solutions to a class of nonlocal evolution equations

J. Garcia Falset and Simon Reich

U. València

Alicante, mayo 2011
Let X be a real Banach space. Our goal in this paper is to obtain existence results regarding integral solutions to a class of nonlocal evolution equations of the form

\[
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, u(t)), & t \in (0, T), \\
 u(0) = g(u),
\end{cases}
\]

where $A : D(A) \subseteq X \to X$ is an m-accretive operator on X, and $f : [0, T] \times X \to X$ and $g : C(0, T; X) \to X$ are given functions.
Let X be a real Banach space. Our goal in this paper is to obtain existence results regarding integral solutions to a class of nonlocal evolution equations of the form

$$\begin{cases} u'(t) + A(u(t)) \ni f(t, u(t)), \quad t \in (0, T), \\ u(0) = g(u), \end{cases}$$ \hspace{1cm} (1)$$

where $A : D(A) \subseteq X \rightarrow X$ is an m-accretive operator on X, and $f : [0, T] \times X \rightarrow X$ and $g : C(0, T; X) \rightarrow X$ are given functions.

The nonlocal initial condition, which is a generalization of the classical Cauchy initial condition, was motivated by problems which arise in the natural sciences. For example, in 1993, K. Deng used this type of problems to describe the diffusion phenomenon of a small amount of gas in a transparent tube. The study of abstract nonlocal nonlinear initial value problems was initiated by Aizicovici and Gao in 1997.
Results on the existence of periodic solutions to Problem (1), i.e., the particular case where $g(u) = u(T)$, have been obtained under several assumptions on A and f by many authors. (we can mention, the authors Bostan, Cascaval, Vrabie, Cwiszewski, Paicu).
Results on the existence of periodic solutions to Problem (1), i.e., the particular case where $g(u) = u(T)$, have been obtained under several assumptions on A and f by many authors. (we can mention, the authors Bostan, Cascaval, Vrabie, Cwiszewski, Paicu).

One of the usual methods for proving the existence of T-periodic solutions is to show that the corresponding Poincaré map, i.e., the map $P : \overline{D(A)} \to 2^{\overline{D(A)}}$, which assigns to each $x \in \overline{D(A)}$ the values at T of all integral solutions satisfying $u(0) = x$, has at least one fixed point.
Results on the existence of periodic solutions to Problem (1), i.e., the particular case where \(g(u) = u(T) \), have been obtained under several assumptions on \(A \) and \(f \) by many authors. (we can mention, the authors Bostan, Cascaval, Vrabie, Cwiszewski, Paicu).

One of the usual methods for proving the existence of \(T \)-periodic solutions is to show that the corresponding Poincaré map, i.e., the map \(P : \overline{D(A)} \to 2\overline{D(A)} \), which assigns to each \(x \in \overline{D(A)} \) the values at \(T \) of all integral solutions satisfying \(u(0) = x \), has at least one fixed point.

However, in the nonlocal case, the most usual technique used to obtain a solution is to use some fixed point theorem in \(C(0, T; X) \) in order to see that the mapping \(S : C(0, T; X) \to C(0, T; X) \), defined by letting \(S(v) \), where \(v \in C(0, T; X) \), be the solution of the problem

\[
\begin{aligned}
 u'(t) + A(u(t)) &\ni f(t, v(t)), \quad t \in (0, T), \\
 u(0) = g(v),
\end{aligned}
\]

has a fixed point.
In this talk we show that under some additional assumptions on X, A and f, it is still possible to establish an existence result regarding integral solutions to Problem (1), which does allow us to include functions $g : C(0, T; X) \to X$ of the form

- $g(u) = u(T);$
- $g(u) = \frac{1}{T} \int_0^T u(\tau) d\tau;$
- $g(u) = \sum_{i=1}^n \alpha_i u(t_i)$, where $\sum_{i=1}^n |\alpha_i| \leq 1$ and $0 < t_1 < t_2, ..., < t_n \leq T.$
An operator A on X is said to be \textit{accretive} if the inequality
$$\|x - y + \lambda(z - w)\| \geq \|x - y\|$$
holds for all $\lambda \geq 0$, $(x, z); (y, w) \in A$.
An operator A on X is said to be *accretive* if the inequality
\[
\|x - y + \lambda(z - w)\| \geq \|x - y\| \quad \text{holds for all } \lambda \geq 0, (x, z); (y, w) \in A.
\]
If, in addition, $\mathcal{R}(I + \lambda A)$ is for one, hence for all, $\lambda > 0$, precisely X, then A is called m-accretive.
An operator A on X is said to be **accretive** if the inequality
$$\|x - y + \lambda(z - w)\| \geq \|x - y\|$$
holds for all $\lambda \geq 0$, $(x, z); (y, w) \in A$.

If, in addition, $\mathcal{R}(I + \lambda A)$ is for one, hence for all, $\lambda > 0$, precisely X, then A is called m-accretive.

- Browder, Felix E., Kato in 1967
An operator A on X is said to be *accretive* if the inequality
\[\| x - y + \lambda (z - w) \| \geq \| x - y \| \] holds for all $\lambda \geq 0$, $(x, z); (y, w) \in A$.

If, in addition, $\mathcal{R}(I + \lambda A)$ is for one, hence for all, $\lambda > 0$, precisely X, then A is called m-accretive.

- **Browder, Felix E., Kato in 1967**

Those accretive operators which are m-accretive play an important role in the study of nonlinear partial differential equations.
Consider the Cauchy problem

$$\begin{cases}
u'(t) + A(u(t)) \ni f(t), & t \in (0, T), \\
u(0) = x_0 \in D(A),
\end{cases} \quad (2)$$

where A is m-accretive on X and $f \in L^1(0, T, X)$.
Consider the Cauchy problem

\[
\begin{cases}
 u'(t) + A(u(t)) \ni f(t), & t \in (0, T), \\
 u(0) = x_0 \in D(A),
\end{cases}
\]

(2)

where \(A \) is \(m \)-accretive on \(X \) and \(f \in L^1(0, T, X) \).

It is well known that (3) has a unique integral solution in the sense of Bénilan, in 1972.
Consider the Cauchy problem
\[
\begin{cases}
u'(t) + A(u(t)) \ni f(t), & t \in (0, T), \\
u(0) = x_0 \in D(A),
\end{cases}
\tag{3}
\]
where \(A \) is \(m \)-accretive on \(X \) and \(f \in L^1(0, T, X) \).
It is well known that (3) has a unique integral solution in the sense of Bénilan.
There exists a unique continuous function \(u : [0, T] \to D(A) \) such that \(u(0) = x_0 \), and moreover, for each \((x, y) \in A\) and \(0 \leq s \leq t \leq T \), we have
\[
\|u(t) - x\|^2 - \|u(s) - x\|^2 \leq 2 \int_s^t \langle f(\tau) - y, u(\tau) - x \rangle_+ d\tau. \tag{4}
\]
Here the function \(\langle \cdot, \cdot \rangle_+ : X \times X \to \mathbb{R} \) is defined by
\[
\langle y, x \rangle_+ = \sup \{ x^*(y) : x^* \in J(x) \},
\]
where \(J : X \to 2^{X^*} \) is the duality mapping on \(X \), i.e., \(J(x) = \{ x^* \in X^* : x^*(x) = \|x\|^2, \|x^*\| = \|x\| \} \).
A strong solution of Problem (3) is a function $u \in W^{1,\infty}(0, T; X)$, i.e., u is locally absolutely continuous and almost differentiable everywhere, $u' \in L^\infty(0, T; X)$, and $u'(t) + A(u(t)) \ni f(t)$ for almost all $t \in [0, T]$.
A strong solution of Problem (3) is a function $u \in W^{1,\infty}(0, T; X)$, i.e., u is locally absolutely continuous and almost differentiable everywhere, $u' \in L^{\infty}(0, T; X)$, and $u'(t) + A(u(t)) \ni f(t)$ for almost all $t \in [0, T]$.

Theorem

If X is a Banach space with the Radon-Nikodym property, $A : D(A) \subseteq X \to 2^X$ is an m-accretive operator, and $f \in BV(0, T; X)$, i.e., f is a function of bounded variation on $[0, T]$, then Problem (3) has a unique strong solution whenever $x_0 \in D(A)$.
we say that $u \in C(0, T; X)$ is a weak solution of Problem (3) if there are sequences $(u_n) \subseteq W^{1,\infty}(0, T; X)$ and $(f_n) \subseteq L^1(0, T; X)$ satisfying the following four conditions:
we say that \(u \in C(0, T; X) \) is a \textit{weak solution} of Problem (3) if there are sequences \((u_n) \subseteq W^{1,\infty}(0, T; X)\) and \((f_n) \subseteq L^1(0, T; X)\) satisfying the following four conditions:

1. \(u'_n(t) + Au_n(t) \ni f_n(t) \text{ for almost all } t \in [0, T], \, n = 1, 2, \ldots; \)
2. \(\lim_{n \to \infty} \|u_n - u\|_{\infty} = 0; \)
3. \(u(0) = x_0; \)
4. \(\lim_{n \to \infty} \|f_n - f\|_1 = 0; \)
we say that \(u \in C(0, T; X) \) is a weak solution of Problem (3) if there are sequences \((u_n) \subseteq W^{1, \infty}(0, T; X) \) and \((f_n) \subseteq L^1(0, T; X) \) satisfying the following four conditions:

1. \(u'_n(t) + Au_n(t) \ni f_n(t) \) for almost all \(t \in [0, T] \), \(n = 1, 2, \ldots \);
2. \(\lim_{n \to \infty} \| u_n - u \|_{\infty} = 0 \);
3. \(u(0) = x_0 \);
4. \(\lim_{n \to \infty} \| f_n - f \|_1 = 0 \);

Theorem

Let \(X \) be a Banach space with the Radon-Nikodym property. Then Problem (3) admits a unique weak solution which is the unique integral solution of this problem.
Consider the nonlocal Cauchy problem

\[
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, u(t)), \quad t \in (0, T), \\
 u(0) = g(u),
\end{cases}
\tag{5}
\]

(C1) \(A : D(A) \subseteq X \rightarrow 2^X \) is an \(m \)-accretive operator such that \(-A\) generates a compact semigroup \(\{ S(t) : \overline{D(A)} \rightarrow \overline{D(A)} \} \), \(t \geq 0 \);

(C2) There exists \(r > 0 \) such that for each \((x, y) \in A\) with \(\|x\| \geq r \), \(z \in B_r(0) \) and for each \(t \in [0, T] \), \(\langle y - f(t, z), x \rangle_s \geq 0 \);

(C4) \(g : C(0, T; X) \rightarrow \overline{D(A)} \) is a continuous mapping such that \(\sup_{u \in W_r} \| S(\frac{1}{n}) g(u) \| \leq r \) for all \(n \geq 1 \), where \(r > 0 \) is given by (C2), and there is a \(\delta \in (0, T) \) such that \(g(u) = g(v) \) whenever \(u(s) = v(s) \) for all \(s \in [\delta, T] \);

(F4) \(f(\cdot, \cdot) \) is a Caratheodory function and for any \(l > 0 \), there exists a function \(k_l \in L^1(0, T; \mathbb{R}) \) such that \(\| f(t, x) \| \leq k_l(t) \) for a.e. \(t \in [0, T] \) and every \(x \in B_l(0) \).
Theorem (3)

Let X be a real Banach space with the Radon-Nikodym property. Under the above assumptions the problem

$$
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, u(t)), \quad t \in (0, T), \\
 u(0) = g(u),
\end{cases}
$$

(6)

has at least one integral solution.
Theorem (3)

Let X be a real Banach space with the Radon-Nikodym property. Under the above assumptions the problem

\[
\begin{align*}
 u'(t) + A(u(t)) &\ni f(t, u(t)), \quad t \in (0, T), \\
 u(0) &= g(u),
\end{align*}
\]

has at least one integral solution.

To prove the above theorems we need the following lemmata.
Theorem (3)

Let X be a real Banach space with the Radon-Nikodym property. Under the above assumptions the problem

$$
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, u(t)), & t \in (0, T), \\
 u(0) = g(u),
\end{cases}
$$

has at least one integral solution.

To prove the above theorems we need the following lemmata. For a fixed $n \geq 1$, we consider the problem

$$
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, u(t)), & t \in (0, T), \\
 u(0) = S(\frac{1}{n})g(u),
\end{cases}
$$

J. Garcia Falset and Simon Reich

Nonlocal problems
Theorem (3)

Let X be a real Banach space with the Radon-Nikodym property. Under the above assumptions the problem

$$\begin{cases} u'(t) + A(u(t)) \ni f(t, u(t)), & t \in (0, T), \\ u(0) = g(u), \end{cases} \quad (6)$$

has at least one integral solution.

To prove the above theorems we need the following lemmata. For a fixed $n \geq 1$, we consider the problem

$$\begin{cases} u'(t) + A(u(t)) \ni f(t, u(t)), & t \in (0, T), \\ u(0) = S(\frac{1}{n})g(u), \end{cases} \quad (7)$$

Lemma

Assume that the hypotheses of Theorem 3 hold. Then for any $n \geq 1$, Equation (7) has an integral solution.
Given $v \in W_r$, let $S_n(v)$ be the unique integral solution of the problem

$$\begin{cases} u'(t) + A(u(t)) \ni f(t, v(t)), \; t \in (0, T), \\ u(0) = S_n g(v) \end{cases}$$
Proof

Given $v \in W_r$, let $S_n(v)$ be the unique integral solution of the problem

$$
\begin{align*}
 u'(t) + A(u(t)) &\ni f(t, v(t)), \quad t \in (0, T), \\
 u(0) &= S(\frac{1}{n})g(v)
\end{align*}
$$

By Condition (C4):

- $g : C(0, T; X) \to \overline{D(A)}$ is a continuous mapping such that $\sup_{u \in W_r} \|S(\frac{1}{n})g(u)\| \leq r$ for all $n \geq 1$, where $r > 0$ is given by (C2), and there is a $\delta \in (0, T)$ such that $g(u) = g(v)$ whenever $u(s) = v(s)$ for all $s \in [\delta, T]$;
Given \(v \in \mathcal{W}_r \), let \(S_n(v) \) be the unique integral solution of the problem

\[
\begin{aligned}
\left\{ \begin{array}{l}
u'(t) + A(u(t)) \ni f(t, v(t)), t \in (0, T), \\
u(0) = S(\frac{1}{n})g(v)
\end{array} \right.
\end{aligned}
\]

By Condition (C4):
\(g : C(0, T; X) \to \overline{D(A)} \) is a continuous mapping such that
\[
\sup_{u \in \mathcal{W}_r} \| S(\frac{1}{n})g(u) \| \leq r \text{ for all } n \geq 1, \text{ where } r > 0 \text{ is given by (C2), and there is a } \delta \in (0, T) \text{ such that } g(u) = g(v) \text{ whenever } u(s) = v(s) \text{ for all } s \in [\delta, T];
\]
we have \(S(\frac{1}{n})g(v) \in \overline{D(A)} \cap B_r(0) \).
Given \(v \in W_r \), let \(S_n(v) \) be the unique integral solution of the problem

\[
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, v(t)), t \in (0, T), \\
 u(0) = S(\frac{1}{n})g(v)
\end{cases}
\]

By Condition (C4):
\(g : C(0, T; X) \to \overline{D(A)} \) is a continuous mapping such that
\[\sup_{u \in W_r} \| S(\frac{1}{n})g(u) \| \leq r \] for all \(n \geq 1 \), where \(r > 0 \) is given by (C2), and there is a \(\delta \in (0, T) \) such that \(g(u) = g(v) \) whenever \(u(s) = v(s) \) for all \(s \in [\delta, T] \);
we have \(S(\frac{1}{n})g(v) \in \overline{D(A)} \cap B_r(0) \).
Now, let us see that \(W_r \) is a \(S_n \)-invariant set.
W_r is a S_n-invariant set

By

Theorem

Let X be a Banach space with the Radon-Nikodym property. Then above Problem admits a unique weak solution which is the unique integral solution of this problem.
Theorem

Let X *be a Banach space with the Radon-Nikodym property. Then above Problem admits a unique weak solution which is the unique integral solution of this problem.*

we know that $S_n(v)$ is a weak solution for Problem

$$
\begin{cases}
 u'(t) + A(u(t)) \ni f(t, v(t)), \quad t \in (0, T), \\
 u(0) = S\left(\frac{1}{n}\right)g(v)
\end{cases}
$$
\(W_r \) is a \(S_n \)-invariant set

If \(S_n(v) \notin W_r \), then since \(S_n(v) \) is a continuous function and \(S_n(v)(0) \in W_r \), there exists \(0 \leq t_0 < T \) such that \(\|S_n(v)(t)\| > r \) for every \(t \in (t_0, t_0 + \delta) \) and \(\|S_n(v)(t_0)\| \leq r \).
If $S_n(v) \notin W_r$, then since $S_n(v)$ is a continuous function and
$S_n(v)(0) \in W_r$, there exists $0 \leq t_0 < T$ such that $\|S_n(v)(t)\| > r$ for
every $t \in (t_0, t_0 + \delta)$ and $\|S_n(v)(t_0)\| \leq r$.
Since $S_n(v)$ is a weak solution, there exist sequences
$(u_m) \subseteq W^{1,\infty}(0, T; X)$ and $(f_m) \subseteq L^1(0, T; X)$ such that

(a) $u'_m(t) + Au_m(t) \ni f_m(t)$ a.e. $t \in [0, T], m = 1, 2, \ldots$;
(b) $\lim_{m \to \infty} \|u_m - S_n(v)\|_\infty = 0$;
(c) $\lim_{m \to \infty} \|f_m - f(\cdot, S_n(v)(\cdot))\|_1 = 0$.

W_r is a S_n-invariant set
W_r is a S_n-invariant set

(a) $u'_m(t) + Au_m(t) \ni f_m(t)$ a.e. $t \in [0, T]$, $m = 1, 2, \ldots$;
(b) $\lim_{m \to \infty} \| u_m - S_n(v) \|_{\infty} = 0$;
(c) $\lim_{m \to \infty} \| f_m - f(\cdot, S_n(v)(\cdot)) \|_1 = 0$.

In view of assumption (b), we may assume that $\| u_m(t) \| > r$ for all $t \in (t_0, t_0 + \delta)$ and for all $m \in \mathbb{N}$.
W_r is a S_n-invariant set

(a) $u'_m(t) + A u_m(t) \ni f_m(t)$ a.e. $t \in [0, T]$, $m = 1, 2, \ldots$;
(b) $\lim_{m \to \infty} \| u_m - S_n(v) \|_{\infty} = 0$;
(c) $\lim_{m \to \infty} \| f_m - f(\cdot, S_n(v)(\cdot)) \|_1 = 0$.

In view of assumption (b), we may assume that $\| u_m(t) \| > r$ for all $t \in (t_0, t_0 + \delta)$ and for all $m \in \mathbb{N}$.

By assumption (a), we have $f_m(t) - u'_m(t) \in A u_m(t)$ for almost all t.

Now, it follows from Hypothesis (C2):

There exists $r > 0$ such that for each $(x, y) \in A$ with $\| x \| \geq r$, $z \in B_r(0)$ and for each $t \in [0, T]$, $\langle y - f(t, z), x \rangle_s \geq 0$;

that the inequality

$$\langle f_m(t) - u'_m(t) - f(t, u_m(t)), u_m(t) \rangle_s \geq 0,$$

holds. This inequality, when combined with Kato’s differential rule, yields

$$\frac{1}{2} \frac{d}{dt} \| u_m(t) \|^2 \leq \| f_m(t) - f(t, u_m(t)) \| \| u_m(t) \| \text{ a.e. on } (t_0, t_0 + \delta).$$
W_r is a S_n-invariant set

(a) $u'_m(t) + Au_m(t) \ni f_m(t)$ a.e. $t \in [0, T]$, $m = 1, 2, \ldots$;
(b) $\lim_{m \to \infty} \|u_m - S_n(v)\|_\infty = 0$;
(c) $\lim_{m \to \infty} \|f_m - f(\cdot, S_n(v)(\cdot))\|_1 = 0$.

In view of assumption (b), we may assume that $\|u_m(t)\| > r$ for all $t \in (t_0, t_0 + \delta)$ and for all $m \in \mathbb{N}$.

By assumption (a), we have $f_m(t) - u'_m(t) \in Au_m(t)$ for almost all t.

Now, it follows from Hypothesis (C2):

There exists $r > 0$ such that for each $(x, y) \in A$ with $\|x\| \geq r$, $z \in B_r(0)$ and for each $t \in [0, T]$, $\langle y - f(t, z), x \rangle_s \geq 0$;

that the inequality

$$\langle f_m(t) - u'_m(t) - f(t, u_m(t)), u_m(t) \rangle_s \geq 0, \text{ a.e. on } (t_0, t_0 + \delta),$$

holds. This inequality, when combined with Kato's differential rule, yields

$$\frac{1}{2} \frac{d}{dt} \|u_m(t)\|^2 \leq \|f_m(t) - f(t, u_m(t))\| \|u_m(t)\| \text{ a.e. on } (t_0, t_0 + \delta).$$
W_r is a S_n-invariant set

Hence we conclude that for all $t \in (t_0, t_0 + \delta)$,

$$\frac{1}{2}(\|u_m(t)\|^2 - \|u_m(t_0)\|^2) \leq \|f_m - f(\cdot, u_m(\cdot))\|_1 \|u_m\|_\infty. \quad (8)$$
W_r is a S_n-invariant set

Hence we conclude that for all $t \in (t_0, t_0 + \delta)$,

$$\frac{1}{2} (\|u_m(t)\|^2 - \|u_m(t_0)\|^2) \leq \|f_m - f(\cdot, u_m(\cdot))\|_1 \|u_m\|_\infty. \quad (8)$$

At this point we argue as follows. First, we know that for almost all $t \in [0, T]$, $f(t, u_m(t)) \to f(t, S_n(v)(t))$.
W_r is a S_n-invariant set

Hence we conclude that for all $t \in (t_0, t_0 + \delta)$,

$$
\frac{1}{2}(\|u_m(t)\|^2 - \|u_m(t_0)\|^2) \leq \|f_m - f(\cdot, u_m(\cdot))\|_1 \|u_m\|_{\infty}.
$$

(8)

At this point we argue as follows. First, we know that for almost all $t \in [0, T]$, $f(t, u_m(t)) \to f(t, S_n(v)(t))$.

Second, since (u_n) is a bounded sequence in $C(0, T; X)$, there exists $l > 0$ such that for all $n \in \mathbb{N}$, $\|u_m\|_{\infty} \leq l$ and then, by Hypothesis (F4), there exists $k_l \in L^1(0, T; \mathbb{R})$ such that $\|f(t, u_m(t))\| \leq k_l(t)$.
W_r is a S_n-invariant set

Hence we conclude that for all $t \in (t_0, t_0 + \delta)$,

$$\frac{1}{2} (\| u_m(t) \|^2 - \| u_m(t_0) \|^2) \leq \| f_m - f(\cdot, u_m(\cdot)) \|_1 \| u_m \|_\infty. \quad (8)$$

At this point we argue as follows. First, we know that for almost all $t \in [0, T]$, $f(t, u_m(t)) \to f(t, S_n(v)(t))$.

Second, since (u_n) is a bounded sequence in $C(0, T; X)$, there exists $l > 0$ such that for all $n \in \mathbb{N}$, $\| u_m \|_\infty \leq l$ and then, by Hypothesis (F4), there exists $k_l \in L^1(0, T; \mathbb{R})$ such that $\| f(t, u_m(t)) \| \leq k_l(t)$.

Consequently, we may apply the dominated convergence theorem and conclude that $\| f(\cdot, u_m(\cdot)) - f(\cdot, S_n(v)(\cdot)) \|_1 \to 0$.

Finally, taking limits as $n \to \infty$ in (8), we obtain

$$\| S_n(v)(t) \| \leq \| S_n(v)(t_0) \| \leq r,$$

which is a contradiction. Therefore we conclude that $\| S_n(v) \|_\infty \leq r$.

J. Garcia Falset and Simon Reich
Nonlocal problems
Suppose that \((v_m)\) is a sequence in \(W_r\) such that \(v_m \to v \in W_r\). Since \(S_n(v_m)\) and \(S_n(v)\) are integral solutions and \(S(\frac{1}{n})\) is a nonexpansive mapping, we have, for each \(t \in [0, T]\),
S_n is a continuous function

Suppose that (v_m) is a sequence in W_r such that $v_m \to v \in W_r$. Since $S_n(v_m)$ and $S_n(v)$ are integral solutions and $S(\frac{1}{n})$ is a nonexpansive mapping, we have, for each $t \in [0, T]$,

$$\|S_n(v_m)(t) - S_n(v)(t)\| \leq \|g(v_m) - g(v)\| + \int_0^T \|f(\tau, v_m(\tau)) - f(\tau, v(\tau))\| d\tau.$$
S_n is a continuous function

Suppose that (v_m) is a sequence in $W_\mathcal{R}$ such that $v_m \to v \in W_\mathcal{R}$. Since $S_n(v_m)$ and $S_n(v)$ are integral solutions and $S(\frac{1}{n})$ is a nonexpansive mapping, we have, for each $t \in [0, T]$,

\[\|S_n(v_m)(t) - S_n(v)(t)\| \leq \|g(v_m) - g(v)\| + \int_0^T \|f(\tau, v_m(\tau)) - f(\tau, v(\tau))\| \, d\tau. \]

Now, since g is a continuous function and since by condition (F4) we may invoke the dominated convergence theorem to obtain that $f(\cdot, v_m(\cdot)) \to f(\cdot, v(\cdot))$ in $L^1(0, T; X)$, we conclude that S_n is indeed a continuous mapping.
since the semigroup generated by $-A$ is compact, S_n is a compact mapping (see the argument in the proof of the above lemma). Schauder’s fixed point theorem now yields the result.
since the semigroup generated by $-A$ is compact, S_n is a compact mapping (see the argument in the proof of the above lemma). Schauder’s fixed point theorem now yields the result.

If we consider

$$Q := \{u_n \in W_r : u_n \text{ is a solution of problem (7), } n \in \mathbb{N}\},$$

then Q is a relatively compact subset of $C(0, T; X)$ and therefore we may assume that $u_n \to u$ as $n \to \infty$ and it is easy to see that u is an integral solution of problem (1).
Let Ω be a bounded domain in \mathbb{R}^n ($n \geq 1$) with smooth boundary $\partial \Omega$ and let $\beta : D(\beta) \subseteq \mathbb{R} \to 2^{\mathbb{R}}$ be m-accretive with $0 \in \beta(0)$. Let $p \in (2, \infty]$ be given. Consider the $p-$Laplacian operator
Let Ω be a bounded domain in \mathbb{R}^n ($n \geq 1$) with smooth boundary $\partial \Omega$ and let $\beta : D(\beta) \subseteq \mathbb{R} \to 2^\mathbb{R}$ be m-accretive with $0 \in \beta(0)$. Let $p \in (2, \infty]$ be given. Consider the $p-$Laplacian operator

$$\triangle^\lambda_p u = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\frac{|\partial u|}{\partial x_i} |^{p-2} \frac{\partial u}{\partial x_i} \right) - \lambda u |u|^{p-2},$$

where the partial derivatives are taken in the sense of distributions over Ω and $\lambda > 0$.
Let $L^\lambda_p : D(L^\lambda_p) \to L^2(\Omega)$, defined by

$$L^\lambda_p = -\triangle^\lambda_p u, \ \forall u \in D(L^\lambda_p),$$

be the subdifferential of the convex function Φ^λ_p defined by

$$\Phi^\lambda_p(u) := \begin{cases} \\
\frac{1}{p} \sum_{i=1}^n \int_{\Omega} |\frac{\partial u}{\partial x_i}|^p dx + \frac{\lambda}{p} \int_{\Omega} |u|^p dx + \int_{\partial \Omega} j(u) d\sigma, \\
\text{if } u \in W^{1,p}(\Omega) \text{ and } j(u) \in L^1(\partial \Omega) \\
+\infty, \ \text{otherwise},
\end{cases}$$

where $j : \mathbb{R} \to \mathbb{R}^+ \cup \{+\infty\}$ is a proper lower semicontinuous convex function such that its subdifferential $\partial j = \beta$ (see, for instance, Example 1.6.3 in Barbu, 2010).
It is well known that L^λ_p is an m-accretive operator on $L^2(\Omega)$ and $-L^\lambda_p$ generates a nonexpansive compact semigroup on $\overline{D(L^\lambda_p)} = L^2(\Omega)$.
It is well known that L^λ_p is an m-accretive operator on $L^2(\Omega)$ and $-L^\lambda_p$ generates a nonexpansive compact semigroup on $\overline{D(L^\lambda_p)} = L^2(\Omega)$.

Consider the nonlocal initial boundary value problem

\[
\begin{aligned}
 u_t(t, x) - \Delta^\lambda_p(u(t, x)) &= h(t, x, u(t, x)), \quad (t, x) \in (0, T) \times \Omega, \\
 u(0, x) &= \sum_{i=1}^{k} c_i u(t_i, x), \quad \text{a.e on } \Omega, \\
 -\frac{\partial u}{\partial \nu_p} &\in \beta(u(t, x)), \quad \text{a.e. on } (0, T) \times \partial \Omega,
\end{aligned}
\tag{9}
\]

where $h : [0, T] \times \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exist $m, b \geq 0$ such that $|h(t, x, u)| \leq m |u| + b$ for each $(t, x, u) \in [0, T] \times \overline{\Omega} \times \mathbb{R}$, $0 < t_1 < ... < t_p \leq T$ and $\sum_{i=1}^{p} |c_i| \leq 1$.
Consider $X = L^2(\Omega)$ and $A = L^\lambda_p$, $u(t) := u(t, .) \in X$. Define $f : [0, T] \times X \to X$ by $f(t, v)(x) = h(t, x, v(x))$ for all $t \in (0, T]$ and $g : C(0, T; X) \to X$ by $g(u)(x) = \sum_{i=1}^p c_i u(t_i)(x)$. We interpret and rewrite Problem (9) as follows:
Consider $X = L^2(\Omega)$ and $A = L^\lambda_p$, $u(t) := u(t, .) \in X$. Define $f : [0, T] \times X \to X$ by $f(t, v)(x) = h(t, x, v(x))$ for all $t \in (0, T]$ and $g : C(0, T; X) \to X$ by $g(u)(x) = \sum_{i=1}^p c_i u(t_i)(x)$. We interpret and rewrite Problem (9) as follows:

\[
\begin{cases}
 u'(t) + A(u(t)) = f(t, u(t)), & t \in (0, T), \\
 u(0) = g(u).
\end{cases}
\]
Consider $X = L^2(\Omega)$ and $A = L^\lambda_p$, $u(t) := u(t, .) \in X$. Define $f : [0, T] \times X \to X$ by $f(t, v)(x) = h(t, x, v(x))$ for all $t \in (0, T]$ and $g : C(0, T; X) \to X$ by $g(u)(x) = \sum_{i=1}^p c_i u(t_i)(x)$. We interpret and rewrite Problem (9) as follows:

$$
\begin{align*}
\begin{cases}
u' (t) + A(u(t)) &= f(t, u(t)), \ t \in (0, T), \\
u(0) &= g(u).
\end{cases}
\end{align*}
$$

(10)

In order to show that Problem (10) has at least one integral solution, we are going to check whether the conditions of the previous theorem are met.
\[(a)\] Since \(X = L^2(\Omega)\), \(X\) obviously enjoys the Radon-Nikodym property.
Proof

(a) Since $X = L^2(\Omega)$, X obviously enjoys the Radon-Nikodym property.
(b) As we mentioned before, A is an m-accretive operator such that $-A$ generates a compact semigroup on X.
Proof

(a) Since \(X = L^2(\Omega) \), \(X \) obviously enjoys the Radon-Nikodym property.

(b) As we mentioned before, \(A \) is an \(m \)-accretive operator such that \(-A\) generates a compact semigroup on \(X \).

(c) It is clear that \(f : [0, T] \times X \rightarrow X \) for every \(x \in X \), \(f(\cdot, x) \) is measurable; and \(f(t, \cdot) \) is continuous at almost all \(t \in [0, T] \).
Proof

(a) Since $X = L^2(\Omega)$, X obviously enjoys the Radon-Nikodym property.

(b) As we mentioned before, A is an m-accretive operator such that $-A$ generates a compact semigroup on X.

(c) It is clear that $f : [0, T] \times X \to X$ for every $x \in X$, $f(\cdot, x)$ is measurable; and $f(t, \cdot)$ is continuous at almost all $t \in [0, T]$.

(d) It is also clear that there exists a constant $M(r) > 0$ such that $\|f(t, u)\| \leq M(r)$ whenever $\|u\| \leq r$. This means that f satisfies condition (F4) of Theorem 3.
Proof

(a) Since $X = L^2(\Omega)$, X obviously enjoys the Radon-Nikodym property.

(b) As we mentioned before, A is an m-accretive operator such that $-A$ generates a compact semigroup on X.

(c) It is clear that $f : [0, T] \times X \to X$ for every $x \in X$, $f(\cdot, x)$ is measurable; and $f(t, \cdot)$ is continuous at almost all $t \in [0, T]$.

(d) It is also clear that there exists a constant $M(r) > 0$ such that $\|f(t, u)\| \leq M(r)$ whenever $\|u\| \leq r$. This means that f satisfies condition (F4) of Theorem 3.

(e) Since $0 \in A(0)$, it is not difficult to prove that g satisfies condition (C4) of Theorem 3.
Finally, we show that Condition (C2)

There exists \(r > 0 \) such that for each \((x, y) \in A \) with \(\|x\| \geq r \), \(z \in B_r(0) \) and for each \(t \in [0, T] \), \(\langle y - f(t, z), x \rangle_s \geq 0 \); is satisfied. This will be done in several steps.
Finally, we show that Condition (C2)

There exists \(r > 0 \) such that for each \((x, y) \in A\) with \(\|x\| \geq r \), \(z \in B_r(0) \) and for each \(t \in [0, T] \), \(\langle y - f(t, z), x \rangle_s \geq 0 \);

is satisfied. This will be done in several steps.

Proposition

Let \(A \subset L^2(\Omega) \times L^2(\Omega) \) be the above \(m \)-accretive operator. Then \(A \) is \(\gamma \)-coercive in \(L^2(\Omega) \), with \(\gamma(t) = M t^{p-1} \).
Finally, we show that Condition (C2)

There exists \(r > 0 \) such that for each \((x, y) \in A\) with \(\|x\| \geq r \), \(z \in B_r(0) \) and for each \(t \in [0, T] \), \(\langle y - f(t, z), x \rangle_s \geq 0; \)

is satisfied. This will be done in several steps.

Proposition

Let \(A \subset L^2(\Omega) \times L^2(\Omega) \) be the above \(m \)-accretive operator. Then \(A \) is \(\gamma \)-coercive in \(L^2(\Omega) \), with \(\gamma(t) = Mt^{p-1} \).

Recall that

Definition

Let \(X \) be a Banach space and let \(\gamma : [0, +\infty[\to [0, +\infty[\) be a function with \(\lim_{t \to \infty} \gamma(t) = \infty \). An accretive operator \(A \subset X \times X \) is said to be \(\gamma \)-coercive if for each \((x, y) \in A\), we have \(\langle y, x \rangle_s \geq \gamma(\|x\|)\|x\| \).
Definition

Let X be a Banach space and let $\gamma : [0, +\infty[\to [0, +\infty[$ be a function with $\lim_{t \to \infty} \gamma(t) = \infty$. An accretive operator $A \subset X \times X$ is said to be γ-coercive if for each $(x, y) \in A$, we have $\langle y, x \rangle_s \geq \gamma(\|x\|) \|x\|$.

On the other hand,

Proposition

Let X be a Banach space and A an m-accretive and γ-coercive operator on X. If $f : [0, T] \times X \to X$ satisfies

$$
\lim_{r \to \infty} \frac{\sup\{\|f(t, v)\| : t \in [0, T], \|v\| = r\}}{\gamma(r)} < 1,
$$

(11)

then there exists $r > 0$ such that $\langle y - f(t, x), x \rangle_s \geq 0$ for all $t \in [0, T]$ and for all $(x, y) \in A$ with $\|x\| \geq r$.

J. Garcia Falset and Simon Reich

Nonlocal problems
Now it is not difficult to see that
\[
\lim_{r \to \infty} \frac{\sup \{ \| f(t, u) \| : t \in [0, T], \| u \| \leq r \}}{Mr^{p-1}} < 1.
\]

Thus, this problem has at least one integral solution.
Now it is not difficult to see that

\[
\lim_{r \to \infty} \frac{\sup\{\|f(t, u)\| : t \in [0, T], \|u\| \leq r\}}{Mr^{p-1}} < 1.
\]

Thus, this problem has at least one integral solution. Finally, by a result due to Brezis we can conclude that the integral solutions obtained are strong solutions.