
Applied Mathematics and Computation 219 (2013) 6843–6855
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Fixed point theory for 1-set contractive and pseudocontractive
mappings
0096-3003/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2012.12.079

⇑ Corresponding author.
E-mail addresses: garciaf@uv.es (J. Garcia-Falset), omar.muniz@uv.es (O. Muñiz-Pérez).
J. Garcia-Falset ⇑, O. Muñiz-Pérez
Departament d’Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
a r t i c l e i n f o

Keywords:
Fixed points
Pseudocontractive mappings
Measures of noncompactness
Krasnoselskii fixed point theorem
Nonlinear integral equations
a b s t r a c t

The purpose of this paper is to study the existence and uniqueness of fixed point for a class
of nonlinear mappings defined on a real Banach space, which, among others, contains the
class of separate contractive mappings, as well as to see that an important class of 1-set
contractions and of pseudocontractions falls into this type of nonlinear mappings. As a par-
ticular case, we give an iterative method to approach the fixed point of a nonexpansive
mapping. Later on, we establish some fixed point results of Krasnoselskii type for the
sum of two nonlinear mappings where one of them is either a 1-set contraction or a
pseudocontraction and the another one is completely continuous, which extend or com-
plete previous results. In the last section, we apply such results to study the existence of
solutions to a nonlinear integral equation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

From a mathematical point of view, many problems arising form diverse areas of natural science involve the existence of
solutions of nonlinear equations with either the form
Au ¼ u; u 2 M; or Auþ Bu ¼ u; u 2 M; ð1Þ
where M is a closed and convex subset of a Banach space X, and A;B : M ! X are nonlinear mappings. For instance, in
[3,6,9,10,14,16–18,25,26,35,36] several of such results are applied to boundary value problems and for determining solutions
of nonlinear integral equations. Fixed point Theory plays an important role in order to solve Eqs. (1). This Theory has two
main branches: On the one hand we may consider the results that are obtained by using topological properties and on
the other hand those results which may be deduced from metric assumptions.

Regarding the topological branch, the main two theorems are Brouwer’s Theorem and its infinite dimensional version,
Schauder’s fixed point theorem (see for example [10]). In both theorems compactness plays an essential role. In 1955, Darbo
[11] extended Schauder’s theorem to the setting of noncompact operators, introducing the notions of k-set-contraction with
0 6 k < 1.

Concerning the metric branch, the most important metric fixed point result is the Banach contraction principle (see Chap-
ter 1 in [23] where Kirk gives an overview of the sharpening of this result). Since 1965 considerable effort has been done to
study the fixed point theory for nonexpansive mappings (for instance see [19,23]).

Although historically the two branches of the fixed point theory have had a separated development, in 1958, Krasnoselskii
[24] establishes that the sum of two operators Aþ B has a fixed point in a nonempty closed convex subset C of a Banach space
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ðX; k:kÞ,whenever: (i) Axþ By 2 C for all x; y 2 C, (ii) C is bounded, (iii) A is completely continuous on C and (iv) B is a k-con-
traction on X with 0 6 k < 1.

This result combines both Banach contraction principle and Schauder’s fixed point theorem and thus it is a blend of the
two branches. Nevertheless, it is not hard to see that Krasnoselskii’s theorem is a particular case of Darbo’s theorem.
Namely, it appears that Aþ B is a k-set contraction with respect to the Kuratowski measure of noncompactness. In 1967,
Sadovskii [34] gave a more general fixed point result than Darbo’s theorem using the concept of condensing map, see
[15,20,32,35] for a sharpening of such results. In this framework, it is well known that for the limit case i.e., mappings which
are 1-set contraction for some measure of noncompactness, it is not possible to obtain a similar fixed point result like in the
above cases. Indeed, it was proved in [4] that given an infinite dimensional Banach space ðX; k � kÞ and for an arbitrary mea-
sure of noncompactness U on X there exists a fixed point free U� 1-set contraction self-mapping of the unit ball of X (also
see [29]). Therefore, to develop a theory of fixed point for 1-set contractions similar to the same for nonexpansive mappings
does not work. Nevertheless, there exists a degree theory for semiclosed 1-set contraction mappings (for instance see
[15,20]).

In this paper, we study the existence and uniqueness of fixed point for a class of nonlinear mappings, which, among oth-
ers, contains the class of separate contractive mappings [27]. Moreover, we show, without invoking degree theory, that an
important class of semiclosed 1-set contractions as well as an important class of pseudocontractive mappings, has a unique
fixed point (for instance, this allows us to generalize Proposition 3.4 in [17]). Later we use the results obtained to establish
new fixed point results of Krasnoselskii type for the sum of two nonlinear mappings where one of them is either a 1-set con-
traction, or a pseudocontraction and the other one is completely continuous, which extend or complete previous results (for
instance, we give generalizations of Theorem 2.1 in [26], Theorem 2.1 in [27] as well as a generalization of Theorem 3.7 in
[17]). Finally, we apply such results to study the existence of solutions to a nonlinear integral equation of the form
uðtÞ ¼ gðt;uðtÞÞ þ
Z t

0
f ðs;uðsÞÞds; u 2 Cð0; T; XÞ;
where X is Banach space and g : ½0; T� � X ! X is not necessary a Lipschitzian map with respect to the second variable. Thus,
the case where gðt; �Þ is a separate contraction is a particular case of our framework.

2. Preliminaries

Throughout this paper we assume that ðX; k:kÞ is a real Banach space. As usual, we will denote by BRðx0Þ and SRðx0Þ, the
closed ball, and the sphere, with radius R and center x0 2 X, respectively.

Definition 2.1. Let ðX; k � kÞ be a Banach space and BðXÞ the family of bounded subsets of X. By a measure of non-
compactness on X, we mean a function U : BðXÞ ! Rþ satisfying:

(1) UðXÞ ¼ 0 if and only if X is relatively compact in X.
(2) UðXÞ ¼ UðXÞ.
(3) UðconvðXÞÞ ¼ UðXÞ, for all bounded subsets X 2 BðXÞ, where conv denotes the convex hull of X.
(4) for any subsets X1;X2 2 BðEÞ we have
X1 # X2 ) UðX1Þ 6 UðX2Þ;
(5) UðX1 [X2Þ ¼maxfUðX1Þ;UðX2Þg, X1;X2 2 BðXÞ.
(6) UðkXÞ ¼ jkjUðXÞ for all k 2 R and X 2 BðXÞ.
(7) UðX1 þX2Þ 6 UðX1Þ þUðX2Þ.

The most important examples of measures of noncompactness are the Kuratowski measure of noncompactness (or set mea-
sure of noncompactness)
aðXÞ ¼ inffr > 0 : X may be covered by finitely many sets of diameter 6 rg
and the Hausdorff measure of noncompactness (or ball measure of noncompactness)
bðXÞ ¼ inffr > 0 : there exists a finite r-net for X in Xg:
A detailed account of theory and applications of measures of noncompactness may be found in the monographs [2,5] (see
also [3]).

Let WðXÞ be the subset of BðXÞ consisting of all weakly compact subsets of X. Recall that the notion of the measure of
weakly non-compactness was introduced by De Blasi [12] and it is the map w : BðXÞ ! ½0;1½ defined by
xðMÞ :¼ inffr > 0 : there exists W 2 WðXÞ with M # W þ Brg
for every M 2 BðXÞ. It is well known that w fulfills the conditions of Definition 2.1 replacing conditions (1) and (2) of such
definition by
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(1) xðM1Þ ¼ 0 if and only if, M1
w 2 WðXÞ (M1

w means the weak closure of M1),
(2) xðM1

wÞ ¼ xðM1Þ,

respectively.

Definition 2.2. Let U be a measure of non-compactness on X and let D be a nonempty subset of X. A mapping T : D! X is
said to be a U� k-set contraction (w–k-set contraction resp.), k 2 ð0;1�, if T is continuous and if, for all bounded subsets C of
D, UðTðCÞÞ 6 kUðCÞ (wðTðCÞÞ 6 kwðCÞ resp.). T is said to be U-condensing (w-condensing resp.) if T is continuous and
UðTðAÞÞ < UðAÞ (wðTðAÞÞ < wðAÞ resp.) for every bounded subset A of D with UðAÞ > 0 (wðAÞ > 0 resp.).
� A mapping T : DðTÞ# X ! X is said to be nonexpansive if the inequality kTðxÞ � TðyÞk 6 kx� yk holds for every x; y 2 DðTÞ.
Recall that a Banach space X is said to have the fixed point property for nonexpansive mappings (FPP for short) if for each
nonempty bounded closed and convex subset C of X, every nonexpansive self-mapping T has a fixed point (see [19,23]).
� The mapping T is said to be pseudocontractive if for every x; y 2 DðTÞ and for all r > 0, the inequality
kx� yk 6 kð1þ rÞðx� yÞ þ rðTy� TxÞk
holds. Pseudocontractive mappings are easily seen to be more general than nonexpansive ones. The interest in these map-
pings also stems from the fact that they are firmly connected to the well known class of accretive mappings. Specifically, T is
pseudocontractive if and only if I � T is accretive, where I is the identity mapping.

Recall that a mapping A : DðAÞ ! X is said to be accretive if the inequality kx� yþ kðAx� AyÞkP kx� yk holds for all
k P 0, x; y 2 DðAÞ. If, in addition, RðI þ kAÞ (i.e., the range of the operator I þ kA) is for one, hence for all, k > 0, precisely X,
then A is called m-accretive. If DðAÞ#

T
k>0RðI þ kAÞ, then A is said to have the range condition. Accretive operators were

introduced by Browder [7] and Kato [22] independently.
We say that the mapping T : DðTÞ ! X is weakly inward on DðTÞ if
lim
k!0þ

dðð1� kÞxþ kTðxÞ;DðTÞÞ ¼ 0
for all x 2 DðTÞ. Such condition is always weaker than the assumption of T mapping the boundary of DðTÞ into DðTÞ. Recall
that if A : DðAÞ ! X is a continuous accretive mapping, DðAÞ is convex and closed and I � A is weakly inward on DðAÞ, then A
has the range condition, (see [30]).

The following theorems will be the key in the proof of some of our results. The first one was proved by Sadovskii [34] in
1967. In 1955 Darbo [11] proved the same result for U� k-set contractions, k < 1. Such mappings are obviously U-condens-
ing. The second one is a sharpening of the first one and it is due to Petryshyn [32].

Theorem 2.1 (Darbo–Sadovskii). Suppose M is a nonempty bounded closed and convex subset of a Banach space X and suppose
T : M ! M is U-condensing. Then T has a fixed point.
Theorem 2.2 (Petryshyn). Let C be a closed, convex subset of a Banach space X such that 0 2 C. Consider T : C ! C a U-condens-
ing mapping. If there exists r > 0 such that Tx – kx for any k > 1 whenever x 2 C; kxk ¼ r, then T has a fixed point in C.

Motivated by a nonlinear equation arising in transport theory, Latrach et al. [25] established generalizations of Darbo
fixed point theorem for the weak topology. Their analysis uses the concept of the De Blasi measure of weak compactness
but they neither assume the weak continuity nor the sequentially weak continuity of the mapping. Here we shall use the
following sharpening of such result, which can be found in [16].

Theorem 2.3. Let C be a nonempty closed and convex subset of a Banach space X and suppose T : C ! C is an x-condensing
mapping satisfying ðA1Þ. If there exists x0 2 C and R > 0 such that Tx� x0 – kðx� x0Þ for every k > 1 and for every x 2 C \ SRðx0Þ,
then T has a fixed point.

Recall that a mapping T : DðTÞ# X ! X is said to have condition ðA1Þ if for each ðxnÞn2N # DðTÞwhich is weakly convergent
in X, then ðTxnÞn2N has a strongly convergent subsequence in X. This condition was already considered in the papers
[17,18,25,36].

Definition 2.3. A mapping A : DðAÞ# X ! X is said to be /-expansive if there exists a function / : ½0;1½! ½0;1½ such that for
every x; y 2 DðAÞ, the inequality kAx� AykP /ðkx� ykÞ holds with / satisfying

� /ð0Þ ¼ 0.
� /ðrÞ > 0 for r > 0.
� Either it is continuous or it is nondecreasing.
Theorem 2.4 (Remark 3.8 in [17]). Let A : DðAÞ ! X be an m-accretive operator /-expansive. Then A is surjective.
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Remark 2.1. In the sequel, when we use the symbol / to represent a function, such function will be under the conditions of
Definition (2.3). This type of mappings was already considered in the papers [17,18].

3. Existence of zeroes for /-expansive mappings

Proposition 3.1. Let X be a Banach space and C a closed subset of X. Let T : C ! X be an injective and continuous mapping such
that T�1 : RðTÞ ! C is uniformly continuous. Then RðTÞ is a closed subset of X.
Proof. Let ðxnÞ be a sequence of elements of RðTÞ such that xn converges to x0. We have to prove that x0 2 RðTÞ. Indeed, since
ðxnÞ is a Cauchy sequence and T�1 is uniformly continuous it is easy to see that ðT�1ðxnÞÞ is also a Cauchy sequence. Hence we
may assume that ðT�1ðxnÞÞ converges to y0 2 C because C is a closed subset of X.

Finally, by using that T is a continuous mapping we conclude that ðxnÞ converges to Ty0 which means that
x0 ¼ Ty0 2 RðTÞ. h
Lemma 3.1. Let C be a nonempty bounded closed subset of a Banach space X and let T : C ! X be a /-expansive mapping. Then T
is injective and T�1 : RðTÞ ! C is uniformly continuous.
Proof. if x; y 2 C; x – y, then

kTðxÞ � TðyÞkP /ðkx� yÞkÞ > 0
and thus T is injective. To prove that T�1 is uniformly continuous we argue as follows:
Suppose that there exists �0 > 0 such that for each n 2 N we can find xn; yn 2 RðTÞ satisfying both kxn � ynk < 1

n and
kT�1xn � T�1ynk > �0.

Since T is /-expansive it is clear that
/ðkT�1xn � T�1ynkÞ 6 kxn � ynk <
1
n
: ð2Þ
Now assume that / is a nondecreasing function. In this case, we have that 0 < /ð�0Þ 6 /ðkÞ for every k P �0. Hence, we
get a contradiction because on one hand, there exists n0 2 N such that 1

n < /ð�0Þ for all n P n0 and on the other hand, by (2),
we have that /ð�0Þ 6 /ðkT�1xn � T�1ynkÞ 6 kxn � ynk < 1

n.
Otherwise, / will be a continuous function. In this case, since C is a bounded subset we know that the sequence

ðT�1xn � T�1ynÞ is bounded and therefore we may, without loss of generality, assume that
lim
n!1
kT�1xn � T�1ynk ¼ r P �0:
Consequently, limn!1/ðkT�1xn � T�1ynkÞ ¼ /ðrÞ > 0 which is a contradiction since (2) yields
limn!1/ðkT�1xn � T�1ynkÞ ¼ 0. h

The next result is an easy consequence of Proposition 3.1 and Lemma 3.1.

Corollary 3.1. Let C be a closed bounded subset of a Banach space X and let T : C ! X be a continuous /-expansive mapping. If
there exists ðxnÞ in RðTÞ such that ðxnÞ converges to zero, then 0 2 RðTÞ.
Lemma 3.2. Let C be a closed subset of a Banach space X and let T : C ! X be a continuous mapping. If there exists an almost fixed
point sequence ðxnÞ of T in C and if the inverse mapping ðI � TÞ�1 : RðI � TÞ ! C exists and it is uniformly continuous, then T has a
unique fixed point x0 2 C. Furthermore, xn ! x0 as n!1.
Proof. Since I � T : C ! X is continuous injective and ðI � TÞ�1 : RðI � TÞ ! C is uniformly continuous by Proposition 3.1, we
obtain that RðI � TÞ is closed. Hence, because xn � TðxnÞ ! 0 as n!1, we obtain that 0 2 RðI � TÞ. Consequently, there
exists an x0 2 C such that ðI � TÞðx0Þ ¼ 0, that is, Tðx0Þ ¼ x0. This fixed point is unique because I � T is injective. Finally, since
ðI � TÞ�1 is continuous and ðI � TÞðxnÞ ! ðI � TÞðx0Þ we obtain that xn ! x0. h

The next example shows the importance of the assumption ðI � TÞ�1 be uniformly continuous in Lemma 3.2.

Example 3.1. Consider the function T : ½1;1½! ½1;1½ defined by Tx ¼ xþ 1
x. Clearly T is a fixed point free mapping and

however ðI � TÞ�1 : ½�1; 0Þ ! ½1;1Þ is given by ðI � TÞ�1ðxÞ ¼ � 1
x which is continuous but not uniformly continuous. Finally,

T admits almost fixed point sequences.
Corollary 3.2. Let C be a closed bounded subset of a Banach space X and let T : C ! C be a continuous mapping such that
I � T : C ! X is /-expansive. If there exists an almost fixed point (a.f.p. in short) sequence ðxnÞ of T in C, then T has a unique fixed
point x0 2 C. Furthermore, xn ! x0 as n!1.
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Proof. Since I � T : C ! X is /-expansive and continuous, then, by Lemma 3.1, we know that ðI � TÞ�1 : RðI � TÞ ! C is uni-
formly continuous. Thus, applying Lemma 3.2 we achieve the conclusion. h
Remark 3.1. In the above corollary we are assuming that I � T is a /-expansive mapping. If / is nondecreasing then it is easy
to see that ðI � TÞ�1 : RðTÞ ! C is uniformly continuous although C becomes unbounded (see proof of Lemma 3.1). Neverthe-
less, if / is continuous the conclusion of Corollary 3.2 remains true if we remove the boundedness of C but we add the exis-
tence of a bounded almost fixed point sequence for T.
Corollary 3.3. Let X be a bounded closed convex subset of a Banach space X. Assume that F : X! X is weakly inward on X, con-
tinuous pseudo-contractive mapping such that ðI � FÞ�1 : RðI � FÞ ! X is uniformly continuous (in particular, if I � F is /-expan-
sive). Then F has a unique fixed point in X.
Proof. Since F is a continuous pseudo-contractive-mapping weakly inward on X, it is well known that A :¼ I � F : X! X is
an accretive operator with the range condition.

Consequently, the resolvent J1 :¼ ðI þ AÞ�1 : X! X is a single valued and nonexpansive mapping. Moreover, since X is
bounded closed and convex there exists a sequence ðwnÞ in X such that wn � J1ðwnÞ ! 0.

If we let xn ¼ J1ðwnÞ, then xn þ xn � FðxnÞ ¼ wn and therefore

xn � FðxnÞ ¼ wn � J1ðwnÞ;
which implies that ðxnÞ is a bounded a.f.p. sequence in X for F. Now, invoking Lemma 3.2 we obtain the result. h

At this point, let us recall that T : M # X ! X is a separate contraction mapping (see [27]) if there exist two functions
.;w : Rþ ! Rþ satisfying.

1. wð0Þ ¼ 0;w is nondecreasing,
2. kTx� Tyk 6 .ðkx� ykÞ,
3. 0 < wðrÞ 6 r � .ðrÞ for r > 0.

In the original definition of separate contraction mapping appears that w is strictly increasing, which is a particular case of
the above definition. Anyway, if T is a separate contraction, then T is a nonexpansive mapping and I � T is /-expansive with
/ ¼ w. Consequently

� If C is a bounded closed convex subset of a Banach space and T : C ! X is a weakly inward separate contraction on C, then
T has a unique fixed point in C due to Corollary 3.3.
� If C is a closed subset of X and T : C ! C is a separate contraction, we recapture Theorem 2.1 in [27] since on one hand, / is

nondecreasing and on the other hand, if x0 2 C then it is not hard to see that ðTnx0Þ is an a.f.p. sequence. Therefore we may
apply Corollary 3.2 and Remark 3.1.
� In [33] Sadiq Basha introduces the concept of weak contraction of the first kind. Clearly this type of mappings falls into the

class of separate contractions and therefore Corollary 3.3 in [33] is an easy consequence of the above comment.

On the other hand, a mapping T : M # X ! X is said to be expansive (see [37]) if there exists a constant h > 1 such that
kTx� TykP hkx� yk, for all x; y 2 M. In this case, clearly ðI � TÞ is /-expansive with /ðtÞ ¼ ðh� 1Þt. Moreover, there exists
T�1 : RðTÞ ! M and it is a 1

h-contraction. This implies that I � T�1 : RðTÞ ! X is /-expansive with /ðrÞ ¼ ð1� 1
hÞr. Thus, if

M # RðTÞ we infer that T�1 has a unique fixed point.
Next result represents a completion of Theorem 2.3 in the above section and Theorem 2.3 in [14] in the sense that it works

with w� 1-set contractions.

Theorem 3.1. Let C be a closed and convex subset of a Banach space X and let T : C ! C be a mapping such that:

(i) T satisfies ðA1Þ.
(ii) T is an x� 1-set contraction.

(iii) There exist R > 0 and x0 2 C such that for all x 2 C \ SRðx0Þ and for all k > 1 we have that TðxÞ � x0 – kðx� x0Þ. Then there
exists an almost fixed point sequence ðxnÞ of T. Furthermore, if:

(iv) ðI � TÞ : C ! X is /-expansive, then T has a unique fixed point x 2 C and xn ! x.
Proof. We define BC
Rðx0Þ ¼ fx 2 C : kx� x0k 6 Rg and let q : C ! BC

Rðx0Þ be the mapping given by
qðxÞ ¼
x; if kx� x0k 6 R;

R
kx�x0k

xþ 1� R
kx�x0k

� �
x0; if kx� x0k > R:

(

BC
Rðx0Þ is a nonempty bounded closed and convex subset of C and the mapping q is a continuous retraction of C on BC

Rðx0Þ.
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For each integer n P 2 we define the mapping Tn : C ! C given by
TnðxÞ ¼
1
n

x0 þ 1� 1
n

� �
TðxÞ:
It is clear that Tn is an w� ð1� 1
nÞ-set contraction satisfying condition ðA1Þ, for any n P 2.

Now we define the mappings Tn;q : BC
Rðx0Þ ! BC

Rðx0Þ as Tn;qðxÞ ¼ qðTnðxÞÞ. The mapping Tn;q is continuous with condition
ðA1Þ. Furthermore, Tn;q is an w� ð1� 1

nÞ- set contraction because Tn is an w� ð1� 1
nÞ- set contraction and q is an w� 1-set

contraction.
By Theorem 2.3 we have that Tn;q has a fixed point, say Tn;qðxnÞ ¼ xn.
We will verify that TnðxnÞ ¼ xn. In order to prove this we will prove that kTnðxnÞ � x0k 6 R. Assume for a contradiction that

kTnðxnÞ � x0k > R. Hence
xn ¼ q TnðxnÞð Þ ¼ R
kTnðxnÞ � x0k

TnðxnÞ þ 1� R
kTnðxnÞ � x0k

� �
x0
and thus
R
kTnðxnÞ � x0k

TnðxnÞ � x0ð Þ ¼ xn � x0:
Consequently xn 2 C
T

SRðx0Þ. We also have that
TðxnÞ � x0 ¼
n

n� 1
TnðxnÞ � x0ð Þ ¼ knðxn � x0Þ;
where kn ¼ n
n�1

kTnðxnÞ�x0k
R > 1, which contradicts condition (ii). Hence we have that kTnðxnÞ � x0k 6 R and therefore
xn ¼ q TnðxnÞð Þ ¼ TnðxnÞ:
Next we shall prove that ðxnÞ is an almost fixed point sequence for T. First we note that
kx0 � TðxnÞk 6 kx0 � TnðxnÞk þ kTnðxnÞ � TðxnÞk 6 Rþ 1
n
kx0 � TðxnÞk
and thus kx0 � TðxnÞk 6 n
n�1 R. Therefore by the following inequality
kxn � TðxnÞk ¼
1
n
kx0 � TðxnÞk 6

R
n� 1

;

we obtain that ðxnÞ is a bounded almost fixed point sequence for T. Finally, if T satisfies condition ðiiiÞ then T has a unique
fixed point x 2 C and xn ! x invoking Remark 3.1 h
Remark 3.2. In Theorem 3.1 we will obtain the same conclusion if we replace assumption (iii) by ðI � TÞ�1 : RðI � TÞ ! C
exists and it is uniformly continuous due to Lemma 3.2.

Next result can be considered as a completion of Theorem 2.2. Moreover, it is a generalization of Proposition 3.4 in [17]. It
is worth noting that its proof is similar to the proof of Theorem 3.1, but using Theorem 2.1 instead of Theorem 2.3.

Theorem 3.2. Let C be a closed and convex subset of a Banach space X and let T : C ! C be a mapping such that:

(i) T is a U� 1-set contraction.
(ii) There exist R > 0 and x0 2 C such that for all x 2 C \ SRðx0Þ and for all k > 1 we have that TðxÞ � x0 – kðx� x0Þ.

Then there exists an almost fixed point sequence ðxnÞ of T. Furthermore, if:
(iii) I � T : C ! RðI � TÞ is /-expansive then T has a unique fixed point x 2 C and xn ! x.

Although the condition (iii) in Theorem 3.2 implies that I � T is semiclosed (see for instance [15,20]), in this theorem we
obtain the uniqueness of the fixed point as well as the convergence to it for every almost fixed point sequence.

As we said in the introduction given an infinite dimensional Banach space X and for an arbitrary measure of noncompact-
ness on X there exists a 1-set contraction self-mapping fixed point free on the unit ball of X. Next example illustrates the
importance of assuming /-expansiveness or uniform continuity of ðI � TÞ�1 in Theorems 3.1 and 3.2.

Example 3.2. Consider the mapping T : Bl1 ! Bl1 given by
TðxÞ ¼ 1�
X1
i¼1

jxij; x1; x2; x3; . . .

 !
for each x ¼ ðxiÞ 2 Bl1 . T is an a� 1-set contraction (and an x� 1-set contraction) and satisfies ðA1Þ; I � T : Bl1 ! l1 is injective
and however T does not have fixed points.
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Indeed, notice that T ¼ Sþ R where S : Bl1 ! l1 is given by SðxÞ ¼ 1�
P1

i¼1jxij
� �

e1 and R : Bl1 ! Bl1 is defined as
RðxÞ ¼

P1
i¼1xieiþ1. Clearly S is compact and R is a nonexpansive linear mapping, in particular R is a 1-set contraction with

respect to a and w. Thus, T is also a 1-set contraction with respect to both measures of noncompactness. Clearly T is
continuous, in fact, for every x ¼ ðxiÞ and y ¼ ðyiÞ in Bl1
kTðxÞ � TðyÞk1 ¼
X1
i¼1

jyij � jxijð Þ
�����

�����þ
X1
i¼1

jxi � yij 6 2kx� yk1:
Since l1 is a Schur-space and T is continuous we have that T enjoys condition ðA1Þ.
Now we will prove that I � T is injective. Let x ¼ ðxiÞ and y ¼ ðyiÞ in Bl1 such that ðI � TÞðxÞ ¼ ðI � TÞðyÞ. We have that
x1 � y1 þ
X1
i¼1

jxij � jyijð Þ; x2 � y2 � ðx1 � y1Þ; x3 � y3 � ðx2 � y2Þ; . . .

 !
¼ 0;0;0; . . .ð Þ;
then, for every positive integer i, we have xiþ1 � yiþ1 ¼ xi � yi and hence xi � yi ¼ 0, that is, x ¼ y. Finally, if TðxÞ ¼ x for some
x ¼ ðxiÞ 2 Bl1 we have
1�
X1
i¼1

jxij; x1; x2; x3; . . .

 !
¼ ðx1; x2; x3; . . .Þ
and then 1�
P1

i¼1jxij ¼ x1 and xi ¼ xiþ1 for every i. Hence xi ¼ 0 for every i and consequently
1 ¼ 1�
X1
i¼1

jxij ¼ x1 ¼ 0;
which is not possible.
Next we are going to present an example where it is not possible to apply Theorems 2.1, 2.2 or 2.3 and nevertheless such

example fulfills the assumptions of Theorem 3.2.

Example 3.3. Let X be a infinite dimensional Banach space and let T : X ! X be the mapping defined as
TðxÞ ¼
�x; if kxk 6 1;
� x
kxk ; if kxk > 1:

(

The mapping T is a U� 1-set contraction (and an x� 1-set contraction). We also have that I � T is /-expansive. To see T is
a U�1-set contraction we will verify that for every subset K of X we have TðKÞ ¼ convð�K [ f0gÞ. Indeed, let x 2 K. If kxk 6 1
then TðxÞ ¼ �x 2 �K . If kxk > 1, then
TðxÞ ¼ 1
kxk ð�xÞ þ 1� 1

kxk

� �
0 2 conv �K [ f0gð Þ:
By this we obtain that U TðKÞð Þ 6 U convð�K [ f0gÞð Þ ¼ UðKÞ.
Now we shall prove that I � T is /-expansive. Let S ¼ I � T . Clearly
SðxÞ ¼
2x; if kxk 6 1;

1þ 1
kxk

� �
x; if kxk > 1:

(

Let x; y 2 X. Case (1): x; y 2 BX . In this case kSðxÞ � SðyÞk ¼ 2kx� yk. Case (2): x 2 BX ; y 2 X n BX . Since kxk 6 1 if and only if
�ðkyk � kxkÞ 6 �ðkyk � 1Þ, we obtain
kSðxÞ � SðyÞk ¼ 2x� y� y
kyk

				
				 ¼ 2ðx� yÞ þ ðkyk � 1Þy

kyk

				
				P 2kx� yk � ðkyk � 1ÞP 2kx� yk � ðkyk � kxkÞP kx� yk:
Case (3): x; y 2 X n BX . As in case (2) we have kSðxÞ � SðyÞkP kx� yk.
On the other hand, T is not condensing because TðBXÞ ¼ BX and T is nonexpansive if and only if X is a Hilbert space (see

[13]). Therefore, when X is not a Hilbert space Proposition 3.4 in [17] does not apply.
3.1. Nonexpansive mappings

It turns out that property (FPP) closely depends upon geometric properties of the Banach spaces under consideration.
Even when C is a weakly compact convex subset of X, a nonexpansive self-mapping of C needs not have fixed points (see
Chapter 2 in [23] where Sims collects together examples of fixed point free nonexpansive mappings in a variety of Banach
spaces, also see [19]). In this section we will give an iterative method for approaching the fixed point of a nonexpansive map-
ping T such that I � T becomes /-expansive. In order to show this we need the following lemma found in [38].
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Lemma 3.3. Assume ðanÞ is a sequence in ½0;1Þ such that
anþ1 6 ð1� cnÞan þ dn; n P 0;
where ðcnÞ is a sequence in ð0;1Þ and ðdnÞ is a sequence in R such that

(1)
P1

n¼1cn ¼ 1,
(2) lim supn!1

dn
cn
6 0 or

P1
n¼1jdnj <1. Then limn!1an ¼ 0.
Theorem 3.3. Let C be a closed and convex subset of a Banach space X and let T : C ! C be a nonexpansive mapping such that:

(i) I � T : C ! RðI � TÞ is /-expansive,
(ii) There exist R > 0 and x0 2 C such that for all x 2 C

T
SRðx0Þ and for all k > 1 we have that TðxÞ � x0 – kðx� x0Þ.

Assume ðanÞ is a sequence in ð0;1Þsatisfying:
(i)
P1

n¼1an ¼ 1,
(ii) limn!1an ¼ 0,

(iii)
P1

n¼1jan � an�1j <1.
For example an ¼ 1

n

� �
. Let x1 2 C and define xnþ1 ¼ anx1 þ ð1� anÞTðxnÞ for each positive integer n. Then ðxnÞ converges to

the unique fixed point of T.
Proof. It is well known that if T is nonexpansive, then it is 1-set contractive for the Kuratowskii measure of noncompactness
and thus, T satisfies the assumptions of Theorem 3.2 which implies that there exists a unique fixed point p 2 C for T.

We claim that ðxnÞ is a bounded sequence in C.
kxn � pk ¼ kanðx1 � pÞ þ ð1� anÞðTxn�1 � pÞk 6 ankx1 � pk þ ð1� anÞkxn�1 � pk 6 maxfkx1 � pk; kxn�1 � pkg:
By induction we infer that kxn � pk 6 kx1 � pk for every n 2 N. This means that ðxnÞ is bounded as we claimed.
On the other hand, by definition of ðxnÞwe obtain that ðTxnÞ is also a bounded sequence. Let M be an upper bounded of the

sequence ðkx1 � TxnkÞ. Then
kxnþ1 � xnk ¼ anx1 þ ð1� anÞTðxnÞ � an�1x1 þ ð1� an�1ÞTðxn�1Þð Þk k
¼ ðan � an�1Þx1 þ ð1� anÞ TðxnÞ � Tðxn�1Þð Þ þ ðan�1 � anÞTðxn�1Þk k
¼ ðan � an�1Þ x1 � Tðxn�1Þð Þ þ ð1� anÞ TðxnÞ � Tðxn�1Þð Þk k 6 Mkan � an�1j þ ð1� anÞkxn � xn�1k:
By Lemma 3.3 we have that kxnþ1 � xnk ! 0 as n!1. Finally, since xnþ1 � TðxnÞ ¼ an x1 � TðxnÞð Þ ! 0 as n!1 and by the
following inequality
kxn � TðxnÞk 6 kxn � xnþ1k þ kxnþ1 � TðxnÞk
we obtain that ðxnÞ is a bounded almost fixed point sequence. Finally, according to Theorem 3.2 the sequence ðxnÞ converges
to the unique fixed point of T. h
Remark 3.3. By Theorem 2.4 it is well known that if T : X ! X is a nonexpansive mapping such that I � T : X ! X is /-
expansive, then T has a unique fixed point. Thus, the same technique as in the proof of Theorem 3.3 shows that the sequence
defined in such result converges to the unique fixed point of T.

Finally, if C is a nonempty closed bounded and convex subset of a Banach space X and if T : C ! C be nonexpansive. For
every a 2 ð0;1Þwe define the mapping Ta : C ! C as TaðxÞ ¼ axþ ð1� aÞTðxÞ. It is known (see [21]) that Ta is asymptotically
regular, that is, for every x 2 C we have that Tnþ1

a ðxÞ � Tn
aðxÞ ! 0 as n!1 and so Tn

aðxÞ
� �

n is an almost fixed point sequence
for Ta. It is not difficult to see that Tn

aðxÞ
� �

n is also an almost fixed point sequence for T. According to Lemma 3.2, if ðI � TÞ�1

exists and it is uniformly continuous then Tn
aðxÞ

� �
n converges to the unique fixed point of T.

Llorens-Fuster and Moreno-Gálvez in [28] defined a class of generalized nonexpansive mappings as follows.
Let C be a nonempty subset of a Banach space X. A mapping T : C ! C satisfies condition (L) on C provided that it fulfills

the following two conditions.

1. If a set D # C is nonempty, closed, convex and T-invariant, then there exists an almost fixed point sequence (a.f.p.s. in
short) for T in D,

2. For any a.f.p.s. ðxnÞ of T in C and each x 2 C
lim sup
n!1

kxn � Txk 6 lim sup
n!1

kxn � xk:
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If C is a bounded closed convex subset of a Banach space X and T : C ! C is a continuous mapping with condition (L) such
that I � T is /-expansive, then after Lemma 3.2, T has a unique fixed point in C. In this sense, since T can be noncontinuous it
is worth noting the following result, which can be found in [31].

Theorem 3.4. Let X be a Banach space and C a bounded, closed and convex subset of X, if T : C ! C is a mapping with condition (L)
and I � T is /-expansive, then T has a unique fixed point in C.

Now we give an example where Theorem 3.4 does not work and however such example fulfills the assumption of
Theorem 3.1.

Example 3.4. Consider K ¼ x 2 l1 : kxk1 6 2;
P1

i¼2jxij 6 1

 �

and the mapping T : K ! K given by
TðxÞ ¼ 1�
X1
i¼2

jxij;�x2;�x3;�x4; . . .

 !
for each x ¼ ðxiÞ 2 K . It is clear that K is a closed bounded and convex subset of l1. Proceeding similarly as in Example 3.2 we
can prove that T is an a� 1-set contraction (and an x� 1-set contraction) and satisfies ðA1Þ. Moreover, I � T is /-expansive
and in particular ðI � TÞ�1 : RðI � TÞ ! K exists and it is uniformly continuous. Indeed, let x ¼ ðxiÞ and y ¼ ðyiÞ in K. We have
that
ðI � TÞðxÞ � ðI � TÞðyÞ ¼ x1 � y1 þ
X1
i¼2

jxij � jyijð Þ
 !

e1 þ 2
X1
i¼2

ðxi � yiÞei
and then
kðI � TÞðxÞ � ðI � TÞðyÞk1 ¼ x1 � y1 þ
X1
i¼2

ðjxij � jyijÞ
�����

�����þ 2
X1
i¼2

jxi � yijP jx1 � y1j �
X1
i¼2

ðjxij � jyijÞ
�����

�����þ 2
X1
i¼2

jxi � yij

¼ kx� yk1 �
X1
i¼2

ðjxij � jyijÞ
�����

�����þ
X1
i¼2

jxi � yijP kx� yk1 �
X1
i¼2

jxi � yij þ
X1
i¼2

jxi � yij ¼ kx� yk1:
Hence I � T is /-expansive. By Theorem 3.1, T has a unique fixed point. In fact, it is easy to see that x ¼ e1 is the unique fixed
point of T. On the other hand, T is neither condensing, nor satisfies property (L).

To see that T is not U-condensing, define C ¼ feigiP2, where ðeiÞ are the elements of the standard Schauder basis in l1. We
know that C is not relatively compact and since TðCÞ ¼ �C we have U TðCÞð Þ ¼ UðCÞ.

Finally we will see T does not enjoy property (L). Let ðxnÞ be the constant sequence xn ¼ e1 and let x ¼ 2
3 e1 þ 1

2 e2 2 K. We
obtain xn � x ¼ 1

3 e1 � 1
2 e2 and so kxn � xk1 ¼ 5

6. On the other hand xn � TðxÞ ¼ 1
2 e1 þ 1

2 e2 and then kxn � TðxÞk1 ¼ 1. Thus
lim inf
n!1

kxn � TðxÞk1 > lim inf
n!1

kxn � xk1:
Since ðxnÞ is an almost fixed point sequence for T we get that T does not satisfy property (L). Consequently, Theorem 3.4 does
not ensure the existence of a fixed point for T.
4. Fixed point results for the sum of two operators

Krasnoselskii’s fixed point Theorem [24] was one of the first results for solving equations of the form (1). Nevertheless, in
several applications, the verification of conditions (i), (ii), (iii) and (iv) defined in the Introduction section is, in general, either
quite hard to be done or even some of them fails. As a tentative approach to overcome those difficulties, many interesting
articles have appeared relaxing some of the assumptions (i), (ii), (iii) or (iv). For instance, in [9], Burton and Kirk used an
alternative Leray–Schauder type to avoid the boundedness of C. In [8], Burton replaced assumption (i) by: (If u ¼ Buþ Ay
with y 2 C, then u 2 C). Condition (iv) is also quite restrictive, so some authors have replaced it by a more general condition
(many times B is assumed to be a separate contraction [27]). In this section, we present three results in this sense. In the first
one we replace the assumption (iii) (i.e B is either a contraction or a separate contraction) by a more general condition: B is
either a 1-set contraction or a continuous pseudocontractive mapping and I � B is /-expansive. In fact, it is also a general-
ization of Theorem 3.7 in [17]. The second one uses the conditions given in [8,9]. The last one extends Theorem 2.1 in [26].

Theorem 4.1. Let C be a closed bounded and convex subset of a Banach space X and let A;B : C ! X be continuous mappings such
that

ðiÞ A is compact.
ðiiÞ B is either a U� 1-set contraction or a pseudo-contractive mapping.
ðiiiÞ ðI � BÞ�1 : RðI � BÞ ! C exists and it is uniformly continuous.
ðivÞ AðCÞ þ BðCÞ � C. Then there exists x 2 C such that AðxÞ þ BðxÞ ¼ x.
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Proof. Fix an arbitrary y 2 C and define Sy : C ! C as SyðxÞ ¼ AðyÞ þ BðxÞ. Clearly Sy is well defined and it is continuous.
Next note that ðI � SyÞ�1 : RðI � SyÞ ! X exists and it is uniformly continuous. Indeed, clearly ðI � SyÞ�1 is injective and

uniformly continuous because ðI � BÞ�1 satisfies such conditions.
If B is a U� 1-set contraction, then for every bounded subset K � C we have that
U SyðKÞ
� �

¼ U BðKÞð Þ 6 UðKÞ;
that is, Sy is also a U� 1-set contraction.
If B is a pseudocontractive, then kx� zk 6 kð1þ rÞðx� zÞ � rðBðxÞ � BðzÞÞk for every r > 0. Consequently
kx� zk 6 kð1þ rÞðx� zÞ � rðBðxÞ þ Ay� ðBðzÞ þ AðyÞÞk ¼ kð1þ rÞðx� zÞ þ rðSyðxÞ � SyðzÞÞk:
That is, Sy is also pseudocontractive.
Now we shall prove that AðCÞ � RðI � BÞ.
Indeed, let y 2 C.
If B is either a U� 1-set contraction or a pseudocontractive mapping, by either step 1 and Remark 3.2, or Corollary 3.3,

respectively, we obtain that there exists x0 2 C such that Syðx0Þ ¼ x0, that is, AðyÞ þ Bðx0Þ ¼ x0. Then ðI � BÞðx0Þ ¼ AðyÞ and
thus AðyÞ 2 RðI � BÞ.

From this we have that ðI � BÞ�1 � A : C ! C is well defined. Clearly ðI � BÞ�1 � A
� �

ðCÞ is relatively compact because A is
compact and ðI � BÞ�1 is continuous. By Schauder’s theorem we get that there exists an x 2 C such that ððI � BÞ�1 � AÞðxÞ ¼ x
and consequently AðxÞ ¼ ðI � BÞðxÞ. Hence AðxÞ þ BðxÞ ¼ x. h
Remark 4.1. Notice that in ([1], Theorem 2.19, Corollary 2.25) the authors gave similar results to Theorem 4.1. However, the
condition on the operator B in the above result is, in fact, more general than the non expansiveness which is assumed in
([1],Corollary 2.25).
Theorem 4.2. Let C be a closed and convex subset of a Banach space X with 0 2 C and let A : C ! X and B : X ! X be a continuous
mappings such that

ðiÞ A is compact.
ðiiÞ B is U-1-set contractive with BðXÞ bounded,
ðiiiÞ ðI � BÞ�1 : RðI � BÞ ! X exists and it is uniformly continuous.
ðivÞ If x ¼ AðyÞ þ BðxÞ for some y 2 C then x 2 C. Then, either
1. The equation x ¼ BðxÞ þ AðxÞ has a solution, or
2. The set fx 2 C : x ¼ kBðxkÞ þ kAðxÞ; k 2 ð0;1Þg is unbounded.
Proof. First, let us see that AðCÞ# RðI � BÞ. Indeed, given y 2 C we define Sy : X ! X as Syx ¼ Bxþ Ay.
By using the same arguments as in the above theorem we obtain that such mapping is U-1-set contractive and that

ðI � SyÞ�1 is uniformly continuous.
On the other hand, since BðXÞ is a bounded subset of X, there exists M > 0 such that kBðxÞk 6 M for all x 2 X. Thus, if we

call R ¼ M þ kAyk, we have that
Syx ¼ Bxþ Ay – kx for all x 2 SR and for all k > 1:
The above facts yield that Sy is under the conditions given in Theorem 3.2, and then there exists a unique fixed point,
x 2 X, for Sy. This means that x ¼ Bxþ Ay, hence by assumption (iv) we derive that x 2 C. Which allows us to define
T :¼ ðI � BÞ�1 � A : C ! C.

On the other hand, since ðI � BÞ�1 is a continuous mapping and by assumption (i) A is compact then T is also a compact
mapping.

Finally, in order to obtain the result we apply Theorem 3.2. Indeed, if x 2 C and x ¼ kBðxkÞ þ kAðxÞ for some k 2 ð0;1Þ, then
taking l ¼ 1

k > 1, we have TðxÞ � 0 ¼ lðx� 0Þ and vice versa. Consequently if (2) fails, we may find R > 0 such that
TðxÞ � 0 – lðx� 0Þ for all x 2 C \ SRð0Þ and for all l > 1. h
Remark 4.2. The conclusion of Theorems 4.1 and 4.2 also holds if we replace assumption (iii) by I � B is a /-expansive map-
ping. If, moreover, we replace in Theorem 4.2 condition (ii) by B is a continuous pseudocontractive mappings we obtain the
same conclusion without assuming that BðXÞ is bounded. This is a consequence of Theorem 2.4 and thus we may consider
Theorem 4.2 as a generalization of Theorem 2.3 in [27].

Next theorem represents an extension of Theorem 2.1 in [26]. Notice that such result was used in order to get a solution
for a nonlinear transport equation (see [36]).
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Theorem 4.3. Let C be a bounded closed and convex subset of a Banach space X and let A : C ! X and B : C ! X be continuous
mappings such that

ðiÞ A has the condition ðA1Þ,
ðiiÞ B is pseudocontractive,
ðiiiÞ I � B /-expansive,
ðivÞ There exists c 2 ½0;1Þ such that wðAðSÞ þ BðSÞÞ 6 cwðSÞ for all S # C.
ðvÞ AðCÞ þ BðCÞ# C.

Then, the equation x ¼ BðxÞ þ AðxÞ has a solution.
Proof. Let y 2 C be fixed but arbitrary and define Sy : C ! C as SyðxÞ ¼ AðyÞ þ BðxÞ. Clearly Sy is well defined and it is a con-
tinuous pseudocontractive mapping with I � Sy /-expansive. Therefore, by Corollary 3.3, we obtain that there exists a unique
x0 2 C such that Syðx0Þ ¼ x0. This fact allows us to show that T :¼ ðI � BÞ�1 � A : C ! C is well defined.

On the other hand, we know that given a subset K of C the following inclusion
ðI � BÞ�1 � AðKÞ# AðKÞ þ BððI � BÞ�1 � AðKÞÞ
holds.
Consequently,
TðKÞ# AðK [ TðKÞÞ þ BðK [ TðKÞÞ;
by hypothesis (iv), we have
wðTðKÞÞ 6 wðAðK [ TðKÞÞ þ BððK [ TðKÞÞ 6 cwðK [ TðKÞÞ ¼ c maxfwðKÞ;wðTðKÞÞg ¼ cwðKÞ:
This means that T :¼ ðI � BÞ�1 � A : C ! C is an w-condensing mapping satisfying condition ðA1Þ. Hence we may apply The-
orem 2.3 to achieve the conclusion. h
4.1. Application

Let ðX; k � kÞ be a Banach space and let T > 0. We will now study the existence of solutions for the integral equation
wðtÞ ¼ gðt;wðtÞÞ þ
Z t

0
f ðs;wðsÞÞds; ð3Þ
on Cð0; T; XÞ, the space of X-valued continuous functions on the interval ½0; T�, where the functions f and g satisfy the follow-
ing conditions:

(E1) The function g : ½0; T� � X ! X is uniformly continuous on the bounded subsets of ½0; T� � X; gðt; �Þ is a pseudocontrac-
tive mapping and let Mr :¼maxfkgðt; xÞk : kxk 6 r and t 2 ½0; T�g,

(E2) I � gðt; �Þ : X ! X is /-expansive,
(E3) The function f : ½0; T� � X ! X is a compact Carathéodory function and there exist two functions m; s 2 L1ð0; T; RþÞ and

an increasing function X : Rþ ! Rþ such that kf ðt; xÞk 6 mðtÞXðkxkÞ þ sðtÞ.
(E4) limr!1

kmk1XðrÞþMr
r < 1.

Theorem 4.4. Eq. (3) has a solution in Cð0; T; XÞ whenever the conditions (E1)–(E4) are satisfied.

Proof. For this purpose we define
A : Cð0; T; XÞ ! Cð0; T; XÞ;

w # AðwÞðtÞ ¼
Z t

0
f ðs;wðsÞÞds
and
B : Cð0; T; XÞ ! Cð0; T; XÞ;
w # BðwÞðtÞ ¼ gðt;wðtÞÞ:
Our task consists into see that Aþ B has a fixed point.
We infer that both operators are well defined by assumptions (E1) and (E3).
The continuity of A follows from Lebesgue’s convergence theorem. Assumption (E3) allows us to apply the Ascoli–Arzela

theorem in order to show that the operator A is also compact.
On the other hand, since g is uniformly continuous on the bounded subsets of ½0; T� � X and gðt; �Þ is pseudocontrative, we

easily obtain that B is a continuous pseudocontractive mapping on Cð0; T; XÞ.
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Next, let us see that I � B is a /-expansive operator on Cð0; T; XÞ. Indeed, since I � gðt; �Þ is /-expansive on X, we have
kuðtÞ � gðt;uðtÞÞ � ðvðtÞ � gðt; vðtÞÞÞkP /ðkuðtÞ � vðtÞkÞ ð4Þ
for all u;v 2 Cð0; T; XÞ and for all t 2 ½0; T�.
If / is nondecreasing, inequality (4) implies
ku� Bu� ðv � BvÞk1 P supf/ðkuðtÞ � vðtÞkÞ : t 2 ½0; T�g ¼ /ðku� vk1Þ:
Otherwise, / is continuous. In this case, there exists t0 2 ½0; T� such that /ðkuðt0Þ � vðt0ÞkÞ ¼maxf/ðkuðtÞ�
vðtÞkÞ : t 2 ½0; T�g. By inequality (4), it is clear that
ku� Bu� ðv � BvÞk1 P kuðt0Þ � gðt0;uðt0ÞÞ � ðvðt0Þ � gðt0; vðt0ÞÞÞkP /ðkuðt0Þ � vðt0ÞkÞP /ðku� vk1Þ:
Finally, let us show that there exists r0 > 0 such that AðBr0 ð0ÞÞ þ BðBr0 ð0ÞÞ# Br0 ð0Þ.
Otherwise, for every r > 0 we can find ur ;v r 2 Brð0Þ with kAur þ Bv rk1 > r. This means that 1

r kAur þ Bv rk1 > 1.
Then we may assume that lim infr!1

1
r kAur þ Bv rk1 P 1. However,
kAurðtÞ þ Bv rðtÞk 6 Mr þ
Z t

0
kf ðs;urðsÞÞkds 6 Mr þ

Z T

0
ðm1ðsÞXðrÞ þ sðsÞÞds 6 Mr þ kmk1XðrÞ þ ksk1:
Consequently,
lim inf
r!1

1
r
kAur þ Bv rk1 6 lim inf

r!1

kmk1XðrÞ þMr

r
< 1:
Thus, by Theorem 4.1 we obtain the result. h

Example 4.1. Consider the following nonlinear integral equation:
uðtÞ ¼ sinðuðtÞÞ þ
Z t

0

1
sþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juðsÞj2 þ 13

q
ds; u 2 C½0; T�: ð5Þ
Let us show that Eq. (5) has a solution in the Banach space C½0; T�. In order to show this, we will check that the conditions
of Theorem 4.4 are satisfied.

Define f : ½0; T� � R! R by f ðt; xÞ ¼ 1
tþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ 13

q
. This function is clearly continuous and jf ðt; xÞj 6 mðtÞXðjxjÞ, where

mðtÞ ¼ 1
tþ1 and XðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 13
p

.
Consider the mapping g : R! R; gðrÞ ¼ sinðrÞ. It is clear that g is nonexpansive. We shall prove that I � g is /-expansive,

where / : Rþ ! Rþ is given by.
/ðrÞ ¼ r � 2 sin r
2

� �
; if 0 6 r 6 2p;

2p; if r > 2p:

(

The mapping / is nondecreasing, continuous and it satisfies that /ð0Þ ¼ 0 and /ðrÞ > 0 for all r > 0.
Let x; y 2 R and suppose y 6 x.
Case (i): jx� yj 6 2p. Since 0 6 x�y

2 6 p we have that sin x�y
2

� �
P 0 and thus
sin
x� y

2

� �
cos

xþ y
2

� �
6 sin

x� y
2

� �
: ð6Þ
Therefore, by (6) and by the trigonometric identity
sinðxÞ � sinðyÞ ¼ 2 sin
x� y

2

� �
cos

xþ y
2

� �
;

we obtain
sinðxÞ � sinðyÞ 6 2 sin
x� y

2

� �
: ð7Þ
Given that I � g is increasing we get by (7) that
jðI � gÞðxÞ � ðI � gÞðyÞj ¼ x� sinðxÞ � yþ sinðyÞP x� y� 2 sin
x� y

2

� �
¼ / jx� yjð Þ:
Case (ii): jx� yjP 2p. It is easy to see that the mapping r # r � 2 sinðr2Þ
�� �� is increasing in ½2p;1Þ. Keeping in mind this we

obtain that
jðI � gÞðxÞ � ðI � gÞðyÞjP jx� yj � j sinðxÞ � sinðyÞj ¼ x� y� 2 sin
x� y

2

� �
cos

xþ y
2

� ���� ��� P x� y� 2 sin
x� y

2

� ���� ���P 2p

¼ /ðjx� yjÞ:
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By using the above functions, Eq. (5) can be rewritten as follows
uðtÞ ¼ gðuðtÞÞ þ
Z t

0
f ðs;uðsÞÞds;
where f and g are under the conditions of Theorem 4.4 and thus we can conclude that this equation has a solution.
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