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Abstract We prove that a nonlinear evolution equation which gives a novel approach to the X-ray tomography
problem (see Kolehmainen et al., SIAM J. Sci. Comput. 30(3):1413–1429, 2008) has a solution. To this end,
we list some of our results on theory of accretive operators and then we apply them to this concrete context.
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1 Introduction

In medical X-ray tomography, the inner structure of a patient is reconstructed from a collection of projection
images. The widely used computerized tomography (CT) imaging uses an extensive set of projections acquired
from all around the body. This type of reconstruction is well understood, the most popular method being filtered
back-projection (FBP).

In mammography and intraoral dental imaging, the X-ray detector is in a fixed position behind the tissue,
and the X-ray source moves with respect to the detector. In these cases the projections can be taken from a
view angle significantly less than 180◦, leading to a limited angle tomography problem. In some applications,
such as the radiation dose to the patient is minimized by keeping the number of projection small. In addition,
the projections are typically truncated to detector size, yielding a local tomography problem. We refer to the
above types of incomplete data as sparse projection data.

Sparse projection data do not contain enough information to describe completely the tissue, and therefore
successful reconstruction requires some form of regularization or priori information. It is well known that
methods such as (FBP) are not suited for sparse projection data (see [25,26]). More promising approaches
include, among others, total variation methods (see [7,8]), variational methods (see [20]), and deformable
models (see [27]).
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Kolehmainen et al. in [19] study a variant of the level set method, where the X-ray attenuation coefficient
is modeled as the function max{�(x), 0}, with � a smooth function. Thus they make use of the natural “a
priori“ information that the X-ray attenuation coefficient is always nonnegative (the intensity of X-ray does
not increase inside the tissue).

They assume that the attenuation coefficient v ∈ L2(�) for a bounded subset� ⊆ R
2 and use the following

model for the direct problem:

m = A(v)+ ε, (1)

where A is a linear operator on L2(�) with appropriate target space and ε is a measurement of the noise. To
reconstruct v approximately from m, Kolehmainen et al. in [19] solve numerically the evolution equation

∂tφ(x, t) = −A∗(A( f (φ(x, t)))− m)+ β�φ(x, t)

(ν · ∇ − r)φ(x, t)|∂� = 0, (2)

with a suitable initial condition φ(x, 0) = φ0 and r ≥ 0, β > 0. Here ν is the interior normal vector of the
boundary. The cutoff function f : R → R is given by

f (s) =
{

s, s > 0
0, s ≤ 0 (3)

Let

�(x) = lim
t→∞φ(x, t), (4)

and consider the function

w(x) = f (�(x)) (5)

as the reconstructed attenuation coefficient.
The theory of accretive operators will allow us to show that the evolution equation (1) has a solution when

the measurement equation (2) comes from one of the two most popular models for X-ray tomography: the
pencil beam model or the Radon Transform. Moreover, we prove that the limit (4) exists when β is large
enough and r > 0.

1.1 X-ray measurement models

In medical X-ray imaging, an X-ray source is placed on one side of the target tissue. Radiation passes through
the tissue, and the attenuated signal is detected on the other side.

A two-dimensional model slice through the target tissue given by a rectangle � ⊆ R
2 and a nonnegative

attenuation coefficient v : � → [0,∞). The tissue is contained in a subset �1 ⊂ �, and v(x) = 0 for
x ∈ �\�1. This yields the linear model

∫
L

v(x)dx = lg(I0)− lg(I1), (6)

where L is the line of the X-ray, I0 is the initial intensity of the X-ray beam when entering �, and I1 is the
attenuated intensity at the detector.

Below, we present two usual ways to organize and interpret collections of measured line integrals (6) in
the following form (1):

• The Radon transform,
• Pencil beam model.
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1.2 Radon transform

Define the operator A : L2(�) → L2(D) appearing in (1) by

(Av)(θ, s) =
∫

L(θ,s)

v(x)dx,

where L(θ, s) := {x = (x1, x2) ∈ R
2 : x1 cos(θ) + x2 sin(θ) = s}. Models of limited angle and local

tomography are allowed by taking

D := {(θ, s) : θ ∈ [θ0, θ1], s ∈ [s0(θ), s1(θ)]},
where 0 ≤ θ0 < θ1 ≤ 2π and −∞ < s0(θ) < s1(θ) < +∞. Finally, we assume that ε ∈ L2(D). We remark
that A is a compact operator (see [25]).

1.3 Pencil beam model

Suppose we have N1 projection images with a digital detector consisting of N2 pixels. Then our data consist
of integral of v over N = N1 N2 different lines L in (6). Accordingly, the operator in (1) is defined as

A : L2(�) → R
N ,

the measurement is a vector m ∈ R
N , and noise is modeled by a Gaussian zero-centered random vector ε

taking values in R
N .

2 The evolution equation

2.1 Classical level set method for inverse obstacle problems

Consider a physical parameter of the form σ = σ0 + cχ�1, where σ0(x) is known background, c is a constant,
and the characteristic function χ�1(x) is discontinuous at the boundary of �1. In inverse obstacle problems
one aims to recover the set �1 from indirect measurement of σ. For example, the parameter σ may be sound
speed or electrical impedance, and one may measure scattered waves or voltage-to-current boundary maps,
respectively.

In the classical level set approach the obstacle is represented as H(�), where H is the Heaviside function
and � is smooth. The boundary ∂�1 of the obstacle is given by the zero level set of �. The measurement is
written in the form m = A(H(�)) =: Q(�).

In the classical level set method the function � is found as the limit

�(x) = lim
t→∞φ(x, t),

where φ is the solution of the evolution equation

∂tφ(x, t) = −θ(φ,∇xφ)
[
(DQ|φ)∗(Q(φ)− m)

]
. (7)

Here θ is a nonnegative function, (DQ|φ)ρ is the Gateaux derivative of Q at the point φ in direction ρ ∈
C∞

0 (�), and (DQ|φ)∗ is the adjoint operator.
The intuition behind this approach is the following: define a cost functional

F0(u) = 1

2
‖A(H(u))− m‖2

L2(D) = 1

2
〈Q(u)− m, Q(u)− m〉, (8)

where 〈., .〉 is the inner product of L2(D). If we compute,

∂

∂s
F0(u + sρ) = lim

t→0

F0(u + (s + t)ρ)− F0(u + sρ)

t
= 〈(DQ|u+sρ)(ρ), Q(u + sρ)− m〉
=

∫
D

(Q(u + sρ)− m)(DQ|u+sρ)ρdx
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Now, since (DQ)∗ is the adjoint operator, we obtain that

lim
s→0+

∂

∂s
F0(u + sρ) =

∫
D

(DQ|u)ρ(Q(u)− m)dx =
∫
�

ρ(DQ|u)∗(Q(u)− m)dx .

Consequently, if φ is a solution of Eq. (7), we derive formally

∂t F0(φ) = lim
s→0+

∂

∂s
F0(φ + sφt ) = −

∫
�

θ(φ,∇xφ)[(DQ|φ)∗(Q(φ)− m)]2dx ≤ 0.

The above inequality means that the function F0(φ(x, t)) is decreasing with respect to t and therefore there
exists F0(�) = limt→∞ F0(φ(x, t)) and moreover F0(�) ≤ F0(φ).

2.2 Motivation for the method developed in [19]

Consider the measurement given by Eq. (1) in the case that the X-ray attenuation coefficient v is smooth and
nonnull only inside a subset �1 ⊂ �. Now, the operator A∗ A arising from Radon transform, or pencil beam
model, is nonlocal, and mathematical justification of the classical level set approach described in such section
does not seem easy.

Therefore, we design an algorithm that

(i) constructs an approximation �2 for the subset �1, and
(ii) with given approximation�2 produces a reconstructionw that solves the Tikhonov regularization prob-

lem

w = argminu

⎧⎨
⎩

1

2
‖A(u)− m‖2

L2(D) + β

2

∫
�

〈∇u,∇u〉dx

⎫⎬
⎭ ,

where β > 0 is a parameter and the minimum is taken over all u satisfying

(a) u|�\�2 ≡ 0,
(b) u|�2 ∈ H1

0 (�) = {g ∈ L2(�) : ∂g
∂xi

∈ L2(�), i = 1, 2; g|∂�2 = 0}.

2.3 Formulation of this method

We approximate the X-ray attenuation coefficient v by w = f (�), where f is given by (3) and � is smooth.
Notice that (a) is achieved naturally with ∂�2 given by the zero level of�. The measurement of X-ray projection
images is now modeled by m = A( f (�)).

In this method the function� is found as the limit�(x) := limt→∞ φ(x, t), where φ is the solution of the
evolution equation

∂tφ(x, t) = −A∗(A( f (φ(x, t)))− m)+ β�φ(x, t),
(∂νφ(x, t)− rφ(x, t)) |∂� = 0,
φ(x, 0) = φ0(x),

(9)

with ν the interior normal of ∂�, β > 0 a regularization parameter, and r ≥ 0. Compare Eq. (9) to (7) with
the choice θ ≡ 1.

The function w in requirements (a) and (b) satisfies

β�w − A∗(A(w)− m) = 0 in �2 (10)

The solution of Eq. (9) converges to the solution of the above equation and simultaneously produces a
useful approximation �2 for �1.
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How did they come up with such a formulation? Tikhonov regularization yields the cost functional

F(u) = 1

2
‖A( f (u))− m‖2

L2(D) + β

2

∫
�

〈∇u,∇u〉dx . (11)

Computing the derivative ∂t F(u) in a similar way to the process for F0, we obtain

lim
s→0

∂

∂s
F(u + sρ) =

∫
D

D A | f (u) (ρ)(A( f (u)− m)dx + β

∫
�

〈∇u,∇ρ〉dx;

hence,

∂t F(φ) = lim
s→0

∂

∂s
F(φ + sφt ) =

∫
�

φt A∗(A( f (φ)− m)dx + β

∫
�

〈∇φ,∇φt 〉dx .

By Green’s formula and using the definition of φt , we have

∂t F(φ) = −
∫
�

A∗(A( f (φ))− m)2dx + β

∫
�

�φ(A∗(A( f (φ)− m)dx − β

∫
�

�φφt dx .

Therefore,

∂t F(φ) = −
∫
�

(A∗(A( f (φ))− m)− β�φ)2dx ≤ 0,

which suggests the evolution equation

∂tφ = −H(φ)(A∗(A( f (φ))− m)+ β�φ. (12)

However, the last equation is numerically unstable. Outside the level set �2(t) := {x : φ(x, t) = 0} the
evolution is driven by the term −β�φ alone, pushing towards constant value zero in �\�2.

Thus we remove the Heaviside function in the last equation and arrive at Eq. (9). Numerical tests show
that such an equation is stable and gives much better reconstructions than the last one.

3 Existence of solution

3.1 Preliminaries

A mapping A : X → 2X will be called an operator on X. The domain of A is denoted by D(A) and its range by
R(A). Sometimes, we will identify an operator by its graph and we will write (x, y) ∈ A instead of x ∈ D(A)
and y ∈ Ax . An operator A on X is said to be accretive if the inequality ‖x − y + λ(z −w)‖ ≥ ‖x − y‖ holds
for all λ ≥ 0, (x, z); (y, w) ∈ A. If, in addition, R(I + λA) is for one, hence for all, λ > 0, precisely X , then
A is called m-accretive. Accretive operators were introduced by Browder [6] and Kato [17] independently.

Those accretive operators which are m-accretive play an important role in the study of nonlinear partial
differential equations.

Consider the Cauchy problem {
u′(t)+ A(u(t)) � f (t), t ∈ (0, T ),
u(0) = x0 ∈ D(A),

(13)

where A is m-accretive on X and f ∈ L1(0, T, X). It is well known that (13) has a unique integral solution in
the sense of Bénilan [4], i.e., there exists a unique continuous function u : [0, T ] → D(A) such that u(0) = x0,
and moreover, for each (x, y) ∈ A and 0 ≤ s ≤ t ≤ T, we have

‖u(t)− x‖2 − ‖u(s)− x‖2 ≤ 2

t∫
s

〈 f (τ )− y, u(τ )− x〉+dτ. (14)
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Here the function 〈·, ·〉+ : X × X → R is defined by 〈y, x〉+ = sup{x∗(y) : x∗ ∈ J (x)},where J : X → 2X∗

is the duality mapping on X, i.e., J (x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2, ‖x∗‖ = ‖x‖}.
If u, v are integral solutions of u′(t) + A(u(t)) � f (t) and v′(t) + A(v(t)) � g(t), respectively, with

f, g ∈ L1(0, T, X), then

‖u(t)− v(t)‖ ≤ ‖u(0)− v(0)‖ +
t∫

0

‖ f (s)− g(s)‖ds.

We now recall some important facts regarding accretive operators which will be used in our paper (see for
example [10]).

Proposition 3.1 Let A : D(A) → 2X be an operator on X. The following conditions are equivalent:

• A is an accretive operator,
• The inequality 〈u − w, x − y〉+ ≥ 0, holds for every (x, u), (y, w) ∈ A,
• For each λ > 0 the resolvent Jλ := (I + λA)−1 : R(I + λA) → D(A) is a single-valued nonexpansive

mapping.

A strong solution of Problem (13) is a function u ∈ W 1,∞(0, T ; X), i.e., u is locally absolutely continuous
and almost differentiable everywhere, u′ ∈ L∞(0, T ; X), and u′(t)+ A(u(t)) � f (t) for almost all t ∈ [0, T ].

Concerning the existence of strong solutions, the following theorem is known (see page 133 of [5]):

Theorem 3.2 If X is a Banach space with the Radon–Nikodym property, A : D(A) ⊆ X → 2X is an m-
accretive operator, and f ∈ BV (0, T ; X), i.e., f is a function of bounded variation on [0, T ], then Problem
(13) has a unique strong solution whenever x0 ∈ D(A).

We refer to [9], where the reader will find a deep study on the Radon–Nikodym property and in particular
the reader may pay attention to two very important classes of Banach spaces that enjoy this property: reflexive
Banach spaces and Banach spaces whose duals are separable.

On the other hand, we say that u ∈ C(0, T ; X) is a weak solution of Problem (13) if there are sequences
(un) ⊆ W 1,∞(0, T ; X) and ( fn) ⊆ L1(0, T ; X) satisfying the following four conditions:

(1) u′
n(t)+ Aun(t) � fn(t) for almost all t ∈ [0, T ], n = 1, 2, . . . ;

(2) limn→∞ ‖un − u‖∞ = 0;
(3) u(0) = x0;
(4) limn→∞ ‖ fn − f ‖1 = 0.

With respect to the existence of weak solutions, the following result, which is an easy consequence of
Theorem 3.2 (see page 134 of [5] for the case of reflexive Banach spaces), is important:

Theorem 3.3 Let X be a Banach space with the Radon–Nikodym property. Then Problem (13) admits a unique
weak solution which is the unique integral solution of this problem.

3.2 General theory

Theorem 3.4 Let E be a real Banach space. Consider A : D(A) ⊆ E → 2E an m-accretive operator on E .
Let B : E → E be a k-Lipschitzian mapping. Then the Cauchy problem{

u′(t)+ A(u(t)) � B(u(t)), t ∈ (0,+∞),

u(0) = x0 ∈ D(A),
(15)

has a unique integral solution.

Proof Let T be a positve number. Consider the subset K := {u ∈ C(0, T ; X) : u(0) = x0}. Given v ∈ K, the
problem {

u′(t)+ A(u(t)) � B(v(t)), t ∈ (0, T ),
u(0) = x0,

(16)

has a unique integral solution, namely S(v) ∈ K. This fact allows us to introduce a mapping S : K → K
defined as follows: given v ∈ K, S(v) is the unique integral solution of the aforementioned problem.
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From the definition of an integral solution, it follows that

‖S(v)(t)− S(w)(t)‖ ≤
t∫

0

k‖v(τ)− w(τ)‖dτ ≤ K t max{‖v(s)− w(s)‖ : s ∈ [0, t]}.

Using an inductive process, we deduce that, for each n ∈ N,

‖Sn(v)(t)− Sn(w)(t)‖ ≤ (K t)n

n! max{‖v(s)− w(s)‖ : s ∈ [0, t]}.

Hence ‖Sn(v)− Sn(w)‖∞ ≤ (K T )n

n! ‖v−w‖∞. This means that there exists n0 ∈ N such that Sn0 is a strict
contraction on K. Since K is closed, S has a unique fixed point in K by Banach’s fixed point theorem. This
fixed point is the unique integral solution of Eq. (16).

Finally, we can define, given t > 0, u(t) := uT (t), where uT is the unique integral solution of Problem
(16) with T > t. It is clear that u is the unique integral solution of Problem (15). ��
Remark 3.5 This type of results has been studied for instance in [14].

Theorem 3.6 Let E be a Banach space with Radon–Nikodym property (RN for short). Under the assumptions
of Theorem 3.4, if we define the Cauchy problem

{
u′(t)+ A(u(t)) � B(u(t))
u(0) = u0 ∈ D(A), (17)

then it has a unique weak solution.

Proof By Theorem 3.4, we know that Problem (17) has a unique integral solution, say w. This means that w
is the unique solution of the problem

{
u′(t)+ A(u(t)) � B(w(t))
u(0) = u0 ∈ D(A) (18)

Since B(w(.)) ∈ L1(0, T ; E) for every T > 0, by Theorem 3.3, w has to be a weak solution of the
Problem. ��
Definition 3.7 Let φ : [0,∞[→ [0,∞[ be a continuous function such that φ(0) = 0 and φ(r) > 0 for
r > 0. Let X be a Banach space. An operator A : D(A) → 2X is said to be φ-strongly accretive if, for every
(x, u), (y, v) ∈ A, then

φ(‖x − y‖)‖x − y‖ ≤ 〈u − v, x − y〉+.
Definition 3.8 Let φ : [0,∞[→ [0,∞[ be an either continuous, or nondecreasing function such that φ(0) = 0
and φ(r) > 0, for r > 0. A mapping A : D(A) → 2X is said to be φ-expansive if, for every x, y ∈ D(A),
and every u ∈ A(x) and v ∈ A(y), then

‖u − v‖ ≥ φ(‖x − y‖). (19)

Remark 3.9 The main result of [11] and remark 3.8 of [16] establish that if X is a Banach space and A :
D(A) → 2X is an m-accretive and φ-expansive operator, then A is surjective.

Definition 3.10 Let E be a Banach space, let φ : E → [0,∞) be a continuous function such that φ(0) =
0, φ(x) > 0, for x �= 0, and which satisfies the following condition:

For every sequence (xn) in E such that (‖xn‖) is decreasing and φ(xn) → 0 as n → ∞, then ‖xn‖ → 0.
An accretive operator A : D(A) → 2E , with 0 ∈ Az is said to be φ-accretive at zero whenever the

inequality

〈u, x − z〉+ ≥ φ(x − z), for all (x, u) ∈ A (20)

holds.
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Remark 3.11 The uniqueness of a zero for an operator eitherφ-expansive orφ-accretive at zero is an immediate
consequence of (19) or (20), respectively.

On the other hand, Proposition 3.4 and Remark 4.5 of [13] prove that every m-ψ-strongly accretive operator
is both ψ-expansive and φ-accretive at zero with φ = ψ ◦ ‖ · ‖. Finally, it is proved in [13] that there is not
any relationship between being φ-expansive and being φ-accretive at zero.

Proposition 3.12 If P is m-ψ-strongly accretive and h ∈ E, then the operator H(u) = P(u)− h for all u ∈
D(P) is φ-accretive at zero.

Proof Since P is ψ-strongly accretive, then by the above remark we know that P is φ-expansive. Since P is
also m-accretive then, by Remark 3.9, P is surjective. Then, there exists z ∈ D(P) such that 0 = H(z).

For each x ∈ D(P) let u = H(x) we have the following:

〈u, x − z〉+ = 〈P(x)− h, x − z〉+ = 〈P(x)− P(z), x − z〉+.
Consequently,

〈u, x − z〉+ = 〈P(x)− P(z), x − z〉+ ≥ ψ(‖x − z‖)‖x − z‖.
Finally, if we define φ : E → [0,∞) by φ(u) := ψ(‖u‖)‖u‖, we conclude that H is an operator

φ-accretive at zero. ��
Theorem 3.13 Let E be a Banach space with the RN property. Consider P : D(P) ⊆ E → E an m-ψ-
strongly accretive operator on E . Assume that u0 is an element of D(P), and h ∈ E. If u : [0,∞) → D(P)
is the unique weak solution of the Cauchy problem{

u′(t)+ H(u(t)) = 0
u(0) = u0 ∈ D(P),

(21)

where H = P − h, then limt→+∞ u(t) = z, z being the unique element in D(P) such that h = P(z).

Proof We know that H is φ-accretive at zero and 0 = H(z).
First, consider that the initial data u0 ∈ D(P). In this case by Theorem 3.2 Problem (21) has a unique strong

solution. Let u : [0,∞[→ X be this strong solution. Then u(t) = S(t)(u0) := limn→∞(I + t
n H)−n(u0).

Therefore, there exists u′(t) a.e. (almost everywhere) and moreover it satisfies −u′(t) ∈ Hu(t) a.e.. Then,
there exists j (t) ∈ J (u(t)− z) such that

〈−u′(t), u(t)− z〉+ = 〈−u′(t), j (t)〉
= 1

h
〈u(t − h)− u(t), j (t)〉 + 〈ξ(t, h), j (t)〉,

where limh→0 ξ(t, h) = 0.
Since ‖ j (t)‖ = ‖u(t)− z‖, elementary calculus yields

〈u(t − h)− u(t), j (t)〉 = 〈u(t − h)− z − u(t)+ z, j (t)〉
−‖u(t)− z‖2 + 〈u(t − h)− z, j (t)〉

≤ 1

2
(‖u(t − h)− z‖2 − ‖u(t)− z‖2).

On the other hand, since the mapping t → ‖u(t) − z‖ is lipschitzian, it is also differentiable almost
everywhere. Consequently,

0 ≤ 〈−u′(t), j (t)〉 ≤ −1

2

d

dt
‖u(t)− z‖2. (22)

Moreover, since t → ‖u(t)− z‖ is decreasing, the function t → 1
2

d
dt ‖u(t)− z‖2 is Lebesgue integrable on

[0,∞). Hence by (22) we know that the function t → 〈−u′(t), j (t)〉 is also Lebesgue integrable on [0,∞).
Then lim inf t→∞〈−u′(t), j (t)〉 = 0, which means that there exists a sequence (tn) with tn → ∞ such that

lim
n→∞〈−u′(tn), j (tn)〉 = 0. (23)
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Since H is φ-accretive at zero, we know that

φ(u(t)− z) ≤ 〈−u′(t), j (t)〉
and, since the sequence (‖u(tn)− z‖) is decreasing, by (23) we derive

lim
n→∞ ‖u(tn)− z‖ = 0.

Finally, since the function t → ‖u(t)− z‖ is decreasing, we conclude that

lim
t→∞ ‖u(t)− z‖ = 0.

Finally, if we suppose that u0 ∈ D(P), then there exists a sequence (xn) ⊆ D(P) such that xn → u0. If
we call un(t) = S(t)(xn), by the above argument we have that

lim
t→∞ un(t) = z.

Now, let us see that limt→∞ ‖u(t)− z‖ = 0. Indeed, since S(t) is a nonexpansive mapping we have

‖u(t)− z‖ ≤ ‖u(t)− un(t)‖ + ‖un(t)− z‖
≤ ‖u0 − xn‖ + ‖un(t)− z‖.

��
Remark 3.14 The above result is a particular case of Corollary 9 of [12].

3.3 Existence of solution for the method

In this section we will see, using the results of the above section, that Eq. (9) has a strong solution in L2(�).
We remark that similar analysis fails for the classical level set approach because using H instead of f leads to
a heat equation with very singular source terms.

Consider the initial boundary value Problem (9). If we denote g = A∗(m), such Problem is⎧⎨
⎩
∂tφ(x, t) = −A∗(A( f (φ(x, t)))+ β�φ(x, t)+ g,
(∂νφ(x, t)− rφ(x, t)) |∂� = 0,
φ(x, 0) = φ0(x),

(24)

It is well known, see for instance [3], that if β > 0, and we consider the function j : R → R given by
j (s) = r

2 s2 and define the function φ : L2(�) →] − ∞,+∞] by

ϕ(u) =
{
β
2

∫
�

|∇u|2dx + β
∫
∂�

j (u)dx, u ∈ W 1,2(�), j (u) ∈ L1(∂�),

+∞, otherwise,
(25)

then ϕ is a proper lower semi-continuous convex function in L2(�) such that D(ϕ) = W 1,2(�) and moreover,
its subdifferential is given by

∂ϕ(u) = −β�(u), for all u ∈ D(∂ϕ)

where D(∂ϕ) = {u ∈ W 2,2(�) : ∂
∂ν

u − ru = 0, a.e. on ∂�}. In this case, it is also well known that

D(∂ϕ) ⊆ D(ϕ) and D(∂ϕ)
L2(�) = D(ϕ)

L2(�) = L2(�).
Consider u(t) := ψ(., t) ∈ {u ∈ W 2,2(�) : ∂νu = ru a. e. on ∂�}, g = A∗(m) ∈ L2(�),{A(u(t)) = −β�(u(t)),

B(u(t)) = −A∗ A f (u(t))+ g, (26)

We interpret and rewrite Problem (24) as follows:{
u′(t)+ A(u(t)) = B(u(t)), t > 0
u(0) = φ0.

(27)

Next we will study the existence of a strong solution of Problem (27) when φ0 ∈ L2(�).
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Theorem 3.15 Let� be a bounded subset of R
2 with smooth boundary. Let A : L2(�) → L2(D) be a continu-

ous linear operator, where D is either a subset of R2 equipped with the Lebesgue measure, or D = {1, 2, . . . , N }
equipped with the counting measure. If we define B : L2(�) → L2(�) by B(u) = −A∗(A( f (u)))+ g, then
Problem (27) has a unique strong solution whenever φ0 ∈ L2(�).

Proof It is clear that A∗ A : L2(�) → L2(�) is a continuous linear operator; hence we choose the value of μ
such that

‖A∗ A‖ < μ (28)

Since for all s, r ∈ R we have that | f (s)− f (r)| ≤ |s − r |; then it is clear that B : L2(�) → L2(�) is a
k-lipschitzian mapping with k < μ.

On the other hand, by the above comments, the operator −β� is m-accretive on L2(�) when its domain
is given by {u ∈ W 2,2(�) : ∂νu = ru a. e. on ∂�}.

Under these conditions Theorem 3.6 allows us to conclude that Problem (27) has a unique weak solution.
Let us see that such weak solution is in fact a strong solution. Indeed, let w be the solution of the problem,

in this case we can consider the function B(w(·)), since B is k-lipschitzian and B(0) = 0, it is clear that
B(w(·)) ∈ L2(0, T ; L2(�)) for all T > 0.

On the other hand, by the above argument, we have that A = ∂ϕ, and thus Theorem 3.6 of [5] yields that
w is a strong solution in [0, T ] for all T > 0.

�
Remark 3.16 The assumptions of Theorem 3.15 are satisfied when A is the Radon transform (including
limited angle and local tomography cases). Moreover, R

N can be identified with the space L2(D) when
D = {1, 2, . . . , N } equipped with the counting measure. Thus Theorem 3.15 also covers the pencil beam
model. Moreover, this theorem proves the existence of a strong solution for every initial data in L2(�) which
allows us to improve Theorem 4.1 of [19], since in this theorem we can only assume the existence of a strong
solution when the initial data belongs to W 1,2(�).

Suppose that φ(x, t) is the unique strong solution of Problem (9) with φ0 ∈ L2(�); next we are going to
study under what conditions the limit limt→∞ φ(x, t) exists for r > 0 and β > 0.

The following result tells us that operator −β�+ A∗ A f is m-accretive on L2(�) for big enough β :
Theorem 3.17 Let � an open bounded subset of R

2 with its boundary ∂� smooth. The operator B :=
−β�+ A∗ A f is m-accretive whenever β is large enough.

Proof First let us see that B is an accretive operator. Indeed, it is well known that under this boundary condition
� satisfies

〈−�(u), u〉 ≥ λ0‖u‖2
2 for all u ∈ D(A) (29)

where λ0 > 0 is the smallest eigenvalue of −� in D(A). Thus, since we can assume that A∗ A : L2(�) →
L2(�) is a continuous linear operator, we choose the value of β such that

‖A∗ A‖ < βλ0, (30)

If we define B(u) = A∗(A( f (u))), clearly B is a k-lipschitzian mapping with k = ‖A∗ A‖ < βλ0. Let
u, v be two elements of D(A); then we have

〈B(u)− B(v), u − v〉+ = β〈−�(u − v), u − v〉+ + 〈B(u)− B(v), u − v〉+
≥ βλ0‖u − v‖2 − k‖u − v‖2

= (βλ0 − k)‖u − v‖2.

This proves that B is φ-strongly accretive with φ(t) = (βλ0 − k)t.
In order to show that B is m-accretive, now we are going to prove that −β� : D(A) → L2(�) is bijective.
It is well known that −β� : D(A) → L2(�) is m-accretive; moreover since such operator is linear, by

Inequality (29), we derive that this operator is also ψ-expansive with ψ(t) = βλ0t. Thus by Theorem 8 of
[11] we obtain that the operator −β� : D(A) → L2(�) is bijective.

Let Q : L2(�) → D(A) be the inverse operator of −β� : D(A) → L2(�); from inequality (29) it is
clear that Q is continuous.

To prove that B is m-accretive, we have to see that given h ∈ L2(�) there exists u ∈ D(A) such that
u + B(u) = h. This means that we have to solve the equation

u = β�u − B(u)+ h. (31)
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In order to find a solution of Problem (31) it will be enough to show that the operator K : L2(�) → L2(�)
defined by

K (u) = −Q(u)+ B(Q(u))− h

has a fixed point. Since, in this case, if u is a fixed point of K , then v = Q(u) is a solution of Problem 31.
To this end, we argue as follows:
Since D(A) = D(∂ϕ) ⊆ W 1,2(�) and the embedding W 1,2(�) ↪→ L2(�) is compact (see Rellich–Kond-

rachov’s theorem page 144 of [1]) and the mapping B − h : L2(�) → L2(�) is continuous, the mapping K
is a completely continuous mapping.

In order to obtain the result it will be enough to see that there exists R > 0 such that K (SR) ⊆ BR . It is
not difficult to see that

‖Q(u)‖ ≤ 1

βλ0
‖u‖

and

‖B(Q(u))− h‖ ≤ ‖A∗ A‖‖Q(u)‖ + ‖h‖
≤ ‖A∗ A‖ 1

βλ0
‖u‖ + ‖h‖

≤ ‖u‖ + ‖h‖.
If we assume that ‖u‖ = R, since

lim
R→∞

1+‖A∗ A‖
βλ0

R + ‖h‖
R

= 1 + ‖A∗ A‖
βλ0

,

taking β such that 1+‖A∗ A‖
βλ0

< 1 we achieve the result.

�
Remark 3.18 In [16] one may find results on the existence of fixed points for the sum of two nonlinear operators
which are used to study similar problems to (31).

Theorem 3.19 Let βλ0 > ‖A∗ A‖+1. If u : [0,∞[→ L2(�) is the strong solution of Problem (9) with initial
data φ0 ∈ L2(�); then

(1) there exists a unique� ∈ {u ∈ W 2,2(�) : ∂νu = ru a. e. on ∂�} such that g = −β��+ A∗ A( f (�)),
(2) u(t) → � as t → ∞.

Proof Under the hypothesis of this theorem, Theorem 3.17 proves that the operator B := −β� + A∗ A f is
m-accretive. Further, if u, v ∈ D(B) since 〈−�(u), u〉 ≥ λ0‖u‖2

2, we have

‖Bu − Bv‖ = ‖ − β�u + A∗(A( f (u)))+ β�v − A∗(A( f (v)))‖
≥ β‖�(v − u)‖ − ‖A∗ A‖‖u − v‖
≥ (βλ0 − ‖A∗ A‖)‖u − v‖,

which means that B is φ-expansive and m-accretive, and therefore it is surjective. Then there exists� ∈ D(B)
such that

g = −β��+ A∗ A( f (�)).

On the other hand, if βλ0 > ‖A∗ A‖+ 1 it is clear that B is ψ-strongly accretive (see the proof of Theorem
3.17) and thus by Proposition 3.12 the operator H = B− g is m-φ-accretive at zero. Moreover,� is the unique
element of D(B) such that H(�) = 0.

By Theorem 3.15 we know that Problem (9) admits a strong solution whenever the initial data belongs to
L2(�). Nevertheless, when βλ0 > ‖A∗ A‖ + 1, it is not difficult to see that such strong solution is given by

u(t) = lim
n→∞

(
I + t

n
H

)−n

(φ0).

Finally, if we apply Theorem 3.13 we derive that u(t) → � as t → ∞.

�

123



476 Arab J Math (2012) 1:465–476

Acknowledgments The author was partially supported by MTM 2009-10696-C02-02.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Adams, R.A.: Sobolev Spaces. Academic Press, London (1970)
2. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Holland

(1976)
3. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin (2010)
4. Bénilan, Ph.: Équations d’évolution dans un espace de Banach quelconque et applications. Thèse de doctorat d’État, Orsay

(1972)
5. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland

Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co./American Elsevier Publishing Co.,
Inc., Amsterdam/New York (1973)

6. Browder, F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 73, 875–882
(1967)

7. Candès, E.J.; Romberg, J.; Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre-
quency information. IEEE Trans. Inform. Theory. 52, 498–509 (2006)

8. Delaney, A.H.; Bresler, Y.: Globally convergent edge-preserving regularized reconstructions: an application to limited-angle
tomography. IEEE Trans. Inform. Theory. 7, 204–221 (1998)

9. Diestel, J.; Uhl, J.J.Jr.: Vector Measures. Mathematical Surveys and Monographs, Series A.M.S., vol. 15 (1977)
10. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers,

Dordrecht (1990)
11. Garcia-Falset, J.; Morales, Cl.: Existence theorems for m-accretive operators in Banach spaces. J. Math. Anal. Appl. 309,

453–461 (2005)
12. Garcia-Falset, J.: The asymptotic behavior of the solutions of the Cauchy problem generated by φ-accretive operators.

J. Math. Anal. Appl. 310, 594–608 (2005)
13. Garcia-Falset, J.: Strong convergence theorems for resolvents of accretive operators. Fixed point theory and its applications,

pp. 87–94. Yokohama Publishers (2005)
14. Garcia-Falset, J.; Reich, S.: Integral solutions to a class of nonlocal evolution equations. CCM 12(6)1031–1054 (2010)
15. Garcia-Falset, J.; Reich, S.: Zeroes of accretive operators and the asymptotic behavior of nonlinear semigroups. Houston J.

Math. 32, 1197–1225 (2006)
16. Garcia-Falset, J.: Existence of fixed points for the sum of two operators. Math. Nachr. 283(12), 1736–1757 (2010)
17. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19, 508–520 (1967)
18. Kirk, W.A.; Schoneberg, R.: Zeros of m-accretive operators in Banach spaces. Israel J. Math. 35, 1–8 (1980)
19. Kolehmainen, V.; Lassas, M.; Siltanen, S.: Limited data X-ray tomography using nonlinear evolution equations. SIAM J.

Sci. Comput. 30(3), 1413–1429 (2008)
20. Kybic, J.; Blu, T.; Unser, M.: Variational approach to tomographic reconstruction. In: Sonka, M.; Hanson, K.M. (eds.)

Proceedings of SPIE (San Diego, 2001), vol. 4322. Medical Imaging 2001: Image Proceeding, pp. 30–39 (2001)
21. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)
22. Martin, R.H.Jr.: Differential equations on closed subsets of a Banach space. Trans. Am. Math. Soc. 179, 399–414 (1973)
23. Morales, C.: Nonlinear equations involving m-accretive operators. J. Math. Anal. Appl. 972, 329–336 (1983)
24. Morales, C.: The Leray–Schauder condition for continuous pseudocontractive mappings. Proc. Am. Math. Soc. 137, 1013–

1020 (2009)
25. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chichester (1986)
26. Ranggayyan, R.M.; Dhawan, A.T.; Gordon, R.: Algorithms for limited-view computed tomography: an annotated bibliog-

raphy and challenge. Appl. Opt. 24, 4000–4012 (1985)
27. Yu, D.F.; Fessler, J.A.: Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans. Med. Imaging

21, 159–173 (2002)

123


	Limited data X-ray tomography using accretive operators
	Abstract
	1 Introduction
	1.1 X-ray measurement models
	1.2 Radon transform
	1.3  Pencil beam model

	2 The evolution equation
	2.1 Classical level set method for inverse obstacle problems
	2.2 Motivation for the method developed in [19]
	2.3 Formulation of this method

	3 Existence of solution
	3.1 Preliminaries
	3.2 General theory
	3.3  Existence of solution for the method

	Acknowledgments
	References


