codimzng, F2 = c¢. Now g~ 1(0) has as extra component, the
exceptional divisor Ej. Similarly denote the proper transforms of Ej; as E; After blowing
up we have two new double intersections Ej; and E{, and a new triple intersection E;,.
Then

Vg — ¥y = ([E1] = [E1]) + ([E3] — [Ba]) + [Eg] — ([Ele] — [E12])
+ ([Eoul + [Epa]) % [P'] + [Egy) x [P?]

now the full exceptional divisor Ej) is a P°~! bundle over Z; Ef,; is a P°~2 bundle over Z;
E}y is a P71 bundle over Z N Ey and Ej5 is a P~ bundle over Z N E>. So we can make
use of the following fact:

Fact 19. [Pet10, Example 2.1.7] Let E — 'Y be a P*-bundle over Y, a projective variety.
The scissor relations imply that

[E]=[Y]-[P"]=[V]- (A1 +L+..+1L".
From this we deduce that the [Z] coefficient is
[P + (P2 — 1) — [P2] - [PY] = 0
and the coefficient of [Z N E»] is

(P71 = 1) + ([P°7%) = 1+ [P71]) - [PY] + [P2] - [P?] = 0.

Corollary 20.
XHdg(Q/)}nOt) = XHdg(Xoo)
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Example 21. Suppose that we have a planar curve degenerating to d P'’s only intersecting
pairwise. So they intersect at d(d —1)/2 and there are no triple intersections. Then we can
compute the Hodge characteristic of the motivic nearby fibre

XHdg(Xoo) =d- XHdg(Pl) - ZXHdg(E(i) X Pl) =

3d — d?

A0  rtag (P = ——  Xuag(P).

= d - xmag(P') = =,
Recall we had a commutative diagram:

XHdg

Ko(Var) Ko(hs)

Z

thus we obtain

3d — d?

(3d - d?) = dim(xs1ag (P")) = dim (xr1ag (Xoo)) = xe(X) = 2 — 29

Were ¢ is the genus so we obtained g = W. We were able to compute the genus of

the curve only having information about its degeneration.

Example 22. Let F, Ly, ..., Ly € C[ Xy, X1, X2] be homogeneous forms with degree deg F' =
d and deg L; = 1, such that F'- L1 --- Ly = 0 defines a reduced divisor with normal crossings
on P2. Now consider

d
X = {([:Uo,xl,xg]) EPPxA: HLZ(Z') +tF(z) = 0}

i=1
X is smooth and the projection on A has fibre over 0 E1 U ... U E; of the lines such that
E;: Li = 0. So the Hodge characteristic of the motivic nearby fibre (5.1) is
XHdi?wt) =(1-g)(1+L)

where g = (dgl) is the genus of the generic fibre, as it is a smooth projective curve of degree
d.

The weights are shown in Figure 3. One sees that there are only even weight terms for

H° | H' | H?
weight 0 | 1 g 0
weight 2 | 0 | g(L) | L

Figure 3: Dimensions of limit mixed Hodge structure of Example 22

H'(X) and its only primitive subspace has weight 2 and dimension g, since dim H!(X,) =

2g. In particular N has g blocs of size 2, so it is maximally unipotent. Moreover the

. . 0N 2
monodromy diagram is e ..
9 g
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