##### The simple Regression toolbox, simpleR, contains a set of functions in Matlab to illustrate the capabilities of several statistical regression algorithms. simpleR contains simple educational code for linear regression (LR), decision trees (TREE), neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), aka Least Squares SVM, Gaussian Process Regression (GPR), and Variational Heteroscedastic Gaussian Process Regression (VHGPR). We also include a dataset of collected spectra and associated chlorophyll content to illustrate the training/testing procedures. This is just a demo providing a default initialization. Training is not at all optimized. Other initializations, optimization techniques, and training strategies may be of course better suited to achieve improved results in this or other problems. We just did it in the standard way for illustration and educational purposes, as well as to disseminate these models.