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Introduction

Definition

A Banach space (X, ‖ · ‖) has the Fixed Point Property (FPP)
if for every closed convex bounded set C and for every
nonexpansive mapping T : C → C, there is a fixed point.

Nonexpansiveness of a mapping depends on the underlying
norm, since it means

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C

A mapping T : C → C may be nonexpansive for a norm ‖ · ‖
and it may fail this property for an equivalent norm | · | on X.



From now on, when we refer to the FPP we have to specify
which is the norm in action.

(`1, ‖ · ‖1) fails the FPP

C = co(en) =

{
x =

∞∑
n=0

tnen : tn ≥ 0,

∞∑
n=1

tn = 1

}
; T : C → C

T (
∑∞

n=1 tnen) =
∑∞

n=1 tnen+1

T is fixed point free and ‖Tx− Ty‖1 = ‖x− y‖1 ∀x, y ∈ C.

Corollary

Every Banach space (X, ‖ · ‖) containing an isometric copy of
(`1, ‖ · ‖1) fails to have the FPP: (L1(µ), ‖ · ‖1), (`∞, ‖ · ‖∞),
(C[0, 1], ‖ · ‖∞).

What do we know if (X, ‖ · ‖) contains an isomorphic copy of `1?



Renormings of `1 with the FPP. First concepts

Theorem (James)

If (X, ‖ · ‖) contains an isomorphic copy of `1 then for all ε > 0
there exists (xn) ⊂ X such that

(1− ε)
∞∑
n=1

|tn| ≤

∥∥∥∥∥∑
n=1

tnxn

∥∥∥∥∥ ≤
∞∑
n=1

|tn| ∀(tn) ∈ `1

Definition (J. Hagler, 1972)

A Banach space (X, ‖ · ‖) is said to contain an asymptotically
isometric copy of `1 if there exist (xn) ⊂ X and (εn) ↓ 0 with

∞∑
n

(1− εn)|tn| ≤

∥∥∥∥∥
∞∑
n

tnxn

∥∥∥∥∥ ≤
∞∑
n

|tn| ∀(tn) ∈ `1



Theorem (P. Dowling, C. Lennard, B. Turett, 1996)

If a Banach space (X, ‖ · ‖) contains an a.i.c. of `1, then
(X, ‖ · ‖) fails to have the FPP.

Every infinity dimensional subspace of (`1, ‖ · ‖1) fails the
FPP.

Every nonreflexive subspace of (L1[0, 1], ‖ · ‖1) fails the
FPP.

Let Γ be an uncountable set. Every renorming of `1(Γ)
contains an asymptotically isometric copy of `1. `1(Γ)
cannot be renormed to have the FPP.

`∞ contains `1(Γ) for some nonseparable Γ. The space `∞
cannot be renormed to have the FPP.



There are renormings of `1 without a.i.c. of `1

Lemma (P. Dowling, W. Johnson, C. Lennard, B. Turett, 1997)

Let (γk) ⊂ (0, 1) such that limk γk = 1. Then

|||x||| := sup
k
γk

∞∑
n=k

|xn|, x =

∞∑
n=1

xnen

is an equivalent norm in `1 and (`1, ||| · |||) does not have an
a.i.c. of `1.

γ1‖x‖1 ≤ |||x||| ≤ ‖x‖1 ∀x ∈ `1



P.Dowling, W. Johnson, C.Lennard, B. Turett, 1997

Fix a sequence p = (pn)n ⊂ (1,+∞) with (pn) ↓ 1.

Let c00 be the space of all real sequences with finitely many
non-null coordinates. We define the norm

νp(x) = lim
n
νn(p, x)

where

ν1(p, x) := |x1|, νn+1(p, x) := (|x1|p1 + νn(Sp, Sx)p1)1/p1 ,

with x = (x1, x2, ...) and Sz := (z2, z3, ...) when z = (z1, z2, ...).

Let X be the completion of c00 with the νp(·) norm.

X := (c00, νp(·))



Theorem

Let q = (qn) be the sequence satisfying 1
pn

+ 1
qn

= 1. The
following are equivalent:

a) The norm νp(·) is equivalent to the `1 norm ‖ · ‖1 and
X = (`1, νp(·)),

b) There exists some δ > 0 so that qn ≥ δ logn for all n ∈ N

If a) fails, (X, νp(·)) is not isomorphic to `1.



Theorem

If νp(·) is equivalent to `1, then (`1, νp(·)) fails to contain an
a.i.c. of `1.

Questions: (P. Dowling, W. Johnson, C.Lennard, B. Turett, 1997)

1 Does (`1, ||| · |||) have the FPP?

2 If νp(·) is equivalent to `1, does (`1, νp(·)) have the FPP?

Theorem (P.K. Lin, 2008 )

(`1, ||| · |||) has the FPP.
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Some key facts of ||| · ||| used in P.K. Lin’s proof:

1 For every σ(`1, c0)-null convergent sequence (xn) and for
every x ∈ `1,
lim supn ‖xn + x‖1 = lim supn ‖xn‖1 + ‖x‖1 (∗)
(∗) fails for ||| · |||. However, since γk‖x‖1 ≤ |||x||| ≤ ‖x‖1 if
x ≥ k, we can still derive

lim sup
n
|||xn|||+ |||x||| ≤

1

γk
lim sup

n
|||xn + x|||

for every (xn) a w∗-null sequence and x ∈ `1 with x ≥ k.

2 Fix k ∈ N. If (xn) is w∗-null, lim infn |||xn||| ≥ 1, |||x||| ≤ 1
and x ≤ k then

lim sup
n
|||xn + λx||| ≤ lim sup

n
|||xn|||

for all 0 ≤ λ < 1− γk.
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Sequentially separating norms

Let X be a Banach space with a basis (en).
Qk(x) =

∑∞
n=k xnen.

(xn) is a block basic sequence (b.b.s.) if (xn) is bounded and

xn =

qn∑
i=pn

aiei

with p1 ≤ q1 < p2 ≤ q2 < · · · .
An equivalent norm | · | is premonotone if |Qk(x)| ≤ |x| for
every x ∈ X.

Definition

Sk(X, | · |) := sup

{
lim supn |xn|+ |x|
lim supn |x+ xn|

: (xn) b.b.s., x ≥ k
}



lim sup
n
|xn|+ |x| ≤ Sk(X, | · |) lim sup

n
|x+ xn|

for every (xn) b.b.s. and x ≥ k.

Definition (A. Barrera-Cuevas, M.A. Japón, 2015)

An equivalent norm | · | is a sequentially separating norm if

lim
k
Sk(X, | · |) = 1.
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Definition (2016-2017)

Let X be a Banach space with a Schauder basis. A norm | · | on
X is called near-infinity concentrated (n.i.c.) if it has the
following properties:

1 | · | is premonotone and sequentially separating.

2 For every k ∈ N, there exists Fk : (0,+∞)→ [0,+∞) with

lim sup
n
|xn + λx| ≤ lim sup

n
|xn|+ Fk(λ)|x|,

for every b.b.s. (xn), with lim infn |xn| ≥ 1, for every x ∈ X
with |x| ≤ 1 and x ≥ k, for all λ ∈ (0,+∞), and such that

lim
λ→0+

Fk(λ)

λ
= 0



Theorem

Let X be a Banach space with a boundedly complete Schauder
basis and let | · | be a near-infinity concentrated norm.
Then (X, | · |) has the FPP.

Corollary (P.K. Lin, 2008)

(`1, ||| · |||) has the FPP.

P.K. Lin’s norm is just the first element of a sequence of
equivalent norms in `1 with the FPP. This sequence can be
defined recursively by

p0(x) = ‖x‖1, p1(x) = |||x|||, p2(x) = sup
k
γk|||Qk(x)|||, ...

p3(x) = sup
k
γk p2(Qk(x)), ... pn+1(x) = sup

k
γk pn(Qk(x))
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Theorem

1 The norm νp(·) is a near-infinity concentrated norm
on X.

2 The Banach space (X, νp(·)) has the FPP for every choice
p = (pn) ↓ 1, regardless of whether it is isomorphic to `1.

Theorem

(`1, ||| · |||+ νp(·)) has the FPP.
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There exist equivalent norms on `1 with the FPP but failing to
be near-infinity concentrated norms.

Theorem (C. Hernández-Linares, M. Japón, E. Llorens-Fuster)

(`1, ‖ · ‖1 + λ||| · |||) has the FPP for every λ > 0.

‖ · ‖1 + ||| · ||| does not satisfy condition 2) in the definition of
near-infinity concentrated norms. We can not include these
examples with the previous techniques.



Theorem (C. Hernández-Linares, C. Lennard, M. Japón)

The set of renormings in `1 which fail to contain a.i.c. of `1 is
dense in the set of all renormings of `1.

Question:

If (`1, | · |) fails to have an a.i.c. of `1, does (`1, | · |) have the
FPP?

Does there exist an equivalent norm on `1

1 without the FPP and
2 without asymptotically isometric copies of `1?

Can the equivalent norms on `1 with the FPP be
characterized by some geometric property?



Extensions to more general family of functions

Definition (E. Llorens-Fuster, E. Moreno-Gálvez, 2011)

A mapping T : C → C satisfies the (L) condition if

1 every closed convex bounded T -invariant subset D ⊂ C
contains an approximate fixed point sequence (a.f.p.s.),
that is, a sequence (xn) ⊂ D with limn ‖xn − Txn‖ = 0.

2 For ever a.f.p.s. (xn) and x ∈ C
lim supn ‖xn − Tx‖ ≤ lim supn ‖xn − x‖

Nonepansive mappings, mappings satisfying condition (C) of
Suzuki, and some others satisfying condition (L).

Theorem

(X, νp(·)) has the FPP for mappings satisfying condition (L).
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