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Introduction
Hepatitis C virus (HCV) causes a disease that affects the 
human liver in more than 185 million people worldwide, 
170 millions of whom are estimated to be chronic patients 
with increasing risk of developing cirrhosis and cancer of 
the liver.1 The World Health Organization (WHO) esti­
mates that between 3 and 4 million people are infected 
each year and about 70% of them will develop chronic 
hepatitis.2 HCV belongs to the genus Hepacivirus from 
the Flaviviridae family and includes seven genotypes and 
more than 60 subtypes identified.3 The distribution of HCV 
genotypes varies geographically,4 with genotype la being 
(the prototype geno type) common in the United States and 
Western Europe and genotype 1b being the widely distri­
buted genotype worldwide.

Despite several strategies against HCV being deve­
loped,5 the combined therapy of pegylated interferon (IFN) 
plus ribavirin (RBV) has been for a long time the standard 
treatment for patients infected with HCV. IFN treatment is 
effective in 39% of patients,6 but when combined with RBV, it 
is effective in more than 60% of patients.7 However, there are 
differences in the response to treatment among the viral geno­
types. In the case of genotype 1, about 48% of patients have  

a positive response to the combined treatment,8 but in the case 
of genotypes 2 and 3, it is about 80%.7 Moreover, the cost of 
HCV treatment is high,9 it has numerous side effects, and it 
might not be appropriate for some patients.10

The selective pressure of drugs, the high replication rate 
of HCV, and its low replication fidelity are the main viral 
causes of treatment resistance. It is estimated that, on aver­
age, a nucleotide change is produced per replication cycle.11 
The identification of specific mutations and genetic patterns 
responsible for clinical phenotypes would improve diagnosis 
and treatment of patients.12 Some studies have revealed that 
HCV’s genetic variability contributes to its escape from the 
patient’s immune response.13,14

HCV variability is not distributed evenly along its 
genome, and it affects differently to treatment in each genome 
region.15 It has been established that the greater the immune 
pressure in a region, the higher the genetic variability,16 and, 
therefore, most studies of treatment–variability relationship 
have focused on these genome regions. On the other hand, 
it has been suggested that it is the overall genome variability 
that influences treatment response.17

Treatment response. Different HCV treatment response 
types have been established depending on the number of weeks 
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until HCV­RNA levels in serum or plasma are not detectable.7 
A rapid virological response (RVR) appears at treatment week 4,  
an early virological response (EVR) appears at treatment week 
12, an end­of­treatment response (ETR) appears at the end 
of 24 or 48 weeks of treatment, and a sustained virological 
response (SVR) appears at 24 weeks after cessation of treat­
ment. It has been observed that the latter type of response 
depends mainly on the viral genotype.18 In the case of HCV 
genotype 1, patients treated during 48 weeks have an SVR 
rate of 38%–48%.8 On the other hand, a patient is considered 
a non-responder if HCV­RNA clearing from serum fails after 
24 weeks of therapy, or relapse when HCV­RNA reappears in 
serum after therapy is discontinued.

Personalized therapy of HCV infection is a common 
practice due to the diversity of disease progression.19 Iden­
tifying those patients that will respond or not to the treat­
ment before starting it would increase therapeutic efficacy 
and reduce personal suffering. Viral, environmental, treat­
ment, and host factors play important roles in the outcome of 
HCV infection and treatment response.20–22 Several studies on 
treatment–outcome prediction have taken into account factors 
measured before treatment.23–27 In general, these studies take 
into account variables that describe the patient from clinical 
(alanine transaminase levels, viral load in serum, kidney biopsy, 
etc) and demographic (age, sex, habits, etc) points of view and 
also include some viral variables such as genotype, core and 
interferon sensitivity determining region (ISDR) region sub­
stitutions, and some variability parameters of the E1E2 region. 
It has been shown that the most consistent factors with treat­
ment outcome are the viral genotype and viral load.28

Phylogenetic predictors. A methodology to detect 
candidate genetic polymorphisms influencing clinical out­
come from pathogen genomes29 uses well­supported clades 
in a phytogeny as statistical predictors. Differences between 
clades were not well defined at the viral subtype level in 
our dataset; therefore, the statistical power of the previous 
methodo logy was diluted. Here, we propose an alternative 
methodology that overcomes the lack of statistical support at 
the phylogenetic subtype level but considers major determi­
nants of genetic variation in the viral genome to help in the 
prediction of treatment response.

Materials and Methods
Clinical and epidemiological data were retrieved together 
with viral sequences from the local epiPATH bioinformatics 
platform.30

Patients. Serum samples were obtained from 49 patients 
infected with HCV genotype la (17 patients, of which 11 had a 
positive response and 6 had a negative response) and genotype 
1b (32 patients, of which 12 had a positive response and 20 had 
a negative response).31,32 In summary, our sample included 23 
patients with a positive response and 26 patients with a negative 
response. All patients provided written consent to be included 
in the study, which was approved by the corresponding ethics  

committees of the institutions involved (Hospital General 
de Valencia, Hospital Clínico Universitario de Valencia, and 
Hospital General de Alicante). The research was conducted in 
accordance with the principles of the Declaration of Helsinki.

Treatment response assessment was done by the institu­
tions involved with the following criteria:

Positive response: absence of HCV­RNA in serum or a 
.21og viral load decline relative to the basal viral load at week 12.

Negative response: when there was no positive response 
or presence of HCV­RNA in serum after week 12.

The following demographic, clinical, and treatment vari­
ables were included in this study (Table 1): age, sex, Knodell 
index,33 the ratio between Glutamic­oxaloacetic transaminase 
and Glutamic­pyruvate transaminase (GOT/GPT) serum 
levels, alanine transaminase (ALT) serum levels, treatment 
duration, completed treatment, number of treatment, IFN 
dose and RBV dose.

HcV sequences. Host’s immune pressure affects HCV 
variants but not equally through all the viral genome regions.32 
Two of the most studied regions in relation to genetic vari­
ability and treatment response are the E1E2 and NS5A viral 
regions. Independently of the genotype, viral factors included 
in our study were calculated using a high number of partial 
sequences from both regions described elsewhere34 to capture 
the amount of variability of the viral quasispecies. Specifically, 
we used 100 sequences per patient of 472 nucleotides from 
the E1E2 region (nucleotides 1310–1781 of HCV genome 
reference sequence with accession number D50481), which 
includes three hypervariable regions (HVR­1, HVR­2, and 
HVR­3) but does not include the E2­PePHD region. Regard­
ing the NS5A region, we used between 25 and 96 sequences 
per patient of 743 nucleotides (nucleotides 6742–7484 in the 
HCV genome reference sequence), which includes the ISDR, 
protein kinase R binding domain (PKR­BD), and variable 
region 3 (V3) regions that have been related to the combined 
treatment outcome.35 Therefore, viral genome variability from 
about 7,500 sequences were summarized in the viral factors.

RNA extraction, reverse transcription, amplification, clon­
ing, and sequencing, were explained in detail elsewhere.36 Briefly, 
after viral RNA extraction (High Pure Viral RNA Kit; Roche, 
Mannheim, Germany), reverse transcription reactions were per­
formed with random hexadeoxynucleotides in order to prevent 
any bias during reactions due to unspecific oligonucleotides. 
Amplified DNA products for each region were purified with 
High Pure PCR product Purification Kit (Roche) and directly 
cloned into EcoRV­digested pBluescript II SK (+) phagemid 
(Stratagene, Heidelberg, Germany). Plasmid DNA was purified 
with High Pure Plasmid Isolation Kit (Roche). Cloned prod­
ucts for E1E2 region or NS5A region were sequenced using 
vector­based primers KS and SK (Stratagene).

The following intra­patient viral variables per region 
were included in this study (Table 2): genotype, number of 
non­synonymous substitutions per non­synonymous site 
(dN), number of synonymous substitutions per synonymous 
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site (dS), dN/dS ratio, total number of mutations (η), number 
of segregating sites (S), GC content (GC), haplotype diversity 
that accounts for the allele combinations of a genetic region 
(H), H2, H3, nucleotide diversity (π), π2, π3, mean number 
of nucleotide differences (k), number of sites under positive 
selection (pts), and the most relevant parameters of neutrality 
tests: Tajima’s D, Fu and Li’s D*, Fu and Li’s F*, and Fu’s Fs. 
Genotype information was retrieved from the local epiPATH 
bioinformatics platform; polymorphism parameters were cal­
culated with DnaSP,37 and sites under positive selection were 
identified with CODEML.38

sequence similarity. In addition to population and evo­
lutionary viral parameters, we obtained a sequence similarity 
measure at the molecular level. We used a consensus viral 
protein sequence per region and patient (72 patients, including 
49 whose clinical data were available) obtained before treat­
ment. Then, we aligned and filtered the variable positions from 
the consensus sequences per genotype and viral regions. We 
applied a multiple correspondence analysis (MCA) per dataset 
with SPSS 13.0 statistical software39 considering each amino 
acid position as a variable and its amino acid type as its value 
in terms of 20 characters. Therefore, patients were grouped 
using the functional­related polymorphisms detected in the 
viral sequence. This analysis allowed us to reduce the viral 
sequence information into fewer variables while preserving 

its patient variability. We selected seven dimensions for E1E2 
and 12 dimensions for NS5A following Cattell’s criteria.40 
Dimensions were included as viral variables in the treatment–
response modeling methodology.

statistical methodology. The treatment response was 
modeled using a logistic regression with 49 patients and 66 
variables, including viral, demographic, and clinical data. 
We applied two methodologies in obtaining the regression 
model: (a) using variable subgroups, and (b) using all variables 
together. In an epidemiological context, logistic regression 
coefficients are interpreted as the odds ratio (OR) logarithm, 
ie, the effect of a unit of change in its corresponding variable 
on having a positive treatment response. OR is an association 
measure between the treatment outcome and the variables 
included in the regression model.

In the subgroup­based method (a), we created four groups 
of variables depending on which environment they were 
related to: patients, E1E2 region, NS5A region, and MCA 
dimensions. Then, a subgroup­based model was balanced 
among different treatment response factors. It was obtained 
following a generalized linear model (GLM) approach with 
a stepwise selection process in R using a logit transformation. 
First, we applied the following methodology to each subgroup 
of variables. We generated a minimum model without variables 
and a maximum model with all variables. Then, variables were 
added from the minimum model to the maximum model and 
evaluated with their Chi­squared value. We filtered variables 
with a Chi­squared significance level value #0.05 and gener­
ated a model 1. Next, a backward–forward stepwise selection 
method was applied to model 1, and Akaike information crite­
rion (AIC)41 was used to evaluate models. Finally, subgroup­
based models were joined in a new model, and interactions 
between variables were studied with the previous method. 
This methodology was applied to genotypes la and lb jointly 
(1a+1b) and separately.

Once the subgroup­based models were obtained, we used 
them to predict the treatment outcome of three datasets: (1) the 
49 patients used to obtain the models, (2) 8 new patients with 
complete clinical information, and (3) 10 new patients with 
some missing clinical factors which were estimated following 
four methods: the expectation­maximization algorithm (EM) 
implemented both in R and SPSS, mean substitution, and 
SPSS regression estimation. Predictions were made in R using 
the corresponding subgroup­based model, and prediction 
results were compared with the observed treatment outcome.

In the all­variables method (b), we applied the LASSO 
methodology42 implemented in R also to genotypes la and lb 
jointly and separately. The LASSO method selects variables 
penalizing regression coefficients so that, if the coefficients are 
not greater than a given threshold, the corresponding vari­
ables are not included in the model. This method is also used 
to study how subgroup variables are affecting each other. We 
used minimum estimated lambda value and its standard devia­
tion as thresholds.

Table 1. Demographic, clinical, and treatment factors.

VARIABLe VALUeS PATIeNTS (N = 49)

outcome Positive (%) 23 (46.94%)

negative (%) 26 (53.06%)

age years 43.61 ± 12.122 (23;73)

sex male (%) 34 (69.4%)

female (%) 15 (30.6%)

Knodell index 8 ± 3.403 (1;17)

Got/GPt 0.601 ± 0.323 (0.3;2.3)

alt 122.67 ± 74.463 (24;361)

treatment duration months 11.27 ± 1.987 (6;12)

completed treatment yes (%) 43 (87.8%)

no (%) 6 (12.2%)

number of treatment 1 (%) 28 (57.1%)

2 (%) 20 (40.8%)

3 (%) 1 (2%)

ifn dose 3 mu/3tpw (%) 40 (81.6%)

5 mu/3tpw (%) 3 (6.1%)

90 g/day (%) 1 (2%)

100 g/day (%) 3 (6.1%)

120 g/day (%) 2 (4.1%)

rBv dose mg/day 1040.82 ± 122.336  
(800;1200)

Notes: age, Knodell index, Got/GPt, and alt were measured at baseline. 
Data are shown as mean ± standard deviation unless stated otherwise.
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results
subgroup-based models. The best model obtained for 

HCV subtypes la and lb combined (AIC = 24) included the 
following parameters: treatment duration and ALT levels 
from the patients’ variables subgroup; some parameters related 
to the NS5A region subgroup, including H and the number of 

sites under positive selection; some parameters related to the 
E1E2 region subgroup including dS, H3 and π2; some MCA 
dimensions related to both viral regions: the 11th dimension 
of NS5A region and the 7th dimension of E1E2 region; and 
interactions between NS5A 11th dimension and E1E2 7th 
dimension, and between E1E2 dS and E1E2 H3 (Table 3).

Table 2. viral variables.

GeNoTYPe SUBTYPeS PATIeNTS (N = 49)

1 1a (%) 17 (34.7%)

1b (%) 32 (65.3%)

VARIABLe e1e2 NS5A

dN 0.017 ± 0.013 (0;0.044) 0.005 ± 0.005 (0;0.022)

dS 0.041 ± 0.034 (0;0.122) 0.0379 ± 0.032 (0;0.128)

dN/dS 0.671 ± 1.238 (0;8.277) 0.147 ±0.103 (0;0.479)

η 77.224 ± 43.394 (2;153) 77.449 ± 53.659 (2;177)

S 70.939 ± 38.698 (2;134) 74.224 ± 50.569 (2;163)

GC 0.594 ± 0.011 (0.569;0.621) 0.603 ± 0.008 (0.588;0.621)

H 0.863 ± 0.23 (0.039;0.999) 0.833 ± 0.285 (0.066;1)

H2 0.797 ± 0.285 (0.002;0.998) 0.774 ± 0.332 (0.004;1)

H3 0.75 ± 0.315 (0;0.997) 0.736 ± 0.351 (3e–4;1)

π 0.022 ± 0.016 (0;0.058) 0.013 ± 0.011 (9e–5;0.04)

π2 0.001 ± 0.001 (0;0.003) 2.93e–4 ± 4.02e–4 (8.1e–9;0.002)

π3 3.01e–5 ± 4.45e–5 (0;2e–4) 7.95e–6 ± 1.51e–5 (0;7.33e–5)

k 10.458 ± 7.74 (0.039;27.33) 9.782 ± 8.183 (0.07;31.099)

D −0.993 ± 0.985 (–2.58;0.89) −1.418 ± 0.678 (−2.43;0.07)

D* −1.908 ± 1.627 (–5.45;1.88) −2.567 ± 1.363 (–5.24;0.27)

F* −1.847 ± 1.507 (–5.21;1.76) −2.546 ± 1.218 (−4.92;–0.17)

Fs −46.341 ± 32.161 (–124.662;1.256) −26.647 ± 19.965 (−85.549;1.662)

pts 3.388 ± 3.523 (0;13) 0.878 ± 1.409 (0;5)

Note: Data are shown as mean ± standard deviation (range) unless stated otherwise.

Table 3. subgroup-based model of 1a+1b Hcv genotypes.

PARAMeTeR CoeFFICIeNT STD. eRRoR X-STANDARDIzeD 
CoeFFICIeNT

oDDS RATIo

(intercept) −3.19e3 3.66e5

treatment duration 5.89e2 6.14e4 1,170.26 5.7e255

alt 3.526 3.88e2 262.56 3.4e1

ns5a 11th −1.62e2 1.75e4 −2,310.48 5.9e–71

E1E2 7th 2.68e 4.68e3 382.37 4.2e11

E1E2 dS −1.43e5 1.46e7 −2,039,800.00 0

E1E2 H3 −9.2e2 1.09e5 –11,065.69 0

E1E2 pi2 1.94e5 2.33e7 2,770,577.00 inf

ns5a H −3.01e3 3.08e5 −35,762.37 0

ns5a pts 8.57e 9.83e3 120.69 1.6e37

ns5a 11th:E1E2 7th 3.14e2 3.29e4 1.4e136

E1E2 dS:E1E2 H3 1.32e5 1.35e7 inf

Note: aic = 24.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Identify treatment response factors integrating clinical and viral genetic data

19Evolutionary Bioinformatics 2015:11

With respect to the best model obtained for subtype la 
separately (AIC = 8), the following parameters were included: 
H2 and GC content related to the E1E2 region subgroup, 
and S related to the NS5A region subgroup (Supplemen­
tary Table 1). On the other hand, the best model obtained 
for subtype lb separately (AIC = 14) included the following 
parameters: treatment duration included in the patients’ vari­
ables subgroup; some parameters related to the NS5A region 
subgroup including dS,η, k and dN; and the 11th dimension 
of NS5A region included in the MCA dimensions subgroup 
(Supplementary Table 2).

The goodness of fit of the best models was quite good 
despite the low sample size (Table 4). All predictions were cor­
rect using patients included in the development of prediction 
models (test dataset), and about 66%–70% of predictions were 
correct using a new dataset of patients: 6 new patients for the 
best model of subtype la, 9 new patients for the best model of 
subtype lb, and 10 new patients for the joint subgroup­based 
model. The selection of new patients for each validation data­
set was performed taking into account the parameters included 
in each model, in such a way that not all the patients from 
separate subtypes had information about parameters required 
in the combined subtypes model. Therefore, the number of 
new patients used in the validation dataset of the combined 
subtypes model was lower than that of the separate subtypes 
model.

After obtaining the dimensional variables in the final 
models, we tried to find positions that modulate inter­
patient variability. We found that, in the NS5A region, the 
11th dimension retained more than 95% of the variability in 
10/69 polymorphisms of subtype la and in 100/127 of those 
in subtype lb. With regard to the E1E2 region, the seventh 
dimension retained more than 95% of the total variability in 
27/65 polymorphisms of subtype la and 44/93 of lb polymor­
phisms. A summary of the positions that contribute with more 
than 3% individually can be found in Tables 5 and 6. We did 
not find a clear relationship between the type of amino acid 
in each position and treatment response (results not shown). 
Nevertheless, when comparing the positions with the highest 
individual contribution to global variability with the substitu­
tion patterns reported by Enomoto et al.43,44, we found that 
IFN­sensitive amino acid substitutions in 386 and 388 codons 
of 1b E1E2 region had a greater variability contribution than 
IFN­resistant ones (Table 7).

Table 5. contribution of amino acid positions to the total variability of 
ns5a region.

SUBTYPe SUBReGIoN PoSITIoN CoNTRIBUTIoN

1a 2143 0.169

2198 0.169

2203 0.084

isDr/PKr-BD 2221 0.042

2304 0.042

2306 0.084

2350 0.038

v3 2368 0.032

v3 2376 0.071

2381 0.169

2382 0.084

1b 2146 0.08

2169 0.032

isDr/PKr-BD 2229 0.031

isDr/PKr-BD 2233 0.032

PKr-BD 2264 0.079

PKr-BD 2265 0.049

2353 0.08

v3 2376 0.043

Notes: selected positions that contribute individually with a .3% to the total 
genetic variation in the mca analysis. Position is given as the corresponding 
amino acid position in the Hcv reference sequence (D50481).

Table 4. Goodness of fit from response predictions.

PATIeNTS

GeNoTYPe INCLUDeD NoT INCLUDeD

1a 17/17 (100%) 4/6 (66.66%)

1b 32/32 (100%) 6/9 (66.66%)

1a+1b 49/49 (100%) 7/10 (70%)

Notes: included: patients used to obtain models; not included: patients 
not used to obtain models. results shown as correct/total.

All-variables models. The main disadvantage of the 
subgroup­based approximation is that the influence between 
the parameters of different subgroups is not evaluated. There­
fore, we applied a secondary methodology to check the influ­
ence between all variables included in this study. We used 
minimum λ (min) and its standard deviation (1 se) as threshold 
coefficients, the former being the most conservative approach 
(Fig. 1). The prediction model obtained for HCV subtypes 
la and lb combined with GLMNET methodology includes 
parameters from different subgroups defined for the sub­
group­based methodology (Table 8). Therefore, it can be con­
cluded that there is no relevant influence among subgroups of 
variables.

discussion
The aim of this study was to identify candidate baseline 
prognostic factors that could be involved in the response of 
patients infected with HCV subtypes la and lb to combined 
treatment with IFN and RBV. Although HCV drug therapies  
have experienced a recent change with the availability of new 
antiviral drugs,5 the time required to design and conduct 
treatment–response studies led us to outline a retrospective 
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study with data previously generated in our group.31,32 We 
used treatment and patient variables along with more viral  
variables than similar previous studies.23–27 A new viral fac­
tor included was a multidimensional measure of sequences  
similarity that accounts for inter­patient viral variability. The 
hypothesis based on which this study was designed is that the 
integration of treatment response with viral sequences data 
would provide new insights into the interaction between dif­
ferent viral genomic regions and the treatment outcome, which  
eventually would improve our understanding of the viral 
evolution role towards patient therapy. In this sense, our proposed 
methodology could be applied in future studies, which include  
the recently developed drugs.

Table 6. contribution of amino acid positions to the total variability of 
E1E2 region.

SUBTYPe SUBReGIoN PoSITIoN CoNTRIBUTIoN PoSITIVe  
SeLeCTIoN

1a E1 357 0.031

E2-Hvr1 384 0.030 true

E2-Hvr1 393 0.070

E2-Hvr1 394 0.048 true

E2-Hvr1 397 0.030 true

E2-Hvr1 399 0.098 true

E2-Hvr1 401 0.048 true

E2-Hvr1 406 0.064

E2-Hvr1 407 0.070 true

E2-Hvr1 410 0.033 true

E2 418 0.030

E2 419 0.033

E2-Hvr3 436 0.030

E2-Hvr3 440 0.058

E2-Hvr3 444 0.037 true

E2 452 0.041

1b E2-Hvr1 386 0.058 true

E2-Hvr1 388 0.054 true

E2-Hvr1 392 0.038 true

E2-Hvr1 393 0.034

E2-Hvr1 397 0.076 true

E2-Hvr1 407 0.031 true

E2-Hvr2 478 0.062 true

E2-Hvr2 480 0.042 true

Notes: selected positions that contribute individually with a >3% to the total 
genetic variation in the mca analysis. Position is given as the corresponding 
amino acid position in the Hcv reference sequence (D50481). Positive 
selection indicates whether the position has a significant positive selection 
or not.45

Table 7. common substitution patterns with Enomoto et al.43,44

ReGIoN SUBReGIoN PoSITIoN ToTAL AMINo ACID INDIVIDUAL

E1E2 E2-Hvr1 386 0.058 tsen 0.029

D 0.024

G 0.002

n 1.55e–03

s 0.76e–03

E 0.55e–03

rsen 8.02e–05

Q 4.01e–05

Hres* 1.13e–06

yres -

E2-Hvr1 388 0.054 H 0.024

r 0.024

y 0.004

tsen* 0.60e–03

n 0.52e–03

v 4.77e-05

ores -

ns5a 2169 0.032 s 0.011

asen/res* 0.005

E 0.004

H 0.82e–03

tsen/res -

Notes: codon positions that contribute individually with a .3% to the total 
variability of the seventh dimension in the mca analysis. substitutions 
refer to Hcv lb subtype. selected positions were found in common with the 
substitution patterns reported by Enomoto et al.43,44 Position is given as the 
corresponding amino acid position in the Hcv reference sequence (D50481). 
Total column indicates the total contribution of the position and Individual 
column indicates the individual contribution of the specific amino acid. sen 
indicates ifn-sensitive, res indicates ifn-resistant, and *indicates Hcv-J as 
reported in Enomoto et al.43,44
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Figure 1. Parameter estimates based on the lasso method for the Hcv 
subtypes 1a+1b combined.
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Different models were obtained with two distinct 
metho dologies (Table 3, Supplementary Tables 1 and 2 with  
subgroup­based methodology; and Table 8 with LASSO­
based methodology). The main difference between the two 
methods is that the LASSO method studies how subgroup 
variables affect each other. Results from LASSO­based 
method demonstrate that variables included belong to differ­
ent groups defined in subgroup­based methodology. There­
fore, it can be concluded that there is no relevant influence 
between subgroups of variables. The subgroup­based method 
weights all subgroups equally and evaluates parameters  
thoroughly.

Subgroup­based model for both viral genotypes is bal­
anced regarding variable subgroups, because it includes 
variables from the different subgroups defined for this meth­
odology (Table 3). It includes treatment duration and ALT 
levels as patient variables. The current recommended duration 
of treatment for genotype 1­infected patients is 48 weeks,7 
although an extension to 72 weeks in patients without RVR 
has been proposed46 and a reduction to 24 weeks in those 
patients with RVR.47 Before treatment, ALT levels could rep­
resent the patient’s immune system activity, as they include 
the elimination of infected cells by natural killer (NK) cells 
and cytotoxic T lymphocytes (CTL).48,49 The fact that ALT 
levels appear in the model could indicate that the higher the 
immune activity, the more effective the treatment. In this 
respect, ALT levels have also been obtained in other mod­
els.24,27 Nevertheless, it has been shown that the SVR rate in 
patients with normal levels of ALT is equivalent to patients 
with higher ALT levels50 and there are other factors that could 
influence before­treatment ALT levels such as an imbalance 
of fatty acids and carbohydrates metabolism,51 alcohol abuse,52 
and other drugs.53

Sequence similarity measures at the molecular level are 
obtained in our results. NS5A 11th and E1E2 7th dimensions 

account for specific amino acids in certain sequence positions. 
There has been extensive discussion about the relationship 
between treatment response and mutations in both regions. 
There is a correlation between treatment response and NS5A 
substitutions in Japanese patient cohorts,54,55 but it has not 
been reported in European56,57 or American patients.58 How­
ever, some European studies have found a correlation between 
the ISDR sequence of genotype lb and treatment response.59,60 
After a long controversy, a correlation between NS5A’s ISDR 
region and treatment response has been reported in three 
different meta­analyses61–63 and in more recent studies.64,65 
Moreover, substitutions in other NS5A regions seem to be 
related to treatment response,35,65,66 and recently an associa­
tion between an SVR and combined mutations in NS5A and 
core regions has been shown.67

With regard to the genetic variation in the E1E2 
region, some studies have found no relationship between the 
E2­PePHD region and treatment response because it is a 
highly conserved region and its variability levels do not differ 
between responder and non­responder patients,35,68 although 
some studies have found this relationship.69,70 Despite the fact 
that the E2­PePHD region was not included in our study, 
we found that some originally reported IFN­sensitive codon 
substitutions43 had greater contribution to the total variability 
than IFN­resistant in specific E2­HVR1 positions (Table 7). 
An interesting aspect of our results is that, in addition to 
including sequence similarity variables in the final la+lb HCV 
genotype subgroup­based model, we also obtained the interac­
tion of both NS5A 11th and E1E2 7th dimensions. This result 
could indicate that a joint substitution profile of both regions 
might increase the chances of responding to treatment. In this 
respect, a correlation between the number of mutations in the 
E2 and ISDR regions has been found70; and another study 
obtained significant results for the correlation between nucle­
otide diversity of both E1E2 and NS5A regions.34 A possible 
explanation of these observations could be that variants in both 
viral regions interact in an epistatic way due to the functional 
and/or structural relationship between them, as it has been 
previously suggested with E2, NS2 y NS5A regions.71

Some variables related to the viral response to selection 
were included in the joint subgroup­based model for HCV 
subtypes 1a+1b. This is the case for the rate of synonymous 
substitutions (dS) in the E1E2 region and the number of 
positions under positive selection in the NS5A region. The 
possibility of positive selection affecting viral escape from the 
patient’s immune system has been previously studied45,72,73 
but without any evidence of relationship with treatment 
response. The HCV E1E2 region includes some hypervari­
able regions that tend to accumulate amino acid changes dur­
ing viral infection, and it is known that the main evolutionary 
force that affects this region is purifying selection due to the 
functional restrictions.74 In this sense, E1E2 dS obtained in 
our results would indicate the presence of purifying selection 
because the higher the dS, the lower the ω, causing a decrease 

Table 8. lasso-based model of 1a+1b Hcv genotypes.

1Se MIN

PARAMeTeR CoeFFICIeNT PARAMeTeR CoeFFICIeNT

(intercept) 0.893 (intercept) 0.715

ns5a H −0.057 E1E2 tajima’s D 0.001

ns5a H2 −0.003 ns5a S −0.003

ns5a H3 −0.0004 ns5a H −0.059

ns5a 11th −0.010 ns5a H2 −0.004

treatment  
duration

0.029 ns5a H3 −0.0004

ifn dose −0.111 ns5a 11th −0.019

treatment  
number

0.412 treatment  
duration

0.053

ifn dose −0.250

treatment  
number

0.872
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in the probability of a treatment response. Regarding the 
NS5A region, a high number of positions under positive selec­
tion could cause a wrong PKR inhibition and reduce viral 
replication, which would lead to a higher probability of treat­
ment response. However, conflicting results on the action of 
positive selection in the NS5A region of SVR patients have 
been reported.66,72

Intra­patient viral variability factors that are included in 
the final 1a+1b HCV genotypes subgroup­based model are 
E1E2 H3, E1E2 π2, and NS5A H. Viral genetic diversity before 
treatment is higher in nonresponsive patients than in respon­
sive patients,17,34 and a higher haplotype diversity could pro­
mote the appearance of treatment­resistant variants that allow 
the escape from the immune system, as seen previously.71 On 
the other hand, there seems to exist a diversity of nucleotide 
positions among patients that would disallow the virus from 
entering the cell, new viral particle assembly, antibody neu­
tralization, and/or their interaction with PKR, despite the fact 
that a high variability would decrease the patient’s immune 
response.75 Recently, it has been shown that a higher NS5A 
variability is correlated with a positive response to treatment.76 
Though genetic diversity is not usually considered as a good 
SVR predictor,77 a possible explanation of its inclusion in our 
model is that we have transformed these variables and detected 
the amount of information related to the treatment outcome. 
Another interesting aspect of our results is that they include 
the interaction between E1E2 dS and E1E2 H3, which could 
indicate that a certain amount of purifying selection together 
with the presence of some E1E2 haplotypes would increase 
the probability of response to treatment.

Models obtained for la and lb genotypes separately are 
completely different (Supplementary Tables 1 and 2). Vari­
ables included in genotype la results are related to viral 
polymorphisms, but variables obtained for genotype lb are 
related to treatment, viral polymorphisms, and sequence 
similarity measures. The latter variable appears also in the 
model for both viral genotypes but not in the la model. In 
this sense, a significant correlation between ISDR mutations 
and treatment response has been observed in lb but not in la 
patients.60

It is not always easy to provide a biological explanation 
when obtaining models under statistical criteria. We have 
provided a biological interpretation for every variable included 
in the final 1a+1b HCV genotype subgroup­based model; 
however, all variables should be considered together in the 
interpretation of our results. The methodologies that we used 
in this study include variables depending on their statisti­
cal significance; and because of high standard errors in the 
subgroup­based methodology, more tests would be necessary 
before applying these results to personalized therapy. More­
over, coefficients and OR values shown are the final result 
from the complete statistical methodology applied and should 
not be interpreted as their final individual significance. In this 
respect, we have used statistical methods for the identification 

of relevant candidate prognostic factors for HCV treatment 
response and not for the quantification of their individual 
effect in treatment response.

Nevertheless, our results indicate that viral genetic informa­
tion is essential for the IFN–RBV combined treatment assess­
ment of patients. In this sense, identifying a profile of combined 
mutations along viral genome regions that modulate treatment 
outcome could help treatment management, reducing costs 
and side effects. In general, our methodology can be applied 
to identify different joint­substitution patterns that could arise 
comparing the new HCV therapies that are currently being 
developed, eg, different patients, drug combinations, different 
time points of the treatment, in order to assess the best therapy 
approach for each case. Moreover, it could also be applied in the 
study of different viruses as well as in co­infections.

conclusions
Population and evolutionary parameters quantify genetic 
sequences in terms of variability and its functional effect. In 
a high replication rate and a low replication fidelity scenario 
such as RNA viruses, the action of selective pressures could 
modulate the treatment response. Therefore, the relevance and 
interest of studying viral populations under an evolutionary 
perspective has a direct application on therapy improvement. 
As far as we know, population and evolutionary parameters 
together with the complete sequence variability have not been 
used before to study HCV treatment response.

In our study, we have found that these kinds of param­
eters are relevant prognostic factors, as they have been included 
in the best prognostic models obtained from different datasets. 
The best prognostic model of la and lb joint subtypes includes 
9 out of 11 variables related to population and evolutionary 
parameters. We have discussed the interpretation of each of 
them separately, and we have also given some insights of the 
applicability of our proposed new measurement to related 
studies.

The integration of clinical and viral genetic data is 
an important issue for the evaluation of different factors 
related to HCV treatment response. In this study, a new 
viral factor that accounts for inter­patient viral variability 
was suggested. One of the advantages that we have found by 
using the sequence similarity measure is that we were able 
to reduce the number of parameters for regression analyses. 
Moreover, it preserved patient variability in terms of com­
plete viral sequences and could be integrated with clinical 
data. These characteristics make our multidimensional mea­
sure of sequence similarity useful for the identification of 
joint substitutions profiles that might modulate the chances 
of responding to treatment.

Our proposed new methodology could be applied in 
related studies to identify viral positions involved in treatment 
response and also in a comparison of new therapies at different 
time points to study the evolution of viral joint­mutation pro­
files regarding treatment outcome.
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