

The Fixed Point Property in c_0 by E.Llorens-Fuster and B. Sims: The beginning of the adventure

Tomás Domínguez Benavides

Nonexpansive mappings

- Let K be a nonempty subset of a Banach space X. A mapping T : K → X is said to be nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for all x, y ∈ K.
- It is said that K has the fixed point property (FPP in short) for nonexpansive mappings provided that every nonexpansive self-mapping defined on K has a fixed point.

Nonexpansive mappings

- Let K be a nonempty subset of a Banach space X. A mapping T : K → X is said to be nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for all x, y ∈ K.
- It is said that K has the fixed point property (FPP in short) for nonexpansive mappings provided that every nonexpansive self-mapping defined on K has a fixed point.

The earliest fixed point theorems for nonexpansive mappings

Theorem

Browder Theorem (1965). Every convex bounded closed subset of a uniformly convex Banach space has the FPP.

Theorem

Kirk Theorem (1965). Every convex bounded closed subset of a reflexive Banach space with normal structure has the FPP.

The earliest fixed point theorems for nonexpansive mappings

Theorem

Browder Theorem (1965). Every convex bounded closed subset of a uniformly convex Banach space has the FPP.

Theorem

Kirk Theorem (1965). Every convex bounded closed subset of a reflexive Banach space with normal structure has the FPP.

The failure of the FPP in c_0

- Let B be the closed unit ball of c_0 . Define $T : B \to B$ by $T(x_1, x_2, x_3, ...) = (1, x_1, x_2, ...).$
- T is an affine isometry, which is fixed point free because Tx = x implies that all coordinates of x must be equal to 1.

The failure of the FPP in c_0

- Let B be the closed unit ball of c_0 . Define $T : B \to B$ by $T(x_1, x_2, x_3, ...) = (1, x_1, x_2, ...).$
- T is an affine isometry, which is fixed point free because Tx = x implies that all coordinates of x must be equal to 1.
- Every affine continuous mapping is weak-weak continuous and by Tychonov theorem it must have a fixed point on any convex weakly compact subset of a Banach space.

The failure of the FPP in c_0

- Let B be the closed unit ball of c_0 . Define $T : B \to B$ by $T(x_1, x_2, x_3, ...) = (1, x_1, x_2, ...).$
- T is an affine isometry, which is fixed point free because Tx = x implies that all coordinates of x must be equal to 1.
- Every affine continuous mapping is weak-weak continuous and by Tychonov theorem it must have a fixed point on any convex weakly compact subset of a Banach space.

Maurey's result

- B. Maurey (1980) proved, by using a ultraproduct technique, that every convex weakly compact subset of *c*₀ satisfies the FPP for nonexpansive mappings.
- How sharp Maurey's result is? Is weak compactness necessary or is it possible to replace weak compactness by a weaker assumption?

Maurey's result

- B. Maurey (1980) proved, by using a ultraproduct technique, that every convex weakly compact subset of c_0 satisfies the FPP for nonexpansive mappings.
- How sharp Maurey's result is? Is weak compactness necessary or is it possible to replace weak compactness by a weaker assumption?

A sharp example

E. Llorens-Fuster, B. Sims 1998

Considerer the topology $\sigma(c_0, E)$ where E is a subspace of ℓ_1 of codimension 1. There exists a convex set K which is $\sigma(c_0, E)$ -compact and fails the FPP.

 $K = \overline{co} \{u_n : n \ge 0\}$ where $u_0 = 0$ and (u_n) is the summing basis of c_0 , $u_n = (1, 1, 1, ..., 1_{\frown n}, 0, 0)$

A sharp example

E. Llorens-Fuster, B. Sims 1998

Considerer the topology $\sigma(c_0, E)$ where E is a subspace of ℓ_1 of codimension 1. There exists a convex set K which is $\sigma(c_0, E)$ -compact and fails the FPP.

 $K = \overline{co} \{u_n : n \ge 0\}$ where $u_0 = 0$ and (u_n) is the summing basis of c_0 , $u_n = (1, 1, 1, ..., 1_{\frown n}, 0, 0)$

Let T be the right shift

$$T\left(\sum_{n=0}^{\infty} t_n u_n\right) = \sum_{n=0}^{\infty} t_n u_{n+1}$$

A sharp example

E. Llorens-Fuster, B. Sims 1998

Considerer the topology $\sigma(c_0, E)$ where E is a subspace of ℓ_1 of codimension 1. There exists a convex set K which is $\sigma(c_0, E)$ -compact and fails the FPP.

 $K = \overline{co} \{u_n : n \ge 0\}$ where $u_0 = 0$ and (u_n) is the summing basis of c_0 , $u_n = (1, 1, 1, ..., 1_{\frown n}, 0, 0)$

Let T be the right shift

$$T\left(\sum_{n=0}^{\infty}t_nu_n\right)=\sum_{n=0}^{\infty}t_nu_{n+1}$$

$$T(1 - t_0, 1 - t_0 - t_1, ...) = (1, 1 - t_0, 1 - t_0 - t_1, ...)$$

T is a fixed point free affine isometry.

Note that Tx = x implies $t_n = 0$ for every $n \ge 0$ but T(0) = (1, 0, 0, ...).

$$T(1-t_0, 1-t_0-t_1, ...) = (1, 1-t_0, 1-t_0-t_1, ...)$$

T is a fixed point free affine isometry.

Note that Tx = x implies $t_n = 0$ for every $n \ge 0$ but T(0) = (1, 0, 0, ...).

Uniformly Lipschitz mappings

Theorem

(TDB, M. Japón, S. Prus, 2002) For every convex bounded closed subset C of c_0 which is not weakly compact and for every positive ϵ , there exists a convex closed subset K of C and a mapping $T : K \to K$ which is $(1 + \epsilon)$ -uniformly Lipschitz (i.e. all iterates are $(1 + \epsilon)$ -Lipschitz) and fixed point free.

The summing basis of c_0

Assume that $\{u_n\}$ is the summing basis of c_0 . For any sequence $(t_n) \in \ell_1$ we have that

$$\sum_{n=1}^{\infty} t_n u_n = \left(\sum_{k=1}^{\infty} t_k, \sum_{k=2}^{\infty} t_k, \sum_{k=3}^{\infty} t_k, \ldots\right)$$

which implies that

$$\left\|\sum_{n=1}^{\infty} t_n u_n\right\| = \max_n \left|\sum_{k=n}^{\infty} t_k\right|$$

The summing basis of c_0

Assume that $\{u_n\}$ is the summing basis of c_0 . For any sequence $(t_n) \in \ell_1$ we have that

$$\sum_{n=1}^{\infty} t_n u_n = \left(\sum_{k=1}^{\infty} t_k, \sum_{k=2}^{\infty} t_k, \sum_{k=3}^{\infty} t_k, \ldots\right)$$

which implies that

$$\left\|\sum_{n=1}^{\infty} t_n u_n\right\| = \max_n \left|\sum_{k=n}^{\infty} t_k\right|$$

Isometric copies of the summing basis of c_0

If we consider a basic sequence as:

$$v_1 = (B_1, 0, 0, 0, ...)$$

 $v_2 = (B_1, B_2, 0, 0, ...)$
 $v_3 = (B_1, B_2, B_3, 0, 0, ...)$

.

where B_i is a finite-dimensional vector with $\|B_i\|_{\infty} = 1$ we still obtain

$$\left\|\sum_{n=1}^{\infty} t_n v_n\right\| = \max_n \left|\sum_{k=n}^{\infty} t_k\right|$$

The basis (v_n) is said to be an isometric copy of the summing basis.

Almost isometric copies of the summing basis of c_0

If C is a closed convex bounded subset of c_0 which is not weakly compact, we can find a basic sequence $\{v_n\}$ in C which is very "similar" to the summing basis of c_0 .

y

How to find this almost isometric copy

Assume that C is bcc and it is not weakly compact.By

Eberlein-Smulian and Alaoglu Theorems there exists a sequence $\{x_n\}$ in C which converges to a point $x = (\xi_n) \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

How to find this almost isometric copy

Assume that *C* is bcc and it is not weakly compact.By Eberlein-Smulian and Alaoglu Theorems there exists a sequence $\{x_n\}$ in *C* which converges to a point $x = (\xi_n) \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

Since $x \notin c_0$ we know that $\limsup_n \xi_n \neq 0$. By multiplication we can assume $\limsup_n \xi_n = 1$ and for an arbitrary $\epsilon > 0$ we can write $x = (A_1, A_2, A_3, ...)$ where $||A_1|| \ge 1 - \epsilon$ and $|||A_i|| - 1| < \epsilon$ for $i \ge 2$.

How to find this almost isometric copy

Assume that *C* is bcc and it is not weakly compact.By Eberlein-Smulian and Alaoglu Theorems there exists a sequence $\{x_n\}$ in *C* which converges to a point $x = (\xi_n) \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

Since $x \notin c_0$ we know that $\limsup_n \xi_n \neq 0$. By multiplication we can assume $\limsup_n \xi_n = 1$ and for an arbitrary $\epsilon > 0$ we can write $x = (A_1, A_2, A_3, ...)$ where $||A_1|| \ge 1 - \epsilon$ and $|||A_i|| - 1| < \epsilon$ for $i \ge 2$.

Since x_n converges to x coordinatewise we can choose a first vector in the sequence x_n , denoted again x_1 such that $x_1 = (A'_1, U_1, Z_1)$ where A'_1 is close to A_1 , Z_1 is close to 0 and U_1 is an "uncontrolled" finite-dimensional vector.

How to find this almost isometric copy

Assume that *C* is bcc and it is not weakly compact.By Eberlein-Smulian and Alaoglu Theorems there exists a sequence $\{x_n\}$ in *C* which converges to a point $x = (\xi_n) \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

Since $x \notin c_0$ we know that $\limsup_n \xi_n \neq 0$. By multiplication we can assume $\limsup_n \xi_n = 1$ and for an arbitrary $\epsilon > 0$ we can write $x = (A_1, A_2, A_3, ...)$ where $||A_1|| \ge 1 - \epsilon$ and $|||A_i|| - 1| < \epsilon$ for $i \ge 2$.

Since x_n converges to x coordinatewise we can choose a first vector in the sequence x_n , denoted again x_1 such that $x_1 = (A'_1, U_1, Z_1)$ where A'_1 is close to A_1 , Z_1 is close to 0 and U_1 is an "uncontrolled" finite-dimensional vector.

$$x_1 = (A'_1, U_1, Z_1)$$

In the same way we find a second vector, denoted again x_2 in the form

 $\begin{aligned} x_2 &= (A'1, A'_2, U_2, Z_2) \\ \text{where } A'_2 &\simeq A_2, \ Z_2 &\simeq 0 \text{ and } U_2 \text{ is "uncontrolled"} \\ x_3 &= (A'1, A'_2, A'_3, U_3, Z_3) \end{aligned}$

$$x_1 = (A'_1, U_1, Z_1)$$

In the same way we find a second vector, denoted again x_2 in the form

$$\begin{aligned} x_2 &= (A'1, A'_2, U_2, Z_2) \\ \text{where } A'_2 &\simeq A_2, \ Z_2 &\simeq 0 \text{ and } U_2 \text{ is "uncontrolled"} \\ x_3 &= (A'1, A'_2, A'_3, U_3, Z_3) \\ x_4 &= (A'1, A'_2, A'_3, A'_a, U_4, Z_4) \end{aligned}$$

$$x_1 = (A'_1, U_1, Z_1)$$

In the same way we find a second vector, denoted again x_2 in the form

$$\begin{aligned} x_2 &= (A'1, A'_2, U_2, Z_2) \\ \text{where } A'_2 &\simeq A_2, \ Z_2 &\simeq 0 \text{ and } U_2 \text{ is "uncontrolled"} \\ x_3 &= (A'1, A'_2, A'_3, U_3, Z_3) \\ x_4 &= (A'1, A'_2, A'_3, A'_a, U_4, Z_4) \end{aligned}$$

To "control" these uncontrolled vectors we can make an average. Assume that M is a bound for the norm in C.

To "control" these uncontrolled vectors we can make an average. Assume that M is a bound for the norm in C. If we take the average of the first n vectors, each block has a norm bounded by (M + n - 1)/n close to 1 if n is large enough.

To "control" these uncontrolled vectors we can make an average. Assume that M is a bound for the norm in C. If we take the average of the first n vectors, each block has a norm bounded by (M + n - 1)/n close to 1 if n is large enough. In this way we obtain a basic sequence $\{y_n\}$ in $\overline{co} \{x_n : n \in \mathbb{N}\}$ in the form: $y_1 \simeq v_1 = (B_1, 0)$ $y_2 \simeq v_2 = (B_1, B_2, 0)$ $y_3 \simeq v_3 = (B_1, B_2, B_3, 0)$

where $||B_i|| = 1$ for i > 1.

To "control" these uncontrolled vectors we can make an average. Assume that M is a bound for the norm in C. If we take the average of the first *n* vectors, each block has a norm bounded by (M + n - 1)/n close to 1 if n is large enough. In this way we obtain a basic sequence $\{y_n\}$ in $\overline{co}\{x_n : n \in \mathbb{N}\}$ in the form: $v_1 \simeq v_1 = (B_1, 0)$ $y_2 \simeq v_2 = (B_1, B_2, 0)$ $y_3 \simeq v_3 = (B_1, B_2, B_3, 0)$ where $||B_i|| = 1$ for i > 1. The right shift $T: \overline{co} \{y_n : n \in \mathbb{N}\} \to \overline{co} \{y_n : n \in \mathbb{N}\}$ is not, in

general nonexpansive, but it is still uniformly Lipschitz with Lipschitz constant close to 1.

To "control" these uncontrolled vectors we can make an average. Assume that M is a bound for the norm in C. If we take the average of the first *n* vectors, each block has a norm bounded by (M + n - 1)/n close to 1 if n is large enough. In this way we obtain a basic sequence $\{y_n\}$ in $\overline{co}\{x_n : n \in \mathbb{N}\}$ in the form: $v_1 \simeq v_1 = (B_1, 0)$ $y_2 \simeq v_2 = (B_1, B_2, 0)$ $v_3 \simeq v_3 = (B_1, B_2, B_3, 0)$ where $||B_i|| = 1$ for i > 1. The right shift $T : \overline{co} \{y_n : n \in \mathbb{N}\} \to \overline{co} \{y_n : n \in \mathbb{N}\}$ is not, in general nonexpansive, but it is still uniformly Lipschitz with Lipschitz constant close to 1.

The solution in 2004

Theorem

Let C be a nonempty, closed, bounded, convex subset of c_0 . Then C is weakly compact if and only if C has the fixed point property ; i.e., every nonexpansive mapping $T : C \to C$ has a fixed point.

The unbounded case

The previous result completely solves the problem when the closed convex set C is bounded. But, what happens in the unbounded case?

The previous method does not work in this case.

The unbounded case

The previous result completely solves the problem when the closed convex set C is bounded. But, what happens in the unbounded case?

The previous method does not work in this case.

For instance, assume that *C* is a line in c_0 . Then, *C* is convex closed and non-weakly compact but it is clear that we cannot find a sequence in *C* convergent to a vector $x \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

The unbounded case

The previous result completely solves the problem when the closed convex set C is bounded. But, what happens in the unbounded case?

The previous method does not work in this case.

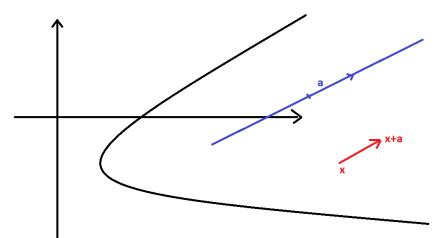
For instance, assume that *C* is a line in c_0 . Then, *C* is convex closed and non-weakly compact but it is clear that we cannot find a sequence in *C* convergent to a vector $x \in \ell_{\infty} \setminus c_0$ in the weak-star topology of ℓ_{∞} .

The Approximate Fixed Point Property

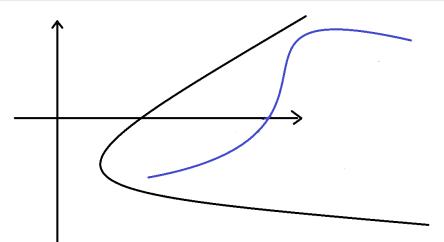
Definition

A subset C of a Banach space X is said to satisfy the AFPP if for every nonexpansive mapping $T : C \to C$ the minimal displacement is null. i. e. $\inf\{||x - Tx|| : x \in C\} = 0$.

Sets which are not linearly unbounded



Sets which are not directionally unbounded



Directionally bounded sets

Definition

(SHAFRIR 1990) Let X be a Banach space. A curve $\gamma : [0, \infty) \to X$ is said to be directional (with constant b) if there is $b \ge 0$ such that

$$t-s-b \leq \|\gamma(t)-\gamma(s)\| \leq t-s$$

for all $t \ge s \ge 0$. A convex subset is called directionally bounded if it contains no directional curve.

Theorem

(SHAFRIR 1990) Let C be a closed convex subset of a Banach space X. Then, C satisfies the AFPP if and only if C is directionally bounded.

Directionally bounded sets

Definition

(SHAFRIR 1990) Let X be a Banach space. A curve $\gamma : [0, \infty) \to X$ is said to be directional (with constant b) if there is $b \ge 0$ such that

$$t-s-b \leq \|\gamma(t)-\gamma(s)\| \leq t-s$$

for all $t \ge s \ge 0$. A convex subset is called directionally bounded if it contains no directional curve.

Theorem

(SHAFRIR 1990) Let C be a closed convex subset of a Banach space X. Then, C satisfies the AFPP if and only if C is directionally bounded.

Split the proof in two cases: If C is not directionally bounded then C fails the AFPP.

Theorem

(TDB 2012) Assume that C is a closed convex unbounded subset of c_0 which is directionally bounded. Then, there exists a sequence in C which converges in the topology $\sigma(\ell_{\infty}, \ell_1)$ to a vector in $\ell_{\infty} \setminus c_0$. Split the proof in two cases: If C is not directionally bounded then C fails the AFPP.

Theorem

(TDB 2012) Assume that C is a closed convex unbounded subset of c_0 which is directionally bounded. Then, there exists a sequence in C which converges in the topology $\sigma(\ell_{\infty}, \ell_1)$ to a vector in $\ell_{\infty} \setminus c_0$.

Theorem

Let C be a nonempty, closed, convex subset of c_0 . Then C is weakly compact if and only if C has the fixed point property Split the proof in two cases: If C is not directionally bounded then C fails the AFPP.

Theorem

(TDB 2012) Assume that C is a closed convex unbounded subset of c_0 which is directionally bounded. Then, there exists a sequence in C which converges in the topology $\sigma(\ell_{\infty}, \ell_1)$ to a vector in $\ell_{\infty} \setminus c_0$.

Theorem

Let C be a nonempty, closed, convex subset of c_0 . Then C is weakly compact if and only if C has the fixed point property

Question

Is it possible to extend the result for Banach space with 1-unconditional shrinking base?

Question

Is it possible to extend the result for Banach space with 1-unconditional shrinking base?

The proof of this equivalence is strongly based on the existence of asymptotically isometric copies of the summing basis of c_0 in every convex closed bounded non-weakly compact set of c_0 . However, there exist some equivalent norms in c_0 failing to have asymptotically isometric copies of c_0 for which the standard Schauder basis is 1-unconditional.

Question

Is it possible to extend the result for Banach space with 1-unconditional shrinking base?

The proof of this equivalence is strongly based on the existence of asymptotically isometric copies of the summing basis of c_0 in every convex closed bounded non-weakly compact set of c_0 . However, there exist some equivalent norms in c_0 failing to have asymptotically isometric copies of c_0 for which the standard Schauder basis is 1-unconditional.

Cascading nonexpansive mappings

Definition

Let X be a Banach space and C be a closed convex subset of X. Let $T : C \to C$ be a mapping and define $C_0 := C$, $C_n := \overline{\operatorname{co}} T(C_{n-1})$ for every $n \in \mathbb{N}$. The mapping T is said to be cascading nonexpansive if there exists a sequence $(\lambda_n)_{n\geq 0} \subset [1,\infty)$ with $\lim_n \lambda_n = 1$ and such that $||Tx - Ty|| \leq \lambda_n ||x - y||$ for all $x, y \in C_n$ and for all $n \geq 0$.

Theorem

Let X be a Banach space with a shrinking 1-unconditional Schauder basis (e_n) . Let C be a closed convex bounded subset of X. The following are equivalent: a) C is weakly compact. b) C has the FPP for cascading nonexpansive mappings.

Cascading nonexpansive mappings

Definition

Let X be a Banach space and C be a closed convex subset of X. Let $T : C \to C$ be a mapping and define $C_0 := C$, $C_n := \overline{\operatorname{co}} T(C_{n-1})$ for every $n \in \mathbb{N}$. The mapping T is said to be cascading nonexpansive if there exists a sequence $(\lambda_n)_{n\geq 0} \subset [1,\infty)$ with $\lim_n \lambda_n = 1$ and such that $||Tx - Ty|| \leq \lambda_n ||x - y||$ for all $x, y \in C_n$ and for all $n \geq 0$.

Theorem

Let X be a Banach space with a shrinking 1-unconditional Schauder basis (e_n) . Let C be a closed convex bounded subset of X. The following are equivalent: a) C is weakly compact. b) C has the FPP for cascading nonexpansive mappings.

Z OKAZJI URODZIN!!!

