Playing with equivalent norms and the Fixed Point Property

María A. Japón

Universidad de Sevilla, Spain

On the occasion of Enrique Llorens-Fuster's 70th birthday December, 2016

ション ふゆ マ キャット マックシン

Introduction

Definition

A Banach space $(X, \|\cdot\|)$ has the Fixed Point Property (FPP) if for every closed convex bounded set C and for every nonexpansive mapping $T: C \to C$, there is a fixed point.

Nonexpansiveness of a mapping depends on the underlying norm, since it means

$$||Tx - Ty|| \le ||x - y|| \qquad \forall x, y \in C$$

A mapping $T: C \to C$ may be nonexpansive for a norm $\|\cdot\|$ and it may fail this property for an equivalent norm $|\cdot|$ on X.

From now on, when we refer to the FPP we have to specify which is the norm in action.

$(\ell_1, \| \cdot \|_1)$ fails the FPP

$$C = \overline{co}(e_n) = \left\{ x = \sum_{n=0}^{\infty} t_n e_n : t_n \ge 0, \sum_{n=1}^{\infty} t_n = 1 \right\}; \quad T : C \to C$$

$$T\left(\sum_{n=1}^{\infty} t_n e_n\right) = \sum_{n=1}^{\infty} t_n e_{n+1}$$

$$T \text{ is fixed point free and } \|Tx - Ty\|_1 = \|x - y\|_1 \; \forall x, y \in C.$$

Corollary

Every Banach space $(X, \|\cdot\|)$ containing an isometric copy of $(\ell_1, \|\cdot\|_1)$ fails to have the FPP: $(L_1(\mu), \|\cdot\|_1), (\ell_{\infty}, \|\cdot\|_{\infty}), (C[0, 1], \|\cdot\|_{\infty}).$

What do we know if $(X, \|\cdot\|)$ contains an isomorphic copy of ℓ_1 ?

Renormings of ℓ_1 with the FPP. First concepts

Theorem (James)

If $(X, \|\cdot\|)$ contains an isomorphic copy of ℓ_1 then for all $\epsilon > 0$ there exists $(x_n) \subset X$ such that

$$(1-\epsilon)\sum_{n=1}^{\infty}|t_n| \le \left\|\sum_{n=1}^{\infty}t_nx_n\right\| \le \sum_{n=1}^{\infty}|t_n| \qquad \forall (t_n) \in \ell_1$$

Definition (J. Hagler, 1972)

A Banach space $(X, \|\cdot\|)$ is said to contain an **asymptotically** isometric copy of ℓ_1 if there exist $(x_n) \subset X$ and $(\epsilon_n) \downarrow 0$ with

$$\sum_{n=1}^{\infty} (1-\epsilon_n)|t_n| \le \left\|\sum_{n=1}^{\infty} t_n x_n\right\| \le \sum_{n=1}^{\infty} |t_n| \quad \forall (t_n) \in \ell_1$$

Theorem (P. Dowling, C. Lennard, B. Turett, 1996)

If a Banach space $(X, \|\cdot\|)$ contains an a.i.c. of ℓ_1 , then $(X, \|\cdot\|)$ fails to have the FPP.

- Every infinity dimensional subspace of $(\ell_1, \|\cdot\|_1)$ fails the FPP.
- Every nonreflexive subspace of $(L_1[0, 1], \|\cdot\|_1)$ fails the FPP.
- Let Γ be an uncountable set. Every renorming of $\ell_1(\Gamma)$ contains an asymptotically isometric copy of ℓ_1 . $\ell_1(\Gamma)$ cannot be renormed to have the FPP.
- ℓ_{∞} contains $\ell_1(\Gamma)$ for some nonseparable Γ . The space ℓ_{∞} cannot be renormed to have the FPP.

There are renormings of ℓ_1 without a.i.c. of ℓ_1

Lemma (P. Dowling, W. Johnson, C. Lennard, B. Turett, 1997)

Let $(\gamma_k) \subset (0,1)$ such that $\lim_k \gamma_k = 1$. Then

$$|||x||| := \sup_{k} \gamma_k \sum_{n=k}^{\infty} |x_n|, \qquad x = \sum_{n=1}^{\infty} x_n e_n$$

is an equivalent norm in ℓ_1 and $(\ell_1, ||| \cdot |||)$ does not have an a.i.c. of ℓ_1 .

$$\gamma_1 \|x\|_1 \le |||x||| \le \|x\|_1 \qquad \forall x \in \ell_1$$

P.Dowling, W. Johnson, C.Lennard, B. Turett, 1997

Fix a sequence $p = (p_n)_n \subset (1, +\infty)$ with $(p_n) \downarrow 1$.

Let c_{00} be the space of all real sequences with finitely many non-null coordinates. We define the norm

$$\nu_p(x) = \lim_n \nu_n(p, x)$$

where

$$\nu_1(p,x) := |x_1|, \qquad \nu_{n+1}(p,x) := (|x_1|^{p_1} + \nu_n (Sp, Sx)^{p_1})^{1/p_1},$$

with $x = (x_1, x_2, ...)$ and $Sz := (z_2, z_3, ...)$ when $z = (z_1, z_2, ...)$. Let X be the completion of c_{00} with the $\nu_p(\cdot)$ norm.

$$X := (\overline{c_{00}}, \nu_p(\cdot))$$

Let $q = (q_n)$ be the sequence satisfying $\frac{1}{p_n} + \frac{1}{q_n} = 1$. The following are equivalent:

- a) The norm $\nu_p(\cdot)$ is equivalent to the ℓ_1 norm $\|\cdot\|_1$ and $X = (\ell_1, \nu_p(\cdot)),$
- b) There exists some $\delta > 0$ so that $q_n \ge \delta$ logn for all $n \in \mathbb{N}$

うして ふゆう ふほう ふほう ふしつ

• If a) fails, $(X, \nu_p(\cdot))$ is not isomorphic to ℓ_1 .

If $\nu_p(\cdot)$ is equivalent to ℓ_1 , then $(\ell_1, \nu_p(\cdot))$ fails to contain an a.i.c. of ℓ_1 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

If $\nu_p(\cdot)$ is equivalent to ℓ_1 , then $(\ell_1, \nu_p(\cdot))$ fails to contain an a.i.c. of ℓ_1 .

Questions: (P. Dowling, W. Johnson, C.Lennard, B. Turett, 1997)

Does (ℓ₁, ||| · |||) have the FPP?
 If ν_p(·) is equivalent to ℓ₁, does (ℓ₁, ν_p(·)) have the FPP?

If $\nu_p(\cdot)$ is equivalent to ℓ_1 , then $(\ell_1, \nu_p(\cdot))$ fails to contain an *a.i.c.* of ℓ_1 .

Questions: (P. Dowling, W. Johnson, C.Lennard, B. Turett, 1997)

Does (ℓ₁, ||| · |||) have the FPP?
 If ν_p(·) is equivalent to ℓ₁, does (ℓ₁, ν_p(·)) have the FPP?

うして ふゆう ふほう ふほう ふしつ

Theorem (P.K. Lin, 2008)

 $(\ell_1, ||| \cdot |||)$ has the FPP.

Some key facts of $||| \cdot |||$ used in P.K. Lin's proof:

For every $\sigma(\ell_1, c_0)$ -null convergent sequence (x_n) and for every $x \in \ell_1$, $\limsup_n \|x_n + x\|_1 = \limsup_n \|x_n\|_1 + \|x\|_1$ (*) (*) fails for $||| \cdot |||$. However, since $\gamma_k \|x\|_1 \le |||x||| \le \|x\|_1$ if $x \ge k$, we can still derive

$$\limsup_{n} |||x_{n}||| + |||x||| \le \frac{1}{\gamma_{k}} \limsup_{n} |||x_{n} + x|||$$

for every (x_n) a w^* -null sequence and $x \in \ell_1$ with $x \ge k$.

Some key facts of $||| \cdot |||$ used in P.K. Lin's proof:

For every $\sigma(\ell_1, c_0)$ -null convergent sequence (x_n) and for every $x \in \ell_1$, $\limsup_n \|x_n + x\|_1 = \limsup_n \|x_n\|_1 + \|x\|_1$ (*) (*) fails for $||| \cdot |||$. However, since $\gamma_k \|x\|_1 \le |||x||| \le \|x\|_1$ if $x \ge k$, we can still derive

$$\limsup_{n} |||x_{n}||| + |||x||| \le \frac{1}{\gamma_{k}} \limsup_{n} |||x_{n} + x|||$$

for every (x_n) a w^* -null sequence and $x \in \ell_1$ with $x \ge k$. 2 Fix $k \in \mathbb{N}$. If (x_n) is w^* -null, $\liminf_n |||x_n||| \ge 1$, $|||x||| \le 1$ and $x \le k$ then

$$\limsup_{n} |||x_n + \lambda x||| \le \limsup_{n} |||x_n|||$$

for all $0 \leq \lambda < 1 - \gamma_k$.

Sequentially separating norms

Let X be a Banach space with a basis (e_n) . $Q_k(x) = \sum_{n=k}^{\infty} x_n e_n.$ (x_n) is a block basic sequence (b.b.s.) if (x_n) is bounded and

$$x_n = \sum_{i=p_n}^{q_n} a_i e_i$$

with $p_1 \leq q_1 < p_2 \leq q_2 < \cdots$. An equivalent norm $|\cdot|$ is premonotone if $|Q_k(x)| \leq |x|$ for every $x \in X$.

Definition

$$S_k(X, |\cdot|) := \sup\left\{\frac{\limsup_n |x_n| + |x|}{\limsup_n |x + x_n|} : (x_n) \text{ b.b.s.}, x \ge k\right\}$$

 $\limsup_{n} |x_{n}| + |x| \leq S_{k}(X, |\cdot|) \limsup_{n} |x + x_{n}|$ for every (x_{n}) b.b.s. and $x \geq k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\limsup_{n} |x_{n}| + |x| \leq S_{k}(X, |\cdot|) \limsup_{n} |x + x_{n}|$$
for every (x_{n}) b.b.s. and $x \geq k$.

Definition (A. Barrera-Cuevas, M.A. Japón, 2015)

An equivalent norm $|\cdot|$ is a sequentially separating norm if

 $\lim_{k} S_k(X, |\cdot|) = 1.$

ション ふゆ アメリア メリア しょうくの

Definition (2016-2017)

Let X be a Banach space with a Schauder basis. A norm $|\cdot|$ on X is called **near-infinity concentrated** (n.i.c.) if it has the following properties:

- **1** $|\cdot|$ is premonotone and sequentially separating.
- **2** For every $k \in \mathbb{N}$, there exists $F_k : (0, +\infty) \to [0, +\infty)$ with

$$\limsup_{n} |x_n + \lambda x| \le \limsup_{n} |x_n| + F_k(\lambda)|x|,$$

for every b.b.s. (x_n) , with $\liminf_n |x_n| \ge 1$, for every $x \in X$ with $|x| \le 1$ and $x \ge k$, for all $\lambda \in (0, +\infty)$, and such that

$$\lim_{\lambda \to 0^+} \frac{F_k(\lambda)}{\lambda} = 0$$

Let X be a Banach space with a boundedly complete Schauder basis and let $|\cdot|$ be a near-infinity concentrated norm. Then $(X, |\cdot|)$ has the FPP.

ション ふゆ マ キャット マックシン

Let X be a Banach space with a boundedly complete Schauder basis and let $|\cdot|$ be a near-infinity concentrated norm. Then $(X, |\cdot|)$ has the FPP.

Corollary (P.K. Lin, 2008)

 $(\ell_1, ||| \cdot |||)$ has the FPP.

P.K. Lin's norm is just the first element of a sequence of equivalent norms in ℓ_1 with the FPP. This sequence can be defined recursively by

$$p_0(x) = ||x||_1, \quad p_1(x) = |||x|||, \quad p_2(x) = \sup_k \gamma_k |||Q_k(x)|||, \dots$$

$$p_3(x) = \sup_k \gamma_k \ p_2(Q_k(x)), \dots \qquad p_{n+1}(x) = \sup_k \gamma_k \ p_n(Q_k(x))$$

- I The norm $\nu_p(\cdot)$ is a near-infinity concentrated norm on X.
- 2 The Banach space $(X, \nu_p(\cdot))$ has the FPP for every choice $p = (p_n) \downarrow 1$, regardless of whether it is isomorphic to ℓ_1 .

- I The norm $\nu_p(\cdot)$ is a near-infinity concentrated norm on X.
- 2 The Banach space $(X, \nu_p(\cdot))$ has the FPP for every choice $p = (p_n) \downarrow 1$, regardless of whether it is isomorphic to ℓ_1 .

うして ふゆう ふほう ふほう ふしつ

Theorem

 $(\ell_1, ||| \cdot ||| + \nu_p(\cdot))$ has the FPP.

There exist equivalent norms on ℓ_1 with the FPP but failing to be near-infinity concentrated norms.

Theorem (C. Hernández-Linares, M. Japón, E. Llorens-Fuster)

 $(\ell_1, \|\cdot\|_1 + \lambda \||\cdot\||)$ has the FPP for every $\lambda > 0$.

 $\|\cdot\|_1 + \|\cdot\|\|$ does not satisfy condition 2) in the definition of near-infinity concentrated norms. We can not include these examples with the previous techniques.

Theorem (C. Hernández-Linares, C. Lennard, M. Japón)

The set of renormings in ℓ_1 which fail to contain a.i.c. of ℓ_1 is dense in the set of all renormings of ℓ_1 .

Question:

- If $(\ell_1, |\cdot|)$ fails to have an a.i.c. of ℓ_1 , does $(\ell_1, |\cdot|)$ have the FPP?
- Does there exist an equivalent norm on ℓ_1
 - **1** without the FPP and
 - **2** without asymptotically isometric copies of ℓ_1 ?
- Can the equivalent norms on ℓ_1 with the FPP be characterized by some geometric property?

Extensions to more general family of functions

Definition (E. Llorens-Fuster, E. Moreno-Gálvez, 2011)

A mapping $T: C \to C$ satisfies the (L) condition if

every closed convex bounded *T*-invariant subset $D \subset C$ contains an approximate fixed point sequence (a.f.p.s.), that is, a sequence $(x_n) \subset D$ with $\lim_n ||x_n - Tx_n|| = 0$.

2 For ever a.f.p.s.
$$(x_n)$$
 and $x \in C$
 $\limsup_n ||x_n - Tx|| \le \limsup_n ||x_n - x|$

Nonepansive mappings, mappings satisfying condition (C) of Suzuki, and some others satisfying condition (L).

Extensions to more general family of functions

Definition (E. Llorens-Fuster, E. Moreno-Gálvez, 2011)

A mapping $T: C \to C$ satisfies the (L) condition if

every closed convex bounded *T*-invariant subset $D \subset C$ contains an approximate fixed point sequence (a.f.p.s.), that is, a sequence $(x_n) \subset D$ with $\lim_n ||x_n - Tx_n|| = 0$.

2 For ever a.f.p.s.
$$(x_n)$$
 and $x \in C$
 $\limsup_n ||x_n - Tx|| \le \limsup_n ||x_n - x||$

Nonepansive mappings, mappings satisfying condition (C) of Suzuki, and some others satisfying condition (L).

Theorem

 $(X, \nu_p(\cdot))$ has the FPP for mappings satisfying condition (L).

・ロット 全部 マイロット キロ・

Some of the main references

- A. Barrera-Cuevas, M.A. Japón. New families of non-reflexive Banach spaces with the fixed point property. J. Math. Anal. Appl. 425 (2015), no. 1, 349-363.
- P. N. Dowling, C.J Lennard and B. Turett, The fixed point property for subsets of some classical Banach spaces, Nonlinear Anal. 49, 141-145, 2002.
- Dowling, P. N.; Johnson, W. B.; Lennard, C. J.; Turett, B. The optimality of James' distortion theorems. Proc. Amer. Math. Soc. 125 (1997), no. 1, 167-174.
- C. A. Hernández-Linares, M. A. Japón, E. Llorens-Fuster. On the structure of the set of equivalent norms on l₁ with the fixed point property. J. Math. Anal. App. 387 (2012), 645-54.
- C. A. Hernández-Linares, C. Lennard, M. A. Japón, Renormings failing to have asymptotically isometric copies of ℓ₁ or c₀. Nonlinear Anal. 77 (2013), 112?117
- P. K. Lin, There is an equivalent norm on l₁ that has the fixed point property. Nonlinear Anal., 68 (8) (2008), 2303-2308.

うして ふゆう ふほう ふほう ふしつ

E. Llorens-Fuster, E. Moreno Gálvez, *The fixed point property for some generalized nonexpansive mappings*, Abstract and Applied Anal., 2011, Article ID 435686.

Feliz Cumpleaños compañero y amigo

・ロット (雪) (キョン (ヨン