On α -nonexpansive mappings in Banach spaces

David Ariza-Ruiz

Universidad de Sevilla

dariza@us.es

Workshop on Fixed Point Theory and its Applications

On the occasion of Enrique Llorens' 70th birthday

About this talk

December 15, 2016

Basic definitions

$$(X, \|\cdot\|)$$
 Banach space. $T : C \subset X o X$

Some types of mappings

• (Bruck'73). λ -firmly nonexpansive if there exist $\lambda \in [0, 1]$ s.t.

$$\|Tx - Ty\| \leq \|(1 - \lambda)(x - y) + \lambda (Tx - Ty)\|$$

• (Koshaka-Takahashi'08). Non-spreading if

$$2 ||Tx - Ty||^{2} \le ||x - Ty||^{2} + ||y - Tx||^{2}.$$

• (Takahashi'10). Hybrid if

$$3 \|Tx - Ty\|^{2} \le \|x - Ty\|^{2} + \|y - Tx\|^{2} + \|x - y\|^{2}$$

• (Takahashi-Yao'11). **TJ-1** if

$$2 ||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2}$$

• (Takahashi-Yao'11). TJ-2 if

$$3 ||Tx - Ty||^{2} \le 2 ||Tx - y||^{2} + ||Ty - x||^{2}.$$

α -nonexpansive mappings

$\alpha\text{-nonexpansive mappings}$

(Aoyama-Kohsaka'11)

Let $\alpha < 1$. A mapping $T : C \to X$ is α -nonexpansive if

$$||Tx - Ty||^2 \le \alpha ||Tx - y||^2 + \alpha ||Ty - x||^2 + (1 - 2\alpha) ||x - y||^2$$

for all $x, y \in C$

Remarks.

• Id is α -nonexpansive $\forall \alpha < 1$.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.
- $\frac{1}{3}$ -nonexpansive = hybrid.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.
- $\frac{1}{3}$ -nonexpansive = hybrid.
- $\frac{1}{4}$ -nonexpansive = TJ1.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.
- $\frac{1}{3}$ -nonexpansive = hybrid.
- $\frac{1}{4}$ -nonexpansive = TJ1.
- T is α -nonexpansive with $\alpha < 0 \iff T = Id$.

- Id is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.
- $\frac{1}{3}$ -nonexpansive = hybrid.
- $\frac{1}{4}$ -nonexpansive = TJ1.
- T is α -nonexpansive with $\alpha < 0 \iff T = Id$.
- Every constant mapping is α -nonexpansive provided that $0 \le \alpha \le \frac{2}{3}$.

Remarks.

- *Id* is α -nonexpansive $\forall \alpha < 1$.
- 0-nonexpansive = nonexpansive.
- $\frac{1}{2}$ -nonexpansive = nonspreading = TJ2.
- $\frac{1}{3}$ -nonexpansive = hybrid.
- $\frac{1}{4}$ -nonexpansive = TJ1.
- T is α -nonexpansive with $\alpha < 0 \iff T = Id$.
- Every constant mapping is α -nonexpansive provided that $0 \le \alpha \le \frac{2}{3}$.

 $T: B_X \to B_X$, $T_X = O_X$ not is α -nonexpansive for any $\alpha > \frac{2}{3}$.

Proposition.

Let $T : C \to C$ be a mapping. If there exists $x \in C$ such that $T^2x = x$ then either

• x is a fixed point for T,

or

• For any $\alpha \in (0, 1)$, T is not α -nonexpansive.

Proposition.

Let $T : C \to C$ be a mapping. If there exists $x \in C$ such that $T^2x = x$ then either

• x is a fixed point for T,

or

• For any $\alpha \in (0, 1)$, T is not α -nonexpansive.

Proposition.

Let $T : C \to C$ be a mapping. Assume that there exists a point $x \in C$ such that $||x - Tx|| = ||Tx - T^2x|| = ||T^2x - x||$. Then either

• x is a fixed point for T,

or

• For any $\alpha \in (0,1)$, T is not α -nonexpansive.

For $\alpha < 1$ let $\mathcal{N}_{\alpha}(\mathcal{C}) := \{ \mathcal{T} : \mathcal{C} \to \mathcal{X} \mid \mathcal{T} \text{ is } \alpha \text{-nonexpansive } \}.$

For $\alpha < 1$ let $\mathcal{N}_{\alpha}(\mathcal{C}) := \{ \mathcal{T} : \mathcal{C} \to \mathcal{X} \mid \mathcal{T} \text{ is } \alpha \text{-nonexpansive } \}.$

An interpolation-type property

If $T \in \mathcal{N}_{\alpha_1}(C) \cap \mathcal{N}_{\alpha_2}(C)$ with $\alpha_1 < \alpha_2$, then $T \in \mathcal{N}_{\alpha}(C) \ \forall \ \alpha \in [\alpha_1, \alpha_2]$.

For $\alpha < 1$ let $\mathcal{N}_{\alpha}(\mathcal{C}) := \{ \mathcal{T} : \mathcal{C} \to \mathcal{X} \mid \mathcal{T} \text{ is } \alpha \text{-nonexpansive } \}.$

An interpolation-type property

If $T \in \mathcal{N}_{\alpha_1}(\mathcal{C}) \cap \mathcal{N}_{\alpha_2}(\mathcal{C})$ with $\alpha_1 < \alpha_2$, then $T \in \mathcal{N}_{\alpha}(\mathcal{C}) \ \forall \ \alpha \in [\alpha_1, \alpha_2]$.

We know that $Id \in \bigcap_{\alpha \in [0,1)} \mathcal{N}_{\alpha}(C)$.

For $\alpha < 1$ let $\mathcal{N}_{\alpha}(\mathcal{C}) := \{ \mathcal{T} : \mathcal{C} \to \mathcal{X} \mid \mathcal{T} \text{ is } \alpha \text{-nonexpansive } \}.$

An interpolation-type property

If $T \in \mathcal{N}_{\alpha_1}(\mathcal{C}) \cap \mathcal{N}_{\alpha_2}(\mathcal{C})$ with $\alpha_1 < \alpha_2$, then $T \in \mathcal{N}_{\alpha}(\mathcal{C}) \ \forall \ \alpha \in [\alpha_1, \alpha_2]$.

We know that $Id \in \bigcap_{\alpha \in [0,1)} \mathcal{N}_{\alpha}(C)$.

Question: Is the identity mapping the only element in this set?

For $\alpha < 1$ let $\mathcal{N}_{\alpha}(\mathcal{C}) := \{ \mathcal{T} : \mathcal{C} \to \mathcal{X} \mid \mathcal{T} \text{ is } \alpha \text{-nonexpansive } \}.$

An interpolation-type property

If $T \in \mathcal{N}_{\alpha_1}(\mathcal{C}) \cap \mathcal{N}_{\alpha_2}(\mathcal{C})$ with $\alpha_1 < \alpha_2$, then $T \in \mathcal{N}_{\alpha}(\mathcal{C}) \ \forall \ \alpha \in [\alpha_1, \alpha_2]$.

We know that
$$Id \in \bigcap_{\alpha \in [0,1)} \mathcal{N}_{\alpha}(C).$$

Question: Is the identity mapping the only element in this set?

Answer: NO. For example $T : [0,1] \times [0,1] \rightarrow \mathbb{R}^2$, $T(x_1, x_2) = (x_1, 0)$ belongs to $\bigcap_{\alpha \in [0,1)} \mathcal{N}_{\alpha}([0,1])$.

In general, we have the following obvious result.

Proposition.

For each i = 1, 2, let C_i be a nonempty subset of a normed space $(X_i, \|\cdot\|_i)$ and $\alpha \in [0, 1)$. Assume that, for each $i = 1, 2, T_i : C_i \to C_i$ is an α -nonexpansive mapping with respect to the norm $\|\cdot\|_i$. Then, the mapping $T : C_1 \times C_2 \to C_1 \times C_2$, defined by

$$T(x_1, x_2) := (T_1(x_1), T_2(x_2)),$$

is α -nonexpansive with respect to the product norm

$$\|(x_1, x_2)\| := \left[\|x_1\|_1^2 + \|x_2\|_2^2\right]^{\frac{1}{2}}$$

Relationships with other classes of mappings

Now we show the relationships between the α -nonexpansive mappings and other classes of nonlinear mappings which are relevant in metric fixed point theory.

Relationships with other classes of mappings

Now we show the relationships between the α -nonexpansive mappings and other classes of nonlinear mappings which are relevant in metric fixed point theory.

- Continuous mappings
- λ -firmly nonexpansive mappings
- Contractive mappings
- Generalized nonexpansive mappings
- Mean nonexpansive mappings
- (L)-type mappings

Relationship with continuous or λ -firmly nonexpansive mappings

Continuous mappings VS α -nonexpansive mappings

It is obvious that every 0-nonexpansive mapping is continuous. However, for $\alpha > 0$ there exists no relationship between α -nonexpansiveness and continuity.

Relationship with continuous or λ -firmly nonexpansive mappings

Continuous mappings VS α -nonexpansive mappings

It is obvious that every 0-nonexpansive mapping is continuous. However, for $\alpha > 0$ there exists no relationship between α -nonexpansiveness and continuity.

$\lambda\text{-firmly nonexpansive mappings VS }\alpha\text{-nonexpansive mappings}$

Let *C* be a nonempty subset of a normed space *X*, and $\lambda \in [0, 1)$. If $T : C \to X$ is λ -firmly nonexpansive mapping, then $T \in \mathcal{N}_{\alpha}$ for all $\alpha \in [0, \hat{\lambda}]$, where

$$\hat{\lambda} := \left\{ \begin{array}{ll} \lambda & \text{if} \quad 0 \leq \lambda \leq \frac{1}{2}, \\ \\ \\ \frac{\lambda}{1+\lambda} & \text{if} \quad \frac{1}{2} < \lambda < 1. \end{array} \right.$$

Contractive mappings VS α -nonexpansive mappings

Proposition.

If $T : C \to X$ is k-contractive for $k \in (\frac{1}{3}, 1)$, then T is α -nonexpansive for every $\alpha \in [0, \frac{1-k}{1+k}]$.

Contractive mappings VS α -nonexpansive mappings

Proposition.

If $T : C \to X$ is k-contractive for $k \in (\frac{1}{3}, 1)$, then T is α -nonexpansive for every $\alpha \in [0, \frac{1-k}{1+k}]$.

The range of values of α might not be sharp, even in Hilbert spaces.

Example.

Let *H* be a Hilbert space. $T : B_H \to B_H$, $Tx = \frac{1}{2}x$ is α -nonexpansive for every $\alpha \in [0, \frac{3}{4}]$.

Contractive mappings VS α -nonexpansive mappings

Proposition.

If $T : C \to X$ is k-contractive for $k \in (\frac{1}{3}, 1)$, then T is α -nonexpansive for every $\alpha \in [0, \frac{1-k}{1+k}]$.

The range of values of α might not be sharp, even in Hilbert spaces.

Example.

Let *H* be a Hilbert space. $T : B_H \to B_H$, $Tx = \frac{1}{2}x$ is α -nonexpansive for every $\alpha \in [0, \frac{3}{4}]$.

Proposition.

If $T : C \to X$ is k-contractive, with $k \in [0, \frac{1}{3}]$, then T is α -nonexpansive for every $\alpha \in [0, \frac{1}{2}]$.

 $T: C \to X$ is generalized nonexpansive if there exist $a, b, c \in \mathbb{R}$ with $a + 2b + 2c \le 1$ such that for $x, y \in C$

 $||Tx - Ty|| \le a||x - y|| + b(||x - Tx|| + ||y - Ty||) + c(||x - Ty|| + ||y - Tx||).$

 $T: C \to X$ is generalized nonexpansive if there exist $a, b, c \in \mathbb{R}$ with $a + 2b + 2c \le 1$ such that for $x, y \in C$

 $||Tx - Ty|| \le a||x - y|| + b(||x - Tx|| + ||y - Ty||) + c(||x - Ty|| + ||y - Tx||).$

Proposition.

Let $T: C \to X$ be a generalized nonexpansive mapping with b = 0. Then T is *c*-nonexpansive.

 $T: C \to X$ is generalized nonexpansive if there exist $a, b, c \in \mathbb{R}$ with $a + 2b + 2c \le 1$ such that for $x, y \in C$

 $||Tx - Ty|| \le a||x - y|| + b(||x - Tx|| + ||y - Ty||) + c(||x - Ty|| + ||y - Tx||).$

Proposition.

Let $T : C \to X$ be a generalized nonexpansive mapping with b = 0. Then T is *c*-nonexpansive.

Question: What happens in the case $b \neq 0$?

 $T: C \to X$ is generalized nonexpansive if there exist $a, b, c \in \mathbb{R}$ with $a + 2b + 2c \le 1$ such that for $x, y \in C$

 $||Tx - Ty|| \le a||x - y|| + b(||x - Tx|| + ||y - Ty||) + c(||x - Ty|| + ||y - Tx||).$

Proposition.

Let $T : C \to X$ be a generalized nonexpansive mapping with b = 0. Then T is *c*-nonexpansive.

Question: What happens in the case $b \neq 0$?

Example.

 $T : [0, \frac{2}{3}] \rightarrow [0, \frac{2}{3}], Tx = x^2$, is α -nonexpansive, for all $\frac{5}{6} \le \alpha < 1$. However, T fails to be generalized nonexpansive.

Mean nonexpansive mappings

In 2007 Goebel and Japón Pineda introduced a new class of mappings called *a*-mean nonexpansive mappings, which is wider than the class of the nonexpansive mappings. $T: C \rightarrow C$ is *a*-mean nonexpansive if

$$\sum_{i=1}^{n} a_i \left\| T^i x - T^i y \right\| \le \left\| x - y \right\|, \quad \text{for all} x, y \in C,$$

where the multi-index $a = (a_1, a_2, ..., a_n)$ satisfies $a_i \ge 0$ and $\sum_{i=1}^n a_i = 1$.

Mean nonexpansive mappings

In 2007 Goebel and Japón Pineda introduced a new class of mappings called *a*-mean nonexpansive mappings, which is wider than the class of the nonexpansive mappings. $T: C \rightarrow C$ is *a*-mean nonexpansive if

$$\sum_{i=1}^n a_i \left\| T^i x - T^i y \right\| \le \left\| x - y \right\|, \quad \text{for all} x, y \in C,$$

where the multi-index $a = (a_1, a_2, ..., a_n)$ satisfies $a_i \ge 0$ and $\sum_{i=1}^n a_i = 1$.

Definition

Let $a \in (0,1]$. $T : C \to C$ is *a*-mean nonexpansive if

$$a \|Tx - Ty\| + (1 - a) \|T^2x - T^2y\| \le \|x - y\|$$
 for all $x, y \in C$.

Remark.

Every *a*-mean nonexpansive mapping is continuous, because a > 0.

Remark.

Every *a*-mean nonexpansive mapping is continuous, because a > 0. Then, for any $0 < \alpha < 1$, there exist mappings in $\mathcal{N}_{\alpha}(C)$ which are not *a*-mean nonexpansive for any $0 < a \leq 1$.

Remark.

Every *a*-mean nonexpansive mapping is continuous, because a > 0. Then, for any $0 < \alpha < 1$, there exist mappings in $\mathcal{N}_{\alpha}(C)$ which are not *a*-mean nonexpansive for any $0 < a \leq 1$.

None of the classes *a*-mean nonexpansive mappings and α -nonexpansive mappings is included in the other one.

Example (Goebel-Japon'07)

Let C be the unit ball in the space \mathbb{R}^4 endowed with the ℓ_1 -norm. Let $\tau : \mathbb{R} \to [-\frac{1}{3}, \frac{1}{3}]$ be the function that truncates the argument on the levels $-\frac{1}{3}$ and $\frac{1}{3}$, that is, $\tau(t) = \max\left\{-\frac{1}{3}, \min\left\{\frac{1}{3}, t\right\}\right\}$. Define $T : C \to C$ by

$$T(x_1, x_2, x_3, x_4) = \left(\tau(\frac{2}{3}x_4), \tau(2x_1), 0, \tau(\frac{6}{5}x_3)\right).$$

- T is a-mean nonexpansive, for all $a \in (0, 1]$.
- For any $\alpha \in (0, 1)$, T is not α -nonexpansive.

Definition. (Dhompongsa-Nanan,011)

A mapping $T : C \to X$ satisfies **condition** (A) on C whenever there exists an a.f.p.s. for T in each nonempty, closed, convex and T-invariant subset D of C, that is, if $\inf\{||x - Tx|| : x \in D\} = 0$ for every such subset D.

Definition. (Dhompongsa-Nanan,011)

A mapping $T : C \to X$ satisfies **condition** (A) on C whenever there exists an a.f.p.s. for T in each nonempty, closed, convex and T-invariant subset D of C, that is, if $\inf\{||x - Tx|| : x \in D\} = 0$ for every such subset D.

Definition. (Llorens-Moreno'11)

A mapping $T : C \to C$, where C is a nonempty closed bounded subset of X, satisfies **condition** (L) (or it is an (L)-**type mapping**) on C if

- (C_1) T satisfies condition (A) on C.
- (C₂) For any a.f.p.s. (x_n) of T in C and each $x \in C$

$$\limsup_{n\to\infty} \|x_n - Tx\| \le \limsup_{n\to\infty} \|x_n - x\|.$$

Theorem.

Let $T : C \to C$ be an α -nonexpansive mapping for some $0 \le \alpha < 1$, where C is a nonempty closed bounded subset of X. If T satisfies condition (A) on C, then it satisfies condition (L).

If either the set C or the Banach space X have suitable properties, we can obtain fixed point results for α -nonexpansive mappings.

Theorem.

Let $T : C \to C$ be an α -nonexpansive mapping for some $0 \le \alpha < 1$, where C is a nonempty closed bounded subset of X. If T satisfies condition (A) on C, then it satisfies condition (L).

If either the set C or the Banach space X have suitable properties, we can obtain fixed point results for α -nonexpansive mappings.

Corollary 1.

Let C be a nonempty compact convex subset of a Banach space X. If $T: C \rightarrow C$:

- (i) T is α -nonexpansive for some $0 \le \alpha < 1$, and
- (ii) T satisfies condition (A) on C.

Then, T has a fixed point.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$:

- (i) T is α -nonexpansive for some $0 \le \alpha < 1$, and
- (ii) T satisfies condition (A) on C.

Then, T has a fixed point.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$:

- (i) T is α -nonexpansive for some $0 \le \alpha < 1$, and
- (ii) T satisfies condition (A) on C.

Then, T has a fixed point.

Remarks.

It is unclear whether every α -nonexpansive self-mapping defined on a closed, convex and bounded subset C of a Banach space satisfies condition (A) on C. In other words, we do not know whether assumption (ii) of the above corollaries is essential for the fixed point result.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$:

- (i) T is α -nonexpansive for some $0 \le \alpha < 1$, and
- (ii) T satisfies condition (A) on C.

Then, T has a fixed point.

Remarks.

It is unclear whether every α -nonexpansive self-mapping defined on a closed, convex and bounded subset C of a Banach space satisfies condition (A) on C. In other words, we do not know whether assumption (ii) of the above corollaries is essential for the fixed point result.

• If $\alpha = 0$, property (A) is fulfilled.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$:

- (i) T is α -nonexpansive for some $0 \le \alpha < 1$, and
- (ii) T satisfies condition (A) on C.

Then, T has a fixed point.

Remarks.

It is unclear whether every α -nonexpansive self-mapping defined on a closed, convex and bounded subset C of a Banach space satisfies condition (A) on C. In other words, we do not know whether assumption (ii) of the above corollaries is essential for the fixed point result.

- If $\alpha = 0$, property (A) is fulfilled.
- What happens for 0 < α < 1?

Theorem.

Let C be a convex closed bounded subset of a Banach space X. If $T: C \to C$ is $\frac{1}{2}$ -nonexpansive, then for every $x \in C$ the sequence $(T^n x)$ is an a.f.p.s. for T.

Theorem.

Let C be a convex closed bounded subset of a Banach space X. If $T: C \to C$ is $\frac{1}{2}$ -nonexpansive, then for every $x \in C$ the sequence $(T^n x)$ is an a.f.p.s. for T.

Its proof is based on Lemma 2.2 in [Bae 1984]. The essential ingredient:

Theorem.

Let C be a convex closed bounded subset of a Banach space X. If $T: C \to C$ is $\frac{1}{2}$ -nonexpansive, then for every $x \in C$ the sequence $(T^n x)$ is an a.f.p.s. for T.

Its proof is based on Lemma 2.2 in [Bae 1984]. The essential ingredient:

Define the constants $c_{n,k}$, with $1 \le k \le n$, by

$$\begin{cases} c_{1,1} = c_{2,1} = c_{2,2} = 1, \\ c_{n,1} := 1, c_{n,n} := c_{n,n-1} \quad \text{for } n \ge 3, \\ c_{n,k} := c_{n-1,1} + c_{n-1,2} + \dots + c_{n-1,k} \quad \text{for } k = 2, \dots, n-1. \end{cases}$$

Theorem.

Let C be a convex closed bounded subset of a Banach space X. If $T: C \to C$ is $\frac{1}{2}$ -nonexpansive, then for every $x \in C$ the sequence $(T^n x)$ is an a.f.p.s. for T.

Its proof is based on Lemma 2.2 in [Bae 1984]. The essential ingredient:

Define the constants $c_{n,k}$, with $1 \le k \le n$, by

$$\begin{cases} c_{1,1} = c_{2,1} = c_{2,2} = 1, \\ c_{n,1} := 1, c_{n,n} := c_{n,n-1} \quad \text{for } n \ge 3, \\ c_{n,k} := c_{n-1,1} + c_{n-1,2} + \dots + c_{n-1,k} \quad \text{for } k = 2, \dots, n-1. \end{cases}$$

Then, for all $x \in C$ and $n \ge 1$,

$$\|T^{n+1}x - T^nx\|^2 \le \frac{c_{n,1}}{2^n} \|T^{n+1}x - x\|^2 + \frac{c_{n,2}}{2^{n+1}} \|T^nx - x\|^2 + \dots + \frac{c_{n,n}}{2^{2n-1}} \|T^2x - x\|^2.$$

A final remark

Corollary.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$ is nonspreading (i.e, $\frac{1}{2}$ -nonexpansive), then T has a fixed point.

A final remark

Corollary.

Let C be a nonempty weakly compact convex subset of a Banach space X with normal structure. If $T : C \to C$ is nonspreading (i.e, $\frac{1}{2}$ -nonexpansive), then T has a fixed point.

Remark.

According to Theorem 4.1 in Kohsaka-Takahashi (2008), if *C* is a nonempty closed convex and bounded subset of a smooth strictly convex Banach space *X*, and $T : C \rightarrow C$ is a nonspreading mapping, then, *T* has a fixed point. The above result does not require the assumptions on smoothness and strict convexity for the set *C* in presence of normal structure.

But, what happens for $0 < \alpha < 1$ with $\alpha \neq \frac{1}{2}$??!

Thank you for your attention!