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Abstract. We study necessary and sufficient conditions for an accretive

operator which satisfies the range condition to have a zero. We obtain, in

particular, a characterization of this property for m-accretive operators in

L1. We also study the asymptotic behavior of nonexpansive semigroups in

L1 and then apply our results to certain initial value problems.

1. Introduction

Let X be a real Banach space. A mapping A : X → 2X will be called an
operator on X. The domain of A is denoted by D(A) and its range by R(A). An
operator A on X is said to be accretive if the inequality ‖x−y+λ(z−w)‖ ≥ ‖x−y‖
holds for all λ ≥ 0, z ∈ Ax, and w ∈ Ay. If, in addition, R(I+λA) is for one, hence
for all λ > 0, precisely X, then A is called m-accretive. We say that A satisfies the
range condition if D(A) ⊂ R(I +λA) for all λ > 0. (See, for instance, [28] and [11]
to find hypotheses which imply the range condition.) Accretive operators were
introduced by F.E. Browder [9] and T. Kato [21] independently. Those accretive
operators which are m-accretive or satisfy the range condition play an important
role in the study of nonlinear semigroups, differential equations in Banach spaces,
and fully nonlinear partial differential equations. For example, it is well known
that if X is a Banach space and A : D(A) → 2X is an accretive operator which

2000 Mathematics Subject Classification. Primary 47H09, 47H20; Secondary 47H10.
Key words and phrases. Accretive operator, asymptotic behavior, nonexpansive semigroup,

stationary point.
The first author was supported in part by DGES, Grant BFM 2003-03893-C02-02. The sec-

ond author was partially supported by the Fund for the Promotion of Research at the Technion

and by the Technion VPR Fund.

1197
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satisfies the range condition, then the initial value problem

(1.1) u′(t) + A(u(t)) 3 0, u(0) = x0,

has a unique mild solution for each x0 ∈ D(A), which is given by the Crandall-
Liggett exponential formula [13]:

u(t) := lim
n→∞

(I +
t

n
A)−n(x0).

Moreover, the family

F := {S(t) : D(A) → D(A) : t ≥ 0},

where S(t)x = limn→∞(I + t
nA)−n(x), is a nonexpansive semigroup.

Among the problems treated by accretive operator theory, one of the most
studied is that of determining when A has a zero (i.e., 0 ∈ R(A)). Note that if
0 ∈ R(A), then the problem u′(t) + A(u(t)) 3 0 has stationary (i.e., constant)
solutions.

Recall that a Banach space X is said to have the fixed point property (FPP)
if for each nonempty, bounded, closed and convex subset D of X, every nonex-
pansive self-mapping T has a fixed point (see [18]). It is of interest to note the
usefulness of fixed point theory for nonexpansive mappings in studying the prob-
lem of the existence of zeroes of m-accretive operators in Banach spaces. In fact,
Reich-Torrejón [38] and Morales [29] gave a characterization of such m-accretive
operators when the Banach space X has the FPP. (The reader is also referred
to [20] for a discussion of this type of results; see also [17] and [30]). However,
L1([0, 1]) is an important example of a Banach space which is outside the scope
of the results of [38], [29], [30], [20] and [17]. This is because L1([0, 1]) fails to
have the FPP even for nonempty, weakly compact and convex subsets (see [1]).

On the other hand, the problem of convergence of continuous semigroups was
initiated by Brezis [7] who studied, among other topics, the behavior as t → ∞
of the solutions of

du

dt
∈ −A(u(t)) for a.e. t ≥ 0,

where A is a maximal monotone operator in a Hilbert space. Pazy [33] showed
that when the operator A is maximal monotone, the weak asymptotic convergence
of a solution u(t) is equivalent to the condition ωw(x) ⊂ A−1(0), where u(0) = x

and ωw(x) denotes the set of weak subsequential limits of u(t) as t → ∞. Since
then, many efforts have been devoted to the study of the asymptotic behavior of
nonexpansive semigroups in say, uniformly convex Banach spaces. (The reader is
referred to [16] for a discussion of this type of results.)
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In connection with his study of the strong convergence of semigroups, Pazy
introduced in [34] the convergence condition in a Hilbert space H, and showed that
if A is a maximal monotone operator which satisfies the convergence condition
and f ∈ L1(0,∞; H), then the solution of the problem

(1.2)







u′(t) + A(u(t)) 3 f(t)

u(0) = x0

converges strongly to a point in A−1(0).
This convergence condition was subsequently extended in 1979 by Nevanlinna

and Reich [31] to a Banach space setting. Let X be a uniformly convex and
uniformly smooth Banach space, and let A be an m-accretive operator in X.

Then A is said to satisfy the convergence condition if
(a) F = A−1(0) is nonempty.
(b) If (xn, yn) ∈ A, ‖xn‖ ≤ K, ‖yn‖ ≤ K, and limn→∞〈yn, J(xn − Pxn)〉 = 0,

then lim infn→∞ ‖xn − Pxn‖ = 0.

Here P : X → F is the nearest point projection which is well-defined because
X is reflexive and F is nonempty, closed and convex, and J : X → 2X∗

is the
normalized duality map (see the definition below).

Nevanlinna and Reich showed that if X and A satisfy the above conditions, then
the unique mild solution of the homogeneous problem (1.1) converges strongly as
t → ∞ to a zero of A. In fact, the same conclusion holds when X is merely a
reflexive, strictly convex, and smooth Banach space.

Xu [40] has recently shown that if X is a uniformly convex and uniformly
smooth Banach space and A satisfies the convergence condition, then the same
result holds for almost-orbits of the nonexpansive semigroup generated by −A. In
particular, he has proved that the solution of the inhomogeneous problem (1.2)
converges as t →∞ to a zero of A.

In the present paper, we study conditions for an accretive operator A which
satisfies the range condition to have a zero. We obtain, in particular, a char-
acterization of this property (i.e., 0 ∈ R(A)), for m-accretive operators in L1.

Another goal of our paper is to show that Xu’s result also holds outside the class
of uniformly convex and uniformly smooth Banach spaces. Thus we establish an
improvement of Xu’s result by showing that the same conclusion holds in the
framework of reflexive, strictly convex, and smooth Banach spaces. Finally, we
study the asymptotic behavior of nonexpansive semigroups in L1. In this way we
obtain several new results on the asymptotic behavior of solutions to the initial
value problem (1.1).
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2. Preliminaries

Throughout this paper we assume that X is a real Banach space and denote
by X? the dual space of X. We define the normalized duality mapping by

J(x) := {j ∈ X? : 〈x, j〉 = ‖x‖2, ‖j‖ = ‖x‖}.

Let 〈y, x〉+ := max{〈y, j〉 : j ∈ J(x)}.
Given an operator A : D(A) → 2X , we define

Jλ := (I + λA)−1, Aλ :=
I − Jλ

λ
, |Ax| := inf{‖u‖ : u ∈ Ax}.

The operators Jλ and Aλ are the resolvent and the Yosida approximant of A,
respectively.

We now recall some important facts regarding accretive operators which will
be used in our paper (see, for instance, [12]).

Proposition 2.1. (i).- The operator A ⊂ X × X is accretive if and only if
〈u− v, x− y〉+ ≥ 0 for all x, y ∈ D(A), and for each u ∈ Ax and v ∈ Ay.

(ii).- The operator A ⊂ X ×X is accretive if and only if for each λ > 0, the
resolvent Jλ is a single-valued nonexpansive mapping.

When A is an accretive operator which satisfies the range condition we have
(iii).- For all x ∈ D(A) and for each λ > 0, Aλx ∈ AJλx.

(iv).- For all x ∈ D(A) and for each λ > 0, ‖Aλx‖ ≤ |Ax|.
(v).- Given x ∈ D(A), the mapping λ → Jλx is continuous for λ ≥ 0, with

J0x = x.

As already mentioned in the Introduction, when the Banach space X has the
FPP, Reich-Torrejón [38] and Morales [29] gave a characterization of those m-
accretive operators A ⊂ X × X which have zeroes. We pick up those results in
the next two theorems.

Theorem 2.2. ([29],[38]) Let X be a Banach space with the FPP, and let A :
D(A) → 2X be m-accretive. Then the following are equivalent:

(a).- 0 ∈ R(A).
(b).- E := {x ∈ D(A) : tx ∈ Ax, t < 0} is bounded.
(c).- There exist x0 ∈ D(A) and a bounded open neighborhood U of x0 such

that for each x ∈ ∂U ∩D(A), 〈y, x− x0〉+ ≥ 0 for all y ∈ Ax.

Theorem 2.3. [38] Let X be a Banach space such that its unit ball has the fixed
point property for nonexpansive mappings, and let A ⊂ X × X be m-accretive.
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Then 0 ∈ R(A) if and only if there exist R > 0 and a point x0 ∈ D(A) such that
〈y, x− x0〉+ ≥ 0 for all y ∈ Ax with ‖x− x0‖ = R.

To test whether a mapping satisfies the range condition is not an easy task.
Now we introduce some other conditions which can be easily checked in some
significant cases.

A mapping U : D → X is said to satisfy the weak range condition if

lim
r→0+

1
r
dist(x, R(I + rU)) = 0

for each x ∈ D.

We say that U is subtangential on D if limr→0+
1
r dist(x−rUx, D) = 0 for each

x ∈ D.

Let us recall the following characterization of those continuous single-valued
accretive operators which satisfy the range condition. It is due to Martin [28]. In
this connection see also [37].

Theorem 2.4. [28] Let A : D(A) → X be a single-valued continuous mapping
with D(A) a closed subset of a Banach space X.

(i).- If A is subtangential on D(A), then A satisfies the weak range condition.
(ii).- If A is an accretive mapping satisfying the weak range condition, then A

is subtangential on D(A).
(iii).- If D(A) is also convex and A is an accretive mapping satisfying the weak

range condition, then A satisfies, in fact, the range condition.

When D is a convex subset of a Banach space X and U : D → X is subtan-
gential on D, we will say that I − U is weakly inward on D (see, for example,
[10] and [36]). This condition is weaker than the assumption that I −U map the
boundary of D into D.

Let X be a real Banach space and let C be a nonempty subset of X.
Let F = {T (t) : C → C : t ≥ 0} be a family of self-mappings of C. We

recall that F is said to be a nonexpansive semigroup acting on C if the following
conditions are satisfied:

(a).- T (0) = I, where I is the identity mapping on C.

(b).- T (s + t)x = T (s)T (t)x for all s, t ∈ [0,∞[ and x ∈ C.

(c).- ‖T (t)x− T (t)y‖ ≤ ‖x− y‖ for all x, y ∈ C and t ∈ [0,∞[.
(d).- t → T (t)x is continuous in t ∈ [0,∞[ for each x ∈ C.

The set of common fixed points of F is denoted by Fix(F).
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Given x ∈ C, the orbit of x under F is the function

γ : [0,∞[→ C defined by γ(t) := T (t)x.

Sometimes the set γ(x) := {T (t)x : t ∈ [0,∞[} is also called the orbit of x under
F .

The following facts about nonexpansive semigroups can be found in [25].
A continuous function u : [0,∞[→ C is called an almost-orbit of F if

lim
s→∞

( sup
t∈[0,∞[

‖u(t + s)− T (t)u(s)‖) = 0.

Of course, every orbit is an almost-orbit. The notion of an almost-orbit is useful
because if A is an m-accretive operator on X, then the integral solutions (see [3])
of the initial value problem

u′(t) + Au(t) 3 f(t), t ≥ 0, u(0) = x ∈ D(A),

with f(·) ∈ L1(0,∞, X) are almost-orbits of the nonexpansive semigroup gener-
ated by −A.

Lemma 2.5 ([25]). Let X be a Banach space and let F be a nonexpansive semi-
group on a subset C of x. If u, v are almost-orbits of F , then we have: (a)
limt→∞ ‖u(t) − v(t)‖ exists; (b) for every h ≥ 0, ‖u(t + h) − u(t)‖ converges as
t →∞; (c) if Fix(F) 6= ∅, then u([0,∞[) is bounded.

3. Zeroes of accretive operators satisfying the range condition

In order to proceed, we shall first give the following definitions.

Definition 1. [14] Let X be a Banach space and let τ be a topology on X which
is weaker than the norm topology. We say that X has the τ -fixed point property
(τ -FPP) if every nonexpansive self-mapping defined on a bounded, convex and
τ -sequentially compact subset C of X has a fixed point.

Let (xn) be a τ -null sequence which is norm bounded. The function

φ(xn)(x) = lim sup
n→∞

‖x− xn‖

will be called a function of τ -null type.

Definition 2. A subset K of a Banach space X is said to be “locally” τ -
sequentially compact if the intersection of K with any closed ball in X is τ -
sequentially compact.
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Definition 3. Let X be a Banach space and let τ be a topology on X weaker
than the norm topology. We say that an operator A ⊂ X×X satisfies the τ -range
condition whenever D(A)

τ
⊂ R(I + λA) for every λ > 0.

Theorem 3.1. Let X be a Banach space with the τ -FPP property and assume
that the functions of τ -null type defined on it are τ -slsc, (i.e., τ -sequentially lower
semi-continuous). Let A ⊂ X ×X be an accretive operator satisfying the τ -range
condition. If D(A)

τ
is convex and “locally” τ -sequentially compact, then the

following are equivalent:
(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a bounded open neighborhood U of x0 such

that for each x ∈ ∂U ∩D(A), 〈y, x− x0〉+ ≥ 0 for all y ∈ Ax.

(c).- There exists x0 ∈ D(A) such that E := {x ∈ D(A) : t(x−x0) ∈ Ax, t <

0} is bounded.

Proof. (a) =⇒ (b). By hypothesis, 0 ∈ R(A), which means that there exists
x0 ∈ D(A) such that 0 ∈ Ax0.

Let U be a bounded open neighborhood of x0. Given x ∈ ∂U ∩D(A), we have
〈y, x− x0〉+ ≥ 0 for all y ∈ Ax because A is an accretive operator and 0 ∈ Ax0.

(b) =⇒ (c). Suppose, to get a contradiction, that E is not a bounded set. Then
we can assume that {Jλx0 : λ ≥ 0} is unbounded.

Therefore there exists λ0 > 0 such that Jλ0x0 /∈ U , and by Proposition 2.1 (v)
we have

lim
λ→0+

Jλx0 = x0.

Now, by connectedness arguments, there exists λ1 ∈]0, λ0[ such that Jλ1x0 ∈
∂U ∩D(A). However, by Proposition 2.1 (iii) we know that Aλ1x0 ∈ AJλ1x0 and
consequently,

〈Aλ1x0, Jλ1x0 − x0〉+ ≥ 0,

which is indeed a contradiction.

(c) =⇒ (a). Given n ∈ N , consider xn ∈ E such that −1
n (xn − x0) ∈ Axn.

By hypothesis, E is a bounded set and D(A)
τ

is locally τ -sequentially compact.
Hence we may assume that (xn) is τ -convergent to y0 ∈ D(A)

τ
.

We denote

R := lim sup
n→∞

‖xn − y0‖
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and consider the following nonempty set:

K := {y ∈ D(A)
τ
∩B(y0, 2R) : φ(xn)(y) ≤ R}.

Now, the τ -slsc of the functions of τ -null type ensures that K is a nonempty
τ -sequentially compact convex subset. Thus, by the definition of τ -FPP, we only
need to check that K is J1-invariant.

Consider y ∈ K. Since

φ(xn)(J1y) ≤ lim sup
n→∞

‖J1(xn)− J1y‖+ lim sup
n→∞

‖J1(xn)− xn‖,

it follows from the definition of the Yosida approximant and the fact that J1 is a
nonexpansive mapping that

φ(xn)(J1y) ≤ φ(xn)(y) + lim sup
n→∞

‖A1xn‖.

Furthermore, since by the construction of (xn) we know that |Axn| → 0 and by
Proposition 2.1(iv), ‖A1xn‖ ≤ |Axn|, we obtain

φ(xn)(J1y) ≤ R.

Now, since ‖J1y− y0‖ ≤ φ(xn)(y)+φ(xn)(y0) ≤ 2R, we conclude that K is indeed
J1-invariant. £

Remark. From the Eberlein-Smulian Theorem, it is clear that if X is a Banach
space with the weak FPP, then in Theorem 3.1 it is sufficient to assume that
D(A)

w
is convex and “locally” weakly compact. On the other hand, if we assume

that X has the FPP and A is an m-accretive operator, then from Theorem 3.1
we can deduce Theorem 2.2.

To see other types of topologies to which Theorem 3.1 can be applied, the
reader is referred to [23] and [15].

The next example shows that in Theorem 3.1 we cannot remove the condition
that X has the τ -FPP.

Example.- Let X be the Banach space (L1[0, 1], ‖·‖1) and consider the Alspach
mapping [1], i.e., first let

K := {f ∈ L1[0, 1] : 0 ≤ f ≤ 2, ‖f‖1 = 1}.

Clearly, K is a weakly compact convex subset of L1[0, 1].
Now consider T : K → K such that for each f ∈ K, T (f) is defined by

T (f) : [0, 1] −→ R

t 7→ T (f(t)) =
{

min{2f(2t), 2}, t ∈ [0, 1
2 ]

max{2f(2(t− 1))− 2, 0}, t ∈ ( 1
2 , 1].
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Since it is proved in [1] that T is a fixed-point-free nonexpansive mapping, A =
I − T is a continuous accretive mapping such that 0 /∈ R(A). On the other hand,
since K is a weakly compact convex subset, we may use Theorem 2.4 to obtain
that A is an accretive mapping satisfying the range condition. Moreover, it can
be easily seen that A satisfies conditions (b) and (c) of Theorem 3.1.

If X is a Banach space with a closed unit ball which has the fixed point property
for nonexpansive mappings, then Theorem 2.3 allows us to give a characterization
of those m-accretive operators in X which have a zero. In particular, if X is a
dual Banach space with the weak-star FPP, i.e., for each nonempty convex weak-
star-compact subset of X, every nonexpansive self-mapping has a fixed point,
then it satisfies the above condition regarding its closed unit ball and therefore
we can use Theorem 2.3 to get a characterization of such m-accretive operators.
However, it is well known that there exist dual Banach spaces without the FPP
which do have the weak-star-FPP and therefore such spaces are outside the scope
of Theorem 2.2.

Definition 4. [14] A Banach space X is said to have property M(τ) if the
functions of τ -null type are constant on its spheres.

In [14] the authors showed that if X is a Banach space with property M(τ),
where τ is a linear topology, then the norm and the functions of τ -null type are
τ -slsc (see [14] to find examples with this property). Khamsi [20] and Sims [39]
showed that under certain conditions on a dual Banach space X, it is possible to
guarantee that the weak-star null type functions are w∗-slsc, and moreover, X

has the w∗-FPP. The following result is a consequence of the above comment and
of Theorem 3.1.

Corollary 3.2. Let X be a dual separable Banach space which either has property
M(w∗), or satisfies either the conditions of [20] or the condition of [39]. Let
A ⊂ X ×X be an m-accretive operator. Then the following are equivalent:

(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a bounded open neighborhood Uof x0 such that

for each x ∈ ∂U ∩D(A), 〈y, x− x0〉+ ≥ 0 for all y ∈ Ax.

(c).- E := {x ∈ D(A) : tx ∈ Ax, t < 0} is bounded.
(d).-There exist R > 0 and a point x0 ∈ D(A) such that 〈y, x − x0〉+ ≥ 0 for

all y ∈ Ax with ‖x− x0‖ = R.

Let X be a Banach space and let τ be a vector space topology on X which is
weaker than the norm topology. We say that X satisfies the τ -Opial condition
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(see [32] and [24]) if given a norm bounded sequence (xn) of X which is τ -null,
we have that

lim sup
n→∞

‖xn‖ < lim sup
n→∞

‖xn − x‖

whenever x ∈ X and x 6= 0.

It is well known (see [18]) that every Hilbert space, as well as the classical
Banach spaces (lp, ‖ · ‖p) with 1 ≤ p < ∞ satisfy the weak-Opial condition, while
all the Lp spaces with p 6= 2 do not satisfy the weak-Opial condition. In general,
the τ -Opial condition for a Banach space X does not imply the FPP for this
space, even when τ is the weak topology. We can, however, obtain the following
result.

Theorem 3.3. Let X be a Banach space and let τ be a vector space topology
weaker than the norm topology. Assume that X satisfies the τ -Opial condition
and let A ⊂ X×X be an accretive operator which satisfies the τ -range condition.
Then the following are equivalent.

(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a norm bounded τ -sequentially compact subset

U with x0 ∈ U such that for all x ∈ D(A) ∩ (X\U), 〈y, x − x0〉+ ≥ 0 whenever
y ∈ Ax.

(c).- There exist x0 ∈ D(A) and a norm bounded τ -sequentially compact subset
U with x0 ∈ U such that for all x ∈ D(A) ∩ (X\U), t(x− x0) /∈ Ax for t < 0.

(d).- There exists x0 ∈ D(A) such that (Jtnx0) is a norm bounded sequence
which is τ -convergent as tn →∞.

(e).- There exists a norm bounded sequence (xn) in D(A) such that |Axn| → 0
and (xn) is τ -convergent.

Proof. (a) =⇒ (b). If 0 ∈ R(A), then there exists x0 ∈ D(A) such that 0 ∈ Ax0,

and this means that Jλx0 = x0 for all λ ≥ 0. Hence, by the definition of an
accretive operator, it is sufficient to take U := {x0}.

(b) =⇒ (c). Consider x ∈ D(A)∩(X\U) and suppose that t < 0 and t(x−x0) ∈
Ax. Then, by hypothesis, it is clear that

〈t(x− x0), x− x0〉+ ≥ 0,

which means that 0 ≤ t‖x − x0‖2. But this is a contradiction, since t < 0 and
x 6= x0. Therefore, if x ∈ D(A) ∩ (X\U) and t < 0, then we can conclude that
t(x− x0) /∈ Ax.
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(c) =⇒ (d). Let

E := {x ∈ D(A) : ∃t < 0 such that t(x− x0) ∈ Ax}.

It is not difficult to see that E = {Jλx0 : λ > 0}. By (c), it is clear that E ⊂ U
and that U is τ -sequentially compact and norm bounded. Therefore any sequence
of the form (Jtnx0) admits a τ -convergent subsequence (Jtnk

x0).

(d) =⇒ (e). It is sufficient to show that |AJtnx0| → 0.

The sequence (Jtnx0) is norm bounded. Therefore, if we consider the Yosida
approximant

Atnx0 :=
x0 − Jtnx0

tn
,

then we see that ‖Atn
x0‖ → 0.

Now, by Proposition 2.1 (iii), we know that Atnx0 ∈ AJtnx0 and this implies
that |AJtnx0| → 0.

(e) =⇒ (a). Since (xn) is τ -convergent and norm bounded, we may denote

y := τ − lim
n→∞

xn

and
R := lim sup

n→∞
‖xn − y‖ < ∞.

Define the following nonempty set:

B := {z ∈ D(A)
τ

: lim sup
n→∞

‖xn − z‖ ≤ R}.

We claim that B is J1-invariant. Indeed, suppose that z ∈ B. Then

‖J1z − xn‖ ≤ ‖J1z − J1xn‖+ ‖J1xn − xn‖.

Since J1 is a nonexpansive mapping, we have

‖J1z − xn‖ ≤ ‖z − xn‖+ ‖A1xn‖.

Further, since |Axn| → 0, we can apply Proposition 2.1 (iv) to obtain

lim sup
n→∞

‖J1z − xn‖ ≤ R.

Now we can finish the proof because X satisfies the τ -Opial condition, and hence
B = {y}, which means that J1y = y, and thus 0 ∈ Ay. £

Remark. When we consider in Theorem 3.3 a Banach space satisfying the weak-
Opial condition, the hypothesis of such a theorem can be relaxed in the following
way: Let U be weakly compact, and (Jtnx0) and (xn) weakly convergent.
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4. Zeroes of accretive operators in L1

Let (Ω, Σ, µ) be a positive σ-finite measure space. The measure µ will always be
assumed to be separable. The space L1(Ω) is the Banach space of all (equivalence
classes of) Σ-measurable functions f for which ‖f‖1 < ∞, where

‖f‖1 =
∫

Ω

|f |dµ.

Denote by L0(Ω) the topological vector space of all (equivalence classes) of
Σ-measurable functions with the topology generated by the translation-invariant
metric determined by

‖f‖0 :=
+∞
∑

n=1

1
2n

1
µ(En)

∫

En

|f |
1 + |f |

dµ.

Here (En) is a Σ-partition of Ω into sets with 0 < µ(En) < ∞ for each n.

Whenever µ(Ω) < ∞, we use the following simpler definition:

‖f‖0 :=
∫

Ω

|f |
1 + |f |

dµ.

The L0(Ω)-topology restricted to L1(Ω) will be called the topology of conver-
gence locally in measure (clm); or the topology of convergence in measure (cm)
when µ(Ω) < ∞.

It is well known that any sequence in L0 that converges almost everywhere to
f ∈ L0 must converge to f locally in measure. On the other hand, every clm-
convergent sequence of scalar-valued Σ-measurable functions has a subsequence
which converges almost everywhere to the same limit function.

It is clear that L1(Ω) endowed with the clm topology is a topological vector
space and that this topology is weaker than the norm topology. Moreover, it
follows from [8] and [6] that L1(Ω) satisfies the clm-Opial condition. In fact,
in [8] the authors show that if (fn) is a bounded sequence in L1(Ω) which clm-
converges to f ∈ L1(Ω), then for each g ∈ L1(Ω),

lim sup
n→∞

‖fn − g‖1 = ‖f − g‖1 + lim sup
n→∞

‖fn − f‖1.

Hence we may say that L1(Ω) has property M(clm).
On the other hand, since µ is assumed to be separable, (L0, ‖.‖0) is a separable

F-space and therefore a subset of L0(Ω) is clm-compact if and only if it is clm-
sequentially compact.
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Corollary 4.1. Let A ⊂ L1(Ω) × L1(Ω) be an accretive operator satisfying the
clm-range condition. Then the following conditions are equivalent.

(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a norm bounded clm-compact subset U with

x0 ∈ U such that for all x ∈ D(A) ∩ (X\U), 〈y, x− x0〉+ ≥ 0 whenever y ∈ Ax.

(c).- There exist x0 ∈ D(A) and a norm-bounded clm-compact subset U with
x0 ∈ U such that for all x ∈ D(A) ∩ (X\U), t(x− x0) /∈ Ax for t < 0.

(d).- There exists x0 ∈ D(A) such that (Jtnx0) is a norm bounded sequence
which is clm-convergent as tn →∞.

(e).- There exists a norm bounded sequence (xn) in D(A) such that |Axn| → 0
and (xn) is clm-convergent.

(f).- There exists a ‖.‖1-bounded sequence (xn) in D(A) such that |Axn| → 0
and (xn) converges almost everywhere in Ω.

Proof. By Theorem 3.3 and the above comment about the clm-topology, it is
sufficient to show the equivalence between (a) and (f).

(a) =⇒ (f). To see this, notice that, by [8] and [6], L1(Ω) satisfies the clm-
Opial condition and so, by Theorem 3.3 (e), there exists a ‖.‖1-bounded and
clm-convergent sequence (yn) in D(A) with |Ayn| → 0. Such a sequence has a
subsequence that converges almost everywhere in Ω.

(f) =⇒ (a). Suppose that (xn) converges almost everywhere to f ∈ L0(Ω).
Then (xn) clm-converges to f. Thus, by Theorem 3.3, we only have to show that
f ∈ L1(Ω).

Since (xn) converges almost everywhere to f, the sequence (|xn|) converges
almost everywhere to |f |. Moreover, since xn ∈ L1(Ω), clearly |xn| ∈ L1(Ω) and
‖xn‖1 = ‖|xn|‖1.

Now, using the fact that (xn) is a ‖.‖1-bounded sequence and Fatou’s lemma,
we obtain that |f | belongs to L1(Ω) and so does f . £

Corollary 4.2. Let A ⊂ L1(Ω) × L1(Ω) be an m-accretive operator such that

D(A)
clm

is locally clm-compact. Then the following conditions are equivalent.
(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a bounded open neighborhood U of x0 such

that for each x ∈ ∂U ∩D(A), 〈y, x− x0〉+ ≥ 0 for all y ∈ Ax.

(c).- E := {x ∈ D(A) : tx ∈ Ax, t < 0} is bounded.
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5. Asymptotic behavior

The first result we present in this section improves upon the result of Xu [40]
mentioned in the Introduction.

Theorem 5.1. Let X be a reflexive, strictly convex and smooth Banach space.
If A is an m-accretive operator in X satisfying the convergence condition, and
T := {S(t) : t ≥ 0} is the nonexpansive semigroup generated by −A via the
exponential formula, then every almost orbit of T is strongly convergent to a zero
of A.

Proof. By hypothesis, A is m-accretive and satisfies the convergence condition.
The null point set A−10 is nonempty and closed, and since X is strictly convex,
A−10 is also convex. Therefore, since X is both reflexive and strictly convex, the
nearest point projection P : X → A−10 is well-defined and single-valued.

Let u : [0,∞[→ X be an almost orbit of A and consider the following initial
value problem:

(5.1)







w′s(t) + A(ws(t)) 3 0

ws(0) = u(s).

We first assume that u(s) ∈ D(A) for a fixed s ≥ 0. Then the unique solution
of Problem (5.1) is ws(t) = S(t)u(s). Since X is reflexive, this solution is a
strong solution. Therefore the derivative w′s(t) exists a.e., and moreover satisfies
−w′s(t) ∈ Aws(t) a.e. Thus

〈−w′s(t), j(t)〉 =
1
h
〈ws(t− h)− ws(t), j(t)〉+ 〈ξ(t, h), j(t)〉,

where limh→0 ξ(t, h) = 0. Note that since X is smooth, the normalized duality
map is single valued, and we may denote j(t) := J(ws(t)− Pws(t)).

If we now follow step by step the proof of Theorem 1 of Nevanlinna and Reich
[31], we arrive at

(5.2) lim
t→∞

‖ws(t)− Pws(t)‖ = 0.

Now notice that t → ‖ws(t)− p‖ is decreasing for any p ∈ A−10 and therefore
we can write

‖ws(t)− ws(t + h)‖ ≤ ‖ws(t)− Pws(t)‖+ ‖Pws(t)− ws(t + h)‖ ≤

‖ws(t)− Pws(t)‖+ ‖Pws(t)− ws(t)‖ = 2‖ws(t)− Pws(t)‖.
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This means that there exists z ∈ X such that limt→∞ ws(t) = z. Hence by (5.2)
we have that

lim
t→∞

Pws(t) = z ∈ A−10.

Finally, suppose that u(s) ∈ D(A). Then there exists a sequence (xn) ⊆ D(A)
such that xn → u(s). If we denote un(t) := S(t)xn, then by the above argument
we have

lim
t→∞

un(t) = zn ∈ A−10.

We claim that the sequence (zn) is convergent to a zero of A.

Indeed, since the sequence (xn) is convergent, given ε > 0, there exists n0 ∈ N
such that for any n, m ≥ n0, ‖xn − xm‖ ≤ ε

3 .

Consider n, m ≥ n0. Then there exists t0 > 0 such that

‖zm − um(t0)‖ ≤
ε

3
and ‖zn − un(t0)‖ ≤

ε

3
.

Therefore

‖zn − zm‖ ≤ ‖zn − un(t0)‖+ ‖un(t0)− um(t0)‖+ ‖um(t0)− zm‖ <

<
2ε

3
+ ‖xn − xm‖ < ε.

Since A−10 is closed, we conclude that zn → z ∈ A−10, as claimed. Now we assert
that limt→∞ ‖ws(t)−Pws(t)‖ = 0. Indeed, given ε > 0, we know that there exists
n1 ∈ N such that

‖u(s)− xn1‖ <
ε

3
and ‖z − zn1‖ <

ε

3
.

Consequently, if t is sufficiently large, then we have

‖ws(t)− Pws(t)‖ ≤ ‖ws(t)− z‖ ≤ ‖ws(t)− un1(t)‖+ ‖un1(t)− z‖ ≤

≤ ‖u(s)− xn1‖+ ‖un1(t)− zn1‖+ ‖zn1 − z‖ ≤ ε.

The above argument shows that limt→∞ ‖ws(t) − Pws(t)‖ = 0 for any fixed
s > 0.

On the other hand, since u is an almost-orbit of T , we know that

‖S(t)u(s)− u(s + t)‖ ≤ ϕ(s) → 0 as s →∞.

Hence
‖u(t + s)− Pu(t + s)‖ ≤ ‖u(t + s)− Pu(s)‖ ≤

‖u(t + s)− S(t)u(s)‖+ ‖S(t)u(s)− PS(t)u(s)‖ ≤ ϕ(s) + ‖ws(t)− Pws(t)‖.
Therefore

(5.3) lim sup
t→∞

‖u(t + s)− Pu(t + s)‖ ≤ ϕ(s) → 0 as s →∞.
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Next, we show that limt→∞ ‖u(t) − Pu(t)‖ exists. Indeed, since u is an almost-
orbit of T , letting

ϕ(t) := sup
s≥0

‖u(s + t)− S(s)u(t)‖,

we note that limt→∞ ϕ(t) = 0.

Consequently,

‖u(t + s)− Pu(t + s)‖ ≤ ‖u(t + s)− Pu(t)‖ ≤

‖u(t + s)− S(s)u(t)‖+ ‖S(s)u(t)− Pu(t)‖ ≤ ϕ(t) + ‖u(t)− Pu(t)‖,

which implies that limt→∞ ‖u(t)− Pu(t)‖ exists.
Therefore, by using this fact and (5.3) we obtain that

lim
t→∞

‖u(t)− Pu(t)‖ = 0.

Finally, we have for all t, s ≥ 0,

‖u(t)−u(t+ s)‖ ≤ ‖u(t)−Pu(t)‖+ ‖Pu(t)−S(s)u(t)‖+ ‖S(s)u(t)−u(t+ s)‖ ≤

≤ 2‖u(t)− Pu(t)‖+ ϕ(t) → 0 as t →∞.

Thus u(t) does indeed converge strongly to a zero of A, as asserted. The proof is
complete. £

Regarding the asymptotic behavior of nonexpansive semigroups on a Banach
space, we now quote two results from [16].

Theorem 5.2. [16] Let X be a uniformly convex Banach space such that X? has
the Kadec-Klee property, and let C be a nonempty, bounded and closed subset of
X. If F is a nonexpansive semigroup acting on C and u is an almost orbit of F ,
then the following are equivalent:

(1). ωw(u) ⊂ FixF .

(2). w − limt→∞ u(t) = x ∈ Fix(F).
(3). w − limt→∞(u(t)− u(t + s)) = 0 for each s ∈ [0,∞[.

Theorem 5.3. [16] Let X be a reflexive locally uniformly convex Banach space
and let C be a closed subset of X. Suppose S is a nonexpansive semigroup on C

with int(Fix(S)) 6= ∅. Then for each almost orbit u, u(t) converges in norm to a
point of Fix(S) as t →∞.
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Clearly, both theorems do apply when the Banach space X is an Lp-space with
1 < p < ∞, but they do not apply in the case of L1. However, using the idea
developed in [26], we will now present several results for L1.

Let C be a clm-compact subset of L0(Ω) and let F = {S(t) : C ∩ L1(Ω) →
C ∩ L1(Ω)} be a nonexpansive semigroup. Given an almost orbit u of F , we
denote by ωd(u) the set of all clm-subsequential limits of {u(t)}t∈[0,∞[ as t →∞.

Theorem 5.4. Let C be a clm-compact subset of L0(Ω) such that K := C∩L1(Ω)
is ‖.‖1-bounded. If F is a nonexpansive semigroup on K, then the following are
equivalent:

(a).- ωd(u) ⊂ Fix(F).
(b).- {u(t)} is clm-convergent as t →∞ to an element of Fix(F).
(c).- For any h > 0, clm-limt→∞(u(t + h)− u(t)) = 0.

Proof. (a) =⇒ (b). Let f ∈ Fix(F), and define v(t) = f for all t ≥ 0. According
to the definition of an almost orbit, it is clear that v is an almost orbit and
therefore there exists

lim
t→∞

‖u(t)− f‖1.

Suppose that f, g ∈ ωd(u) ⊂ Fix(F). We only have to show that f = g. By
the definition of ωd(u), there exist two sequences (tn) and (sn) such that

clm− lim
n→∞

u(tn) = f and clm− lim
n→∞

u(sn) = g.

Since we may assume that f and g are almost-orbits of F , we have

(5.4) lim
t→∞

‖u(t)− f‖1 = lim
n→∞

‖u(tn)− f‖1 = lim
n→∞

‖u(sn)− f‖1

and

(5.5) lim
t→∞

‖u(t)− g‖1 = lim
n→∞

‖u(tn)− g‖1 = lim
n→∞

‖u(sn)− g‖1.

Now, assuming f 6= g, and noting that L1(Ω) satisfies the clm-Opial condition,
we see that

(5.6) lim
n→∞

‖u(tn)− f‖1 < lim
n→∞

‖u(tn)− g‖1

and

(5.7) lim
n→∞

‖u(sn)− g‖1 < lim
n→∞

‖u(sn)− f‖1,
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and therefore using (5.4), (5.5), (5.6) and (5.7), we conclude that

lim
t→∞

‖u(t)− g‖1 < lim
t→∞

‖u(t)− f‖1 < lim
t→∞

‖u(t)− g‖1,

which is obviously a contradiction.

(b) =⇒ (c). This is evident.

(c) =⇒ (a). Let f ∈ ωd(u). By definition, there is a sequence of positive
numbers (tn) such that tn →∞ as n →∞ and

f = clm− lim
n→∞

u(tn).

There exists a subsequence (tnk
) of (tn) such that

u(tnk
) → f a.e. in Ω

and therefore
|u(tnk

)| → |f | a.e. in Ω.

On the other hand, we know that u(tnk
) ∈ L1(Ω) and K is a ‖.‖1-bounded

subset of L1(Ω). Therefore it is clear by Fatou’s lemma that |f | ∈ L1(Ω). Since
f ∈ L0(Ω), we conclude that f ∈ K.

Define
rm := lim sup

n→∞
‖u(tn + mt)− f‖1.

We claim that (rm) is a decreasing sequence.
Indeed, since, by hypothesis, for each m ∈ N,

(5.8) f = clm− lim
n→∞

u(tn + mt)

and L1(Ω) satisfies the clm-Opial condition, given a fixed t > 0, we have

rm+1 ≤ lim sup
n→∞

‖u(tn + (m + 1)t)− S(t)f‖1.

Hence,

rm+1 ≤ lim sup
n→∞

‖u(tn + (m + 1)t)− S(t)(u(tn + mt))‖1+

lim sup
n→∞

‖S(t)(u(tn + mt))− S(t)f‖1.

Now, using the facts that u is an almost orbit and F is a nonexpansive semi-
group, we deduce that

rm+1 ≤ rm.

Since ‖u(tn +mt)−f‖0 → 0, there exists a subsequence (tnm) of (tn) such that
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‖u(tnm + mt)− f‖0 ≤
1
m

, ‖u(tnm + mt)− f‖1 ≥ rm − 1
m

,

‖u(tnm + mt)− S(t)f‖1 ≤ rm−1 +
1
m

.

Therefore,

(5.9) lim sup
m→∞

‖u(tnm +mt)−f‖1 ≥ lim sup
m→∞

rm ≥ lim sup
m→∞

‖u(tnm +mt)−S(t)f‖1.

On the other hand, from (5.8) and [8] we know that

(5.10) lim sup
m→∞

‖u(tnm+mt)−S(t)f‖1 = lim sup
m→∞

‖u(tnm+mt)−f‖1+‖S(t)f−f‖1.

Combining (5.9) and (5.10), we conclude that S(t)f = f. £

Here is a consequence of Theorem 5.4.

Corollary 5.5. Let K be a clm-closed subset of L1(Ω), and let F be a nonex-
pansive semigroup on K. If u : [0,∞[→ K is a bounded almost orbit of F such
that u([0,∞[) is relatively clm-compact, then the following are equivalent:

(a).- ωd(u) ⊂ Fix(F).
(b).- {u(t)} is clm-convergent as t →∞ to an element of Fix(F).
(c).- For any h > 0, clm− limt→∞(u(t + h)− u(t)) = 0.

In our next results we assume that (Ω, Σ, µ) is a positive finite measure space
with a separable µ. Moreover, we will use the following form of Vitali’s conver-
gence theorem.

Theorem 5.6. [19] Let (Ω, Σ, µ) be a finite measure space and let 1 ≤ p < ∞.

Let (fn) be a sequence in Lp(Ω) and let f be a Σ-measurable function such that
f is finite µ − a.e. and fn → f µ − a.e. Then f ∈ Lp(Ω) and ‖fn − f‖p → 0 if
and only if for each ε > 0, there is a δ > 0 such that E ∈ Σ and µ(E) < δ imply
∫

E
|fn|pdµ < ε for all n ∈ N.

Corollary 5.7. Let K be a cm-closed subset of L1(Ω), and let F be a nonex-
pansive semigroup on K. If u : [0,∞[→ K is an almost orbit of F such that
u([0,∞[) is relatively cm-compact, there exists 1 < p < ∞ such that u(t) ∈ Lp(Ω)
for every t ≥ 0, and, moreover, u([0,∞[) is ‖ · ‖p-bounded, then the following are
equivalent:

(a).- Given h > 0, cm− limt→∞(u(t + h)− u(t)) = 0.
(b).- {u(t)} is ‖.‖1-convergent as t →∞ to f ∈ Fix(F).
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Proof. (b) =⇒ (a). Evident.
(a) =⇒ (b). By Corollary 5.5, we know that {u(t)} is cm-convergent as t →∞

to f ∈ Fix(F).
Suppose, to get a contradiction, that

lim
t→∞

‖u(t)− f‖1 6= 0.

Then there exists ε0 > 0 such that for each k ∈ N we can find nk > nk−1 satisfying

(5.11) ‖u(tnk
)− f‖1 > ε0.

Since {u(t)} is cm-convergent to f as t →∞, we know that

lim
k→∞

‖u(tnk
)− f‖0 = 0.

Hence there exists a subsequence (tnks
) of (tnk

) such that

u(tnks
) → f a.e. in Ω

as s →∞.

On the other hand, since there exists M > 0 such that ‖u(t)‖p ≤ M for all
t ≥ 0 and µ(Ω) < ∞, it follows from Hölder’s inequality that if E ∈ Σ, 1

p + 1
q = 1,

and ψE is the characteristic function of E, then

(5.12)
∫

E

|u(t)|dµ =
∫

Ω

|u(t)|ψEdµ ≤ ‖u(t)‖pµ(E)
1
q .

Therefore, given ε > 0 and E ∈ Σ such that µ(E) < δ with 0 < δ < ( ε
M )q, we

obtain from (5.12) that

(5.13)
∫

E

|u(t)|dµ < ε.

If we now take the sequence (u(tnks
)) and the function f, we may use Theorem

5.6 to conclude that

(5.14) lim
s→∞

‖u(tnks
)− f‖1 = 0.

But then (5.11) and (5.14) yield a contradiction. £

Let A ⊂ L1(Ω)×L1(Ω) be an accretive operator satisfying the range condition
and let {S(t)} be the semigroup generated by −A on D(A). Given h > 0, define
the function

f ∈ D(A) → ψh(f) := ‖f − S(h)f‖1.
It is clear that for each h > 0, the function ψh is lower semi-continuous and
positive.
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In the sequel we will use the following result from [13]:

Lemma 5.8 ([13]). Let A ⊂ X ×X be an accretive operator satisfying the range
condition and let {S(t)} be the semigroup generated by −A. If for some t0 >

0, S(t0)u0 with u0 ∈ D(A) is differentiable, then S(t0)u0 ∈ D(A) and S(t)u0

satisfies the differential equation at that point, i.e.,

d

dt
S(t0)u0 + AS(t0)u0 3 0.

A consequence of Lemma 5.8 is that if u0 ∈ D(A) is a fixed point of the
semigroup {S(t)}, then u0 ∈ D(A) and, moreover, 0 ∈ Au0, which implies, of
course, that 0 ∈ R(A).

Corollary 5.9. Let A ⊂ L1(Ω) × L1(Ω) be an accretive operator satisfying the
range condition and let {S(t)} be the semigroup generated by −A on D(A). If

(i).- For every x ∈ D(A), the orbit γ(x) := {S(t)x : t ≥ 0} is relatively cm-
compact and norm bounded.

(ii).- Given h > 0, there exists a positive lower semi-continuous function φh

such that

lim sup
λ→0+

1
λ

(φh(Jλx) + λψh(Jλx)− φh(x)) ≤ 0

holds uniformly on bounded subsets of Dh := D(A) ∩D(φh).
Then S(t)x0 cm-converges to a zero of A as t →∞ whenever x0 ∈

⋂

h>0 Dh.

If there exist p > 1 and x0 ∈
⋂

h>0 Dh such that (‖S(t)x0‖p : t ≥ 0) is bounded,
then S(t)x0 ‖.‖1-converges to a zero of A as t →∞.

Proof. It is easy to see that, for each h > 0, ψh is a Lyapunov function for A.

Therefore, by (ii) and Corollary 3.5 of [35], we have

ψh(S(t)x) ≤ 1
t
φh(x).

This means that if x0 ∈
⋂

h>0 Dh, then for each h > 0, we obtain

(5.15) lim
t→∞

‖S(t + h)x0 − S(t)x0‖1 = 0.

Now, by using (i), (5.15), Corollary 5.5 and Lemma 5.8 we see that S(t)x0

cm-converges as t →∞ to an element of A−10.
If there exist p > 1 and x0 ∈

⋂

h>0 Dh such that (‖S(t)x0‖p : t ≥ 0) is bounded,
then our claim follows from Corollary 5.7. £
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6. Applications

Sections 2 and 3 contain several necessary and sufficient conditions for an
accretive operator satisfying the range condition to have a zero. All these results
hold true when the underlying Banach space X has some kind of a fixed point
property for nonexpansive mappings. In this section we present analogous results
for a certain class of accretive operators without imposing any requirements on
X.

Definition 5. Let X be a Banach space and let A ⊂ X × X be an operator.
Assume that rD(A) ⊂ D(A) for r > 0. Then A is said to be homogeneous of
degree α ≥ 0 if A(rx) = rαA(x) for all r > 0 and x ∈ D(A).

Proposition 6.1. Let A ⊂ X × X be an accretive operator which satisfies the
range condition and is homogeneous of degree α ≥ 0. Then the following conditions
are equivalent:

(a).- 0 ∈ R(A).
(b).- There exist x0 ∈ D(A) and a bounded open neighborhood U of x0 such

that for each x ∈ ∂U ∩D(A), 〈y, x− x0〉+ ≥ 0 for all y ∈ Ax.

(c).- There exists x0 ∈ D(A) such that E := {x ∈ D(A) : t(x−x0) ∈ Ax, t <

0} is bounded.
(d).- 0 ∈ A(0).

Proof. Following step by step the proof of Theorem 3.1 we obtain that (a) ⇒
(b) ⇒ (c).

(c) ⇒ (d). Since A is homogeneous of degree α, it is easy to see that

(6.1) Jλ(ru) = rJλrα−1(u)

for all u ∈ D(A) and for all r > 0.
Therefore (6.1) implies that given m ∈ N,

(6.2) Jλ(
1
m

x0) =
1
m

Jλ( 1
m )α−1(x0).

On the other hand, it is not difficult to see that E = {Jλ(x0) : λ > 0}. Hence,
by (c), there exists M > 0 such that ‖Jλ(x0)‖ ≤ M for all λ > 0.

Now we may use (6.2) and the fact that Jλ is a continuous mapping to obtain
that

lim
m→∞

Jλ(
1
m

x0) = Jλ(0) = 0.

This means that 0 ∈ A(0).
(d) ⇒ (a). This is obvious. £
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Remark. Under the hypotheses of Proposition 6.1, if A is an m-accretive (hence
closed) homogeneous operator of degree α > 0, then we may conclude that 0 ∈
R(A) if and only if 0 ∈ D(A). Also, in the setting of Proposition 6.1, if A is
homogeneous of positive degree and satisfies the range condition, then 0 ∈ R(A).
To see this, take a positive sequence {rn} which converges to zero and a point z

in the domain of A. Then A(rnz) also converges to zero and so (0, 0) belongs to
the graph of the closure A of A. But the domain of the closure of A is contained
in the closure of the domain of A which is contained in the range of I + A by the
range condition. Thus there is a point x ∈ D(A) such that 0 ∈ x + Ax. But we
already know that the origin is a solution of the inclusion 0 ∈ y + Ay and that
this solution is unique. Therefore the origin coincides with x and this means that
0 ∈ R(A), as claimed.

Theorem 6.2. Let A be an m-accretive operator in L1(Ω). Assume that it is
homogeneous of degree 0 ≤ α 6= 1 and that 0 ∈ R(A). Then the following assertion
holds:

If u : [0,∞[→ D(A) is an almost-orbit of F := {S(t) : t ≥ 0}, where F is
the semigroup generated by −A and u([0,∞[) is relatively clm-compact, then u(t)
clm-converges to a zero of A as t →∞.

Proof. We argue as follows.
First, we note that since 0 ∈ R(A), we know that Fix(F) 6= ∅ and thus we

may apply Lemma 2.5 to conclude that u([0,∞[) is a bounded set.
Second, we know by (6.1) that for each x ∈ D(A), Jµ(rx) = rJµrα−1(x).

Therefore, for r = (1 + 2h
t )

1
α−1 , we have

(6.3) S(
t

2
+ h)x =

1
r
S(

t

2
)(rx).

Moreover, since it is assumed that 0 ∈ R(A), Proposition 6.1 implies that
0 ∈ A(0) and that S(t)0 = 0 for all t ≥ 0. Consequently, (6.3) yields

‖u(t+h)−u(t)‖1 ≤ ‖S(
t

2
+h)u(

t

2
)−S(

t

2
)u(

t

2
)‖1+2 sup

k≥0
‖u(

t

2
+k)−S(k)u(

t

2
)‖1 ≤

‖(1−r)S(
t

2
+h)u(

t

2
)−S(

t

2
)u(

t

2
)−S(

t

2
)(ru(

t

2
))‖1+2 sup

k≥0
‖u(

t

2
+k)−S(k)u(

t

2
)‖1 ≤

|1− r|‖S(
t

2
+ h)u(

t

2
)− S(

t

2
+ h)0‖1 + ‖S(

t

2
)u(

t

2
)− S(

t

2
)(ru(

t

2
))‖1

+2 sup
k≥0

‖u(
t

2
+ k)− S(k)u(

t

2
)‖1 ≤
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2|1− r|‖u(
t

2
)‖1 + 2 sup

k≥0
‖u(

t

2
+ k)− S(k)u(

t

2
)‖1.

Since r = (1 + 2h
t )

1
α−1 and u is a bounded almost-orbit, it follows that

(6.4) lim
t→∞

‖u(t + h)− u(t)‖1 = 0.

Finally, since u([0,∞[) is assumed to be relatively clm-compact, Corollary 5.5
and Lemma 5.8 yield our assertion. £

Ph. Bénilan and M. Crandall have introduced in [5] the concept of a completely
accretive operator. This kind of operators, in the particular case of L1(Ω) with a
bounded Ω ⊂ Rn, can be defined in the following way. An operator A in L1(Ω)
is said to be completely accretive if one of the following (equivalent) conditions is
satisfied:

1. For λ > 0, (u, v), (û, v̂) ∈ A and j ∈ J0,

(6.5)
∫

Ω

j(u− û) ≤
∫

Ω

j(u− û + λ(v − v̂),

where

J0 = {j : R → [0,∞] : j is convex and lowersemi−continuous, and j(0) = 0}.

2. For (u, v), (û, v̂) ∈ A and p ∈ P0,

(6.6)
∫

Ω

p(u− û)(v − v̂) ≥ 0,

where

P0 = {p ∈ C∞(R) : 0 ≤ p′ ≤ 1, supp(p′) is compact, 0 /∈ supp(p)}.

In the sequel, we will use two important facts about m-completely accretive
operators in L1(Ω) which have been presented in [5].

(*). If {S(t)} is the semigroup generated by −A, then {S(t)} is order preserv-
ing, that is, if x, y ∈ D(A) and x ≤ y, then S(t)x ≤ S(t)y.

(**). For each t ≥ 0, the inequality ‖S(t)x‖p ≤ ‖x‖p holds whenever S(t)0 = 0
and x ∈ D(A) ∩ Lp.

Given α > 0, consider the three evolution equations

(1)α
∂u

∂t
=

∂2

∂x2
(|u|α−1u), t > 0

(2)α
∂u

∂t
=

∂

∂x
(|u|α−1u), t > 0
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(3)α
∂u

∂t
=

∂

∂x
(|∂u

∂x
|α−1 ∂u

∂x
), t > 0,

as well as the equation

(4)α
∂u

∂t
= div(Du|Du|α−1), t > 0.

Associated with each of the above equations is a densely defined m-accretive
operator in L1. Therefore they may be studied as initial value problems of the
form (see [4])

du

dt
+ A(u) = 0, u(0) = x.

For example, for equation (1)α we may consider the operator Aα in L1 defined by

D(Aα) = {v ∈ L1 : |v|α−1v ∈ L1
loc, (|v|α−1v)′′ ∈ L1}

Aα(v) = −(|v|α−1v)′′ ∀v ∈ D(Aα).

This operator is m-accretive and homogeneous of degree α. Moreover, the mild
solutions provided by this Aα are uniquely characterized as solution of (1)α in
the sense of distributions. Problems (2)α, α 6= 1, correspond to the m-accretive
operators

D(Bα) := {v ∈ L∞ : (|v|α−1v)′ ∈ L1}
Bα(v) = −(|v|α−1v)′

in L1. The operators of the form Aα and Bα are completely accretive (see [5]).
As for equation (4)α with α = 0, we note that the following equation has been

studied in [2] in the context of image denoising and reconstruction by using a
densely defined m-completely accretive operator which is homogeneous of degree
zero. We let Ω be a bounded set in Rn with a Lipschitz continuous boundary ∂Ω.
(6.7)
∂u

∂t
= div(

Du

|Du|
) in (0,∞)×Ω.

∂u

∂η
= 0 on (0,∞)×∂Ω. u(0, x) = u0(x) in x ∈ Ω

Thus the following results can be applied to the above equations.

Corollary 6.3. Let (Ω, Σ, µ) be a positive finite measure space with a separable
measure µ. Let A be an m-completely accretive operator in L1(Ω) which is homo-
geneous of degree 0 ≤ α 6= 1. Assume that 0 ∈ R(A) and consider the semigroup
F := {S(t) : L1(Ω) → L1(Ω)} generated by −A. Then the following assertions
hold true:

(a). If x ∈ L1(Ω) and the orbit of x (that is, γ(x) = {S(t)x : t ≥ 0}) is
relatively cm-compact, then S(t)x cm-converges to a zero of A as t →∞.
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(b). If, moreover, there exists p > 1 such that x ∈ Lp(Ω), then S(t)x ‖.‖1-
converges to a zero of A as t →∞.

Proof. (a). Since 0 ∈ R(A), this assertion follows from Theorem 6.2.
(b).- This is a consequence of (a), (**) and Corollary 5.7. £

A Lebesgue measurable function f : [0, 1] → R is said to be decreasing almost
everywhere (d.a.e.) if there exists a decreasing function f : [0, 1] → R such that
f(x) = g(x) almost everywhere.

Proposition 6.4. Let A ⊂ L1([0, 1])×L1([0, 1]) be a densely defined m-completely
accretive operator which is homogeneous of degree 0 ≤ α 6= 1. Assume that 0 ∈
R(A) and let {S(t)} be the semigroup generated by −A. If x ∈ L1([0, 1]) is positive
and d.a.e., then S(t)x ‖.‖1-converges to a zero of A as t →∞.

Proof. Since x a positive measurable function which is decreasing almost every-
where, it is clear that x ∈ Lp[0, 1] for every p ≥ 1, and thus, by Corollary 6.3, it
suffices to show that the orbit γ(x) is relatively cm-compact.

To see this, we argue as follows.
First, we will show that S(t)x is positive a.e. By hypothesis, x is a positive

function. Using (*), we see that S(t)x ≥ S(t)0. Since A is homogeneous and
m-accretive, and 0 ∈ R(A), we also know that 0 ∈ A(0). Hence S(t)0 = 0 and
S(t)x is positive.

Now, we intend to prove that S(t)x is decreasing almost everywhere. Indeed,
since x is decreasing a.e., there exists a decreasing function y such that x = y

almost everywhere.
Given s, r ∈ [0, 1], s < r, we define the following functions:

z(t) = y(s) ∀t ∈ [0, 1]

v(t) = y(r) ∀t ∈ [0, 1].

It is clear that v, z ∈ L1[0, 1] and, moreover, v ≤ z. Applying (*) again, we see
that S(t)v ≤ S(t)z, which implies that

(6.8) S(t)y(r) ≤ S(t)y(s).

Inequality (6.8) means that S(t)y is a decreasing function. Hence we conclude
that S(t)x is decreasing a.e., as asserted.

The inequality ‖S(t)x‖1 ≤ ‖x‖1 holds by (**). Consequently,

γ(x) ⊂ {f ∈ L1[0, 1] : f ≥ 0 a.e., f is d.a.e. and ‖f‖1 ≤ ‖x‖1}.



ACCRETIVE OPERATORS AND NONLINEAR SEMIGROUPS 1223

It is proved in [27] that the above set is cm-compact (but not ‖.‖1-compact).
Thus we have indeed shown that the orbit γ(x) is relatively cm-compact, as
claimed. £

Acknowledgments. Both authors thank Michael G. Crandall for several helpful
suggestions.
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