Scalarane Sesterterpenoids

Miguel A. González*

Departamento de Química Orgánica, Universidad de Valencia, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain

Abstract: In this review we cover the names, structures, and occurrence of all the scalaranes since their discovery in 1972. We have given special attention to the biological properties of these polycyclic terpenoids of exclusive marine origin.

Keywords: ?????

1. INTRODUCTION

Marine organisms have provided a large number of terpenoids, possessing novel carbon skeletons different from those present in terrestrial species. Several sester-terpenoids isolated from marine organisms have shown a wide variety of biological activities. In this review, we focus our attention on sesterterpenoids characterised by polycyclic structures having the scalarane (I, C_{25}) (Fig. 1) carbon framework as well as nor- and al-kylated members.

Scalarane sesterterpenoids are bioactive natural products isolated exclusively from sponges and shellless molluscs (nudibranchs), which are believed to be able of sequestering the scalarane-based metabolites from the sponges on which they feed. Most of these compounds play a key role as eco-physiological mediators (chemical defense) and are of interest for potential applications as therapeutic agents. In addition, scalarane sesterterpenoids are considered to represent useful chemotaxonomic markers within sponges.

Scalaranes having the characteristic carbon skeleton I (Fig. 1) have been reviewed up to 1990 and listed in the Dictionary of terpenoids [1]. During the last two decades, many new members of this family of natural products have been isolated and described in a few specific reviews on naturally occurring sesterterpenoids by Professor Hanson [2], and Professor Liu [3]. The excellent reviewing work on marine natural products by Professor Faulkner [4], now continued by the team of Professor Blunt [5], has also covered mainly the

isolation and structural aspects of scalaranes. A recent review on bioactive marine sesterterpenoids has also included articles on isolation and structure determination of scalaranes up to 2004 [6]. The scalarane sesterterpenoids have attracted the attention of synthetic chemists and two reviews have covered the studies on the synthesis of scalaranes [7]. We now provide full coverage of past and recent advances in the field which have been reported in the literature up to December 2009.

2. STRUCTURE, OCCURRENCE AND BIOLO-GICAL ACTIVITY

The semisystematic naming of this family of sesterterpenoids was introduced in 1980, by Kazlauskas *et al.* [8], following the isolation of the first member of the family from the Mediterranean sponge *Cacospongia scalaris.* Thus, in accordance with the IUPAC recommendations, the saturated hydrocarbon **I**, named 'scalarane', was chosen as the fundamental parent structure with the numbering pattern as depicted in Fig. (1). This numbering system will be used throughout the article, though other numbering systems have been used by other authors.

The first known member of the scalarane family of terpenoids, scalarin (1), was discovered by Fattorusso *et al.* from the sponge *Cacospongia scalaris* nearly forty years ago. Structure (1) was assigned based on chemical and spectroscopic data [9].

To date, there are around two hundred known compounds belonging to this family of marine natural products, including nor- and alkylated members, normally at C-19 or C-20 and/or C-24. Alkylated scalaranes, are sometimes called homoscalaranes. Homoscalaranes

^{*}Address correspondence to this author at the Departamento de Química Orgánica, Universidad de Valencia,Dr Moliner 50,E-46100 Burjassot,Valencia,SPAIN; Tel: ????????; Fax: +34 96 3544328; E-mail: miguel.a.gonzalez@uv.es

Fig. (1). Scalarane numbering system and scalarin (1).

show methylation at C-20 or C-24, while methylations at both C-20 and C-24 are typical in bishomoscalaranes. Generally, scalaranes are not functionalised on Aor B-ring carbons. Most of them present a different degree of oxidation in their C- and D-ring carbons, particularly at positions C-12 and C-16.

Given the variety of chemical structures found in the scalarane family, we could group them according to the type of carbocyclic framework, normally either the characteristic 6/6/6/6-tetracyclic fused ring system or a 6/6/6/6/5-pentacyclic fused ring system. Thus, we have integrated most of them into two main groups: compounds having a tetracyclic scalarane skeleton and compounds with a pentacyclic skeleton. We have also included another group containing scalarane-derived metabolites with unusual carbon frameworks.

Sponges are exposed to a variety of dangers in their environment and this has led to the development of chemical defense mechanisms against predation. Nudibranchs feed on a variety of sponges and are able of storing selected metabolites, even transforming them, for their own self-defense. Thus, sponges and nudibranchs are a rich source of biologically active metabolites, and the scalaranes, in particular, have displayed a wide spectrum of interesting biological properties (see Tables 1-3) including antifeedant, antimicrobial, antifungal, ichthyotoxicity, antitubercular, antitumour, cytotoxicity, anti-HIV, antifouling, inhibition of platelet-aggregation, inhibition of transactivation for the nuclear hormone receptor (FXR, farnesoid X-activated receptor), stimulation of nerve growth factor synthesis, as well as anti-inflammatory activity.

2.1. Tetracyclic Scalaranes

The first group of tetracyclic scalaranes is composed mainly of 1,4-dicarbonyl compounds, of which the earliest example is the biologically active scalaradial (2)(Fig. 2)[10], which possesses a 1,4-dialdehyde moiety. Other metabolites related to scalaradial (2) have been isolated and differ from the stereochemistry and substituent type at C-12, as well as the stereochemistry of the aldehyde group at C-18 (Fig. 2).

Fig. (2). Scalaradial (2) and related metabolites.

Scalaradial (2) was first isolated in 1974 from the sponge Cacospongia mollior collected at the Mediterranean sea, and the gross structure was reported [10]. The X-ray study of scalaradial confirmed his structure [11]. Scalaradial (2) has also been found in other Cacospongia mollior specimens [12], as well as in other sponges and as chemical constituents of nudibranchs. For example, scalaradial (2) has been isolated from the sponge Cacospongia scalaris collected at Wakayama (Japan)[13], and collected at Tarifa Island (Spain)[14]. The sponges Spongia oceania collected at Pupukea (Hawai)[15], Cacospongia sp. collected at the Gulf of Naples and collected at Apra Harbor, Guam (Micronesia)[16,17], Dysidea villosa and Dysidea marshalla collected at the South China Sea [18], and other sponges collected at the South China Sea of the order Dictyoceratida have also shown to contain scalaradial (2)[19]. Finally, the nudibranchs Glossodoris pallida and Glossodoris cincta from Guam have demostrated to possess diet-derived scalaradial (2)[16,20].

The biological properties of scalaradial (2) have long been studied. Scalaradial (2) displays not only antifeedant and ichthyotoxic properties but also cytotoxic, antitumour and anti inflammatory effects (Table 1). The majority of terpenoids, containing an unsaturated 1,4-dialdehyde functionality, are intensely pungent and are generally versatile repellents [21,22]. This activity has been explained by their interaction with vanilloid receptors [23]. Scalaradial (2) is tasteless but is part of an effective defense against predation by reef fishes and crabs (Leptodius sp.)[16,17]. Scalaradial (2) is very toxic at 10 ppm when evaluated for its ichthyotoxicity in the mosquito fish Gambusia affinis test [19]. Scalaradial (2) is cytotoxic in the Artemia salina shrimp bioassay (LD₅₀= $0.18 \mu g/mL$)[12b]. Compound 2 showed strong antitumour activity against several human cancer cell lines (leukemia HL60, IC_{50} = 3.4 μ M; hepatocarcinoma BEL7402, IC₅₀= 5.8 μ M; breast cancer MDA-MB435, IC₅₀= 4.8 µM)[18]. Finally, scalaradial (2) exhibits potent activity against phospholipase A₂ (PLA₂) enzymes, which are involved in the biosyntesis of eicosanoids responsible for the inflammatory response. Thus, scalaradial (2) was found to inhibit PLA₂ from bee venom (IC₅₀= 0.07μ M)[24], and human recombinant PLA₂ (IC₅₀= 0.07μ M)[25].

Desacetylscalaradial (3) was first isolated in 1981 from a Japanese specimen of the sponge Cacospongia scalaris and showed interesting cytotoxic activity against L1210 cancer cells (IC₅₀= $0.58 \mu g/mL$)[13]. Desacetylscalaradial (3) has also been isolated from the nudibranch Chromodoris youngbleuthi (currently known as *Glossodoris rufomarginata*) and the sponge Spongia oceania on which the nudibranch feeds, collected at Hawai [15]. Similarly, compound 3 was found in the nudibranch Glossodoris pallida and its sponge prey Cacospongia sp, collected at Guam [17,20], and in the nudibranch Glossodoris rufomarginata and its dietary sponge collected at the South China Sea [19]. Desacetylscalaradial (3) is very toxic at 10 ppm when evaluated for its ichthyotoxicity in the Gambusia affinis test [19].

12-Deacetoxyscalaradial (scalarenedial, 4) was first isolated in 1994 from the Mediterranean sponge *Cacospongia mollior* and showed cytotoxic activity in the *Artemia salina* shrimp bioassay ($LD_{50}= 0.77 \ \mu g/mL$) [12b]. The structure of 12-deacetoxyscalaradial (4) proposed by spectral data was confirmed by X-ray diffraction analysis and represents the first scalarane sesterterpenoid without a substituent at C-12 [12b]. Compound 4 was active in a fish (*Carassius carassius*) feeding inhibition bioassay at a concentration of 30 $\mu g/cm^2$ and was hot in taste [12b]. Later, 12-deacetoxyscalaradial (4) has also been found in the sponge *Cacospongia scalaris* collected at Tarifa Island (Spain) [14], and has been prepared by total synthesis [26].

12-Epi-scalaradial (5) was first isolated in 1979 from the Mediterranean sponge *Spongia nitens* [27]. Later, it has been found in the Tongan sponge *Hyrtios erecta* [28], in the Great Barrier Reef sponge *Col*- lospongia auris [29], and in the sponge Spongia agaricina collected near Tarifa Island (Spain)[30]. Finally, the nudibranchs Glossodoris hikeurensis and Glossodoris cincta from Guam have also demostrated to contain 12-epi-scalaradial (5)[16b]. Recently, 12-episcalaradial (5) has been prepared by semisynthesis from natural pentacyclic scalaranes [31,32]. Compound 5 showed antimicrobial activity using the standard disk assay against Staphylococcus aureus (10 µg/disk), Bacillus subtilis (10 µg/disk), and Candida albicans (10 µg/disk)[29]. 12-Epi-scalaradial (5) is an inhibitor of human recombinant PLA₂ (IC₅₀= 0.02μ M) and significantly reduces induced mouse ear inflammation [25]. 12-Epi-scalaradial (5) is also an inhibitor of epidermal growth factor receptor (EGFR), which is implicated in many cancers [33]. Semisynthetic 12-epi-scalaradial (5) has displayed both antitubercular (MIC= 58 μ M) and cytotoxic activity (human oral fibroblasts, IC_{50} = 1.26 μ M; ovarian cancer SKOV3, IC₅₀= 23.3 μ M; melanoma SK-MEL, IC₅₀> 42.7 µM; breast cancer BT549, IC₅₀= 21.0 μ M; Vero, IC₅₀= 22.2 μ M), as well as potent antimicrobial activity against methicillinresistant Staphylococcus aureus (MRSA) with an IC₅₀ value of 6.3 µM [31,32].

Fig. (3). Mooloolabenes A, B and C (13-15).

12-Deacetyl-12-epi-scalaradial (6) was first isolated in 1986 from the nudibranch Chromodoris voungbleuthi (currently known as Glossodoris rufomarginata)[20], collected at Hawai [15], and the Tongan sponge Hyrtios erecta [28b]. 12-Deacetyl-12-epi-scalaradial (6) has also been isolated from the Great Barrier Reef sponge Collospongia auris [29]. Recently, 12-deacetyl-12-epi-scalaradial (6) has been prepared by semisynthesis from natural pentacyclic scalaranes [31,32]. Semisynthetic 12-deacetyl-12-epi-scalaradial (6) has displayed both antitubercular (MIC= 64 μ M) and cytotoxic activity (ovarian cancer SKOV3, IC_{50} = 31.0 μ M; melanoma SK-MEL, IC₅₀= 26.4 µM; breast cancer BT549, IC₅₀= 19.4 μ M; Vero, IC₅₀= 19.4 μ M), as well as antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with an IC₅₀ value of 22 µM [31,32].

25-Dihydroscalaradial (**7**) and 18-epi-scalaradial (**8**) were isolated from the sponge *Cacospongia scalaris* collected at Tarifa Island (Spain)[14]. Both compounds showed significant cytotoxicity towards five tumour cell lines (mouse lymphoma P388 and Schabel, $ED_{50}=$ 2 and 0.2 µg/mL; human lung carcinoma A549, $ED_{50}=$ 2 and 0.2 µg/mL; human colon carcinoma HT29, $ED_{50}=$ 2 and 0.2 µg/mL; human melanoma MEL28 $ED_{50}=$ 2.5 and 0.5 µg/mL, respectively).

12,18-Diepi-scalaradial (9) was first isolated in 1979 from the Mediterranean sponge *Spongia nitens* [27]. Later, it has been found in the Great Barrier Reef sponge *Collospongia auris* [29], and the sponge *Spongia agaricina* collected near Tarifa Island (Spain)[30]. Compound 9 showed antimicrobial activity using the standard disk assay against *Staphylococcus aureus* (10 μ g/disk), *Bacillus subtilis* (10 μ g/disk), and *Candida albicans* (50 μ g/disk)[29].

12-Deacetyl-12,18-diepi-scalaradial (10) was found in the Californian sponge Spongia idia [34]. This compound has been prepared by pyrolytic cleavage of natural pentacyclic scalaranes [31] and epimerization at C-18 from semisynthetic 12-deacetyl-12-epi-scalaradial (6) and its structure was confirmed by X-ray crystallography [32]. Natural 12-deacetyl-12,18-diepi-scalaradial (10) has displayed antifeedant properties [34,35]. Semisynthetic 12-deacetyl-12,18-diepi-scalaradial (10) has displayed both antitubercular (MIC= 8 μ M) and cytotoxic activities (ovarian cancer SKOV3, IC_{50} = 19.4 μ M; melanoma SK-MEL, IC₅₀= 18.6 μ M; breast cancer BT549, IC₅₀= 12.9 μ M; Vero, IC₅₀= 20.7 μ M), as well as potent antimicrobial activity against methicillinresistant Staphylococcus aureus (MRSA) with an IC₅₀ value of 3.8 µM [31,32].

12-Deacetyl-18-epi-12-oxoscalaradial (**11**) was isolated in 1986 from the nudibranch *Chromodoris youngbleuthi* (currently known as *Glossodoris rufomarginata*)[20], collected at Hawai. This compound was not present in the sponge *Spongia oceania* on which the nudibranch feeds [15]. 12-Deacetyl-18-epi-12oxoscalaradial (**11**) is also a semisynthetic compound, which has been prepared from other semisynthetic pentacyclic scalaranes [32]. It has displayed cytotoxic activity (ovarian cancer SKOV3, IC₅₀= 31.2 μM; melanoma SK-MEL, IC₅₀= 14.3 μM; breast cancer BT549, IC₅₀= 15.6 μM; Vero, IC₅₀= 15.6 μM), as well as antimicrobial activity against methicillin-resistant *Staphylococcus aureus* (MRSA) with an IC₅₀ value of 30.1 μM [32].

12-Deacetyl-12-oxoscalaradial (12) has been isolated recently from the nudibranch *Glossodoris rufomarginata* collected at the South China Sea [19]. Other *Glossodoris* nudibranchs, such as *G. pallida* from the South China Sea, and *G. vespa* and *G. averni* from Eastern Australia, also contain compound 12 as main me-

tabolite [20].²⁰ The finding of scalaranes exhibiting the keto function at C-12 is particularly interesting. This structural feature is quite common in the homoscalarane and bishomoscalarane series but unusual in the scalaranes isolated from sponges. In fact, this feature has been found only in nudibranch metabolites, indicating the ability of these mollusks to oxidise the hydroxyl/acetoxyl function at C-12 of dietary scalaranes [19,20]. Recently, 12-deacetyl-12-oxoscalaradial (12) has been prepared by semisynthesis from natural pentacyclic scalaranes [31,32]. Natural 12-deacetyl-12oxoscalaradial (12) is very toxic at 10 ppm when evaluated for its ichthyotoxicity in the mosquito fish Gambusia affinis test [19]. Semisynthetic 12-deacetyl-12oxoscalaradial (12) has displayed both antitubercular (MIC= 130 μ M) and cytotoxic activities (ovarian cancer SKOV3, IC₅₀= 41.6 µM; melanoma SK-MEL, IC_{50} = 14.6 µM; breast cancer BT549, IC_{50} = 15.6 µM; Vero, IC_{50} = 18.2 µM), as well as antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with an IC₅₀ value of 27.8 μ M [31,32].

Other metabolites related to scalaradial (2) that possess a 1,4-dialdehyde moiety are mooloolabenes A (13), B (14) and C (15) (Fig. 3), which were isolated from the Australian sponge *Hyattella intestinalis* [36]. These metabolites, however, are characterised by the lack of functionality at C-12 and lack of a methyl substituent at C-8 (norscalaranes). All were cytotoxic toward the P388 mouse leukemia cell line with IC₅₀ values of 0.8, 1.2 and 3-10 µg/mL, respectively.

Also, compounds (**16-18**) (Fig. **4**) are similar to scalaradial (**2**), They were isolated from the Korean sponge *Smenospongia* sp. [37], and differ from scalaradial in the lack of functionality at C-12 and the oxidation degree at C-24, presenting either a carboxylic acid or a methyl ester. These compounds showed significant cytotoxicity against human chronic myelogenous leukemia K562 cell line (LC₅₀ 3.7-8.6 µg/mL). In addition, compound **18** exhibited antibacterial activity against both Gram-positive and -negative bacteria [37].

Another subgroup of tetracyclic scalaranes is composed of rare 25-norscalarane compounds such as metabolites **19-26** (Fig. **5**). Hyrtial (**19**) was the first reported 25-norscalarane. It was isolated from the Tongan sponge *Hyrtios erecta*, and it showed anti-inflammatory activity at 50 µg/mL and 43% decrease in ear weight of phorbolmyrstic-acetate-induced inflammation of mouse ear ca. 50 µg/ear [28]. From the Great Barrier Reef sponge *Collospongia auris* was isolated 12-deacetylhyrtial (**20**) and methyl 18-hydroxy-25-norscalar-16-en-24-carboxylate (**21**) [29]. Both compounds showed antimicrobial activity using the standard disk assay against *Staphylococcus aureus* (25 µg/disk) and *Bacillus subtilis* (50 µg/disk) [29]. 12-Deacetylhyrtial (**20**) has also been isolated from the Okinawan sponge Hyrtios erectus (also called H. erec*ta*) along with its Δ^{17} isomer (12-deacetyl- Δ^{17} -hyrtial, 22) and both compounds showed cytotoxic activity against KB cells with IC₅₀ values of 10.0 and 2.82 µg/mL, respectively [38]. Norscalarals A-C (23-25) were isolated from the sponge Cacospongia scalaris collected at Tarifa Island (Spain). This new compound showed significant cytotoxicity towards five tumour cell lines (mouse lymphoma P388, ED_{50} = 1-2 µg/mL; Schabel, $ED_{50}= 1-2 \mu g/mL$; human lung carcinoma A549, ED₅₀= 1-2.5 μ g/mL; human colon carcinoma HT29, ED₅₀= 1-5 μ g/mL; human melanoma MEL28 $ED_{50}= 2-2.5 \ \mu g/mL)[14]$. Norscalaral B (24) has also been found in the Californian sponge Hyatella intestinalis along with its deacetyl derivative (12-deacetylnorscalaral B, 26), which showed mild cytotoxic activity against three tumour cell lines (breast carcinoma MDA-MB-231, GI₅₀= 4.9 μ g/mL; lung carcinoma A549, GI_{50} = 4.5 µg/mL; colon carcinoma HT29, GI_{50} = 4.2 µg/mL)[39].

Fig. (4). Scalaradial-related compounds 16-18.

The group of tetracyclic scalaranes also includes a number of homoscalaranes and bishomoscalaranes such as keto-aldehydes **27-61** (Fig. **6** and **7**). Within this subgroup of tetracyclic scalaranes, we can distinguish members with an α , β -unsaturated methyl ketone (compounds **27-44**, Fig. **6**) and members without unsaturation (compounds **45-61**, Fig. **7**).

For example, several 24-methylscalaranes (**27-30**) were obtained from Australian sponges of the genus *Carteriospongia* (syn. *Phyllospongia*), among them, 24-methyl-24,25-dioxoscalar-16-en-12β-yl 3-hydroxy-butanoate (**27**) showed antifungal and antiinflammatory activity [8]. The structure of compound **30** was confirmed by X-ray crystallography [8]. From another Australian sponge (*Lendenfeldia* sp.) were isolated two additional 24-methylscalaranes (**31** and **32**)[40], which were also found in Palauan sponges (*Dictyoceratida* sp. and *Halichondria* sp.) along with two additional 24-homoscalaranes **33** and **34** [41]. 12α-Acetoxy-24-methyl-24-oxoscalar-16-en-22,25-dial (**33**) displayed significant inhibitory activity (IC₅₀= 0.5 µg/mL) on the

Fig. (5). 25-Norscalaranes.

platelet aggregations caused by adenosine 5'-diphosphate, collagen, or arachidonic acid [41]. Homoscalaranes 32 and 33 have also been isolated from other Palauan sponges of the order Dyctyoceratida such as Lendenfeldia chondrodes [42]. 24-Methyl-12,24,25trioxoscalar-16-en-22-oic acid (32) has also been found in other Lendenfeldia sponges collected at Indonesia [43], and Madagascar [44]. In the Madagascan specimen, compound 32 was isolated as its methyl ester (24methyl-12,24,25-trioxoscalar-16-en-22-oate, 35). which was found as a natural constituent in another Lendenfeldia sponge collected at Saipan (Mariana Islands)[45]. This sponge also contained compounds 29 and 36. Compound 32 was found to inhibit tumour cell growth in the National Cancer Institute's 60-cell line panel with some cell line selectivity (mean $GI_{50}= 1.17$ µM; range 0.26 to 3.55 µM)[43]. Compound 35 exhibited cytotoxic activity against three tumour cell lines (breast carcinoma MDA-MB-231, $GI_{50}= 2.0 \ \mu g/mL$; lung carcinoma A549, GI₅₀= 0.1 µg/mL; colon carcinoma HT29, GI₅₀= 1.0 µg/mL)[44]. Compounds 29, 35 and 36 were cytotoxic to four tumour cell lines (breast carcinoma MCF-7, MDA-MB-231, and T47D and prostate tumour PC-3 cells)[45]. 24-Methyl-12,24,25trioxoscalar-16-en-22-oic acid (32) is also the major constituent of Japanese Phyllospongia chondrodes, which, in addition, contained the known homoscalaranes 29, 31 and 33 together with the new homoscalaranes 37 and 38 [46]. Scalaranes 29, 31-33, 37 and 38 increased hemoglobin production in human chronic myelogenous leukemia cell line K562 at the concentration of 0.1-5.0 µg/mL, and induced erythroid differen-

40, R= EtCH(OH)CH₂CO-41, R= EtCH(OAc)CH₂CO-42, R= EtCH(OCOEt)CH₂CO-43, R= MeCH(OAc)CH₂CO-44, R= MeCH(OCOEt)CH2CO-

Fig. (6). Unsaturated 24-homoscalarane and 20,24-bishomoscalaranes.

tiation in K562 cells [46]. From the Pacific nudibranch Glossodoris sedna was isolated from the 24-homoscalarane **39** (22-acetoxy-24-methyl-12β-hydroxy-24oxoscalar-16-en-25-al), which was ichthyotoxic at 0.1 ppm against Gambusia affinis and inhibited mammalian phospholipase PLA₂ (IC₅₀= 18.0μ M)[47].

Within the subgroup of tetracyclic scalaranes possessing an α,β -unsaturated methyl ketone, there are various 20,24-bishomoscalarane members (compounds 40-44, Fig. 6). These metabolites have been isolated from the Australian sponge Strepsichordaia lendenfeldi [48,49]. Compounds **41-43** exhibited potent cytotoxicity against two tumour cell lines (mouse lymphoma P388, IC₅₀= 0.12, 0.12 and 0.2 μ g/mL; human lung carcinoma A549, IC₅₀= 0.25, 0.21 and 0.2 μ g/mL; respectively). Compounds 41 and 42 were also active against Bacillus subtilis [48].

The other subgroup of keto-aldehydes posseses a saturated methyl ketone, and we can also distinguish 24-homoscalarane and 20,24-bishomoscalaranes (compounds 45-61, Fig. 7). The first isolated members of this subgroup are scalarherbacin A (45) and scalarherbacin B (46), which were found in the sponge Dysidea herbacea collected at the Red Sea [50]. Several similar 24-methylscalaranes (47-49) were obtained from an unclassified Australian sponge of the genus Carteriospongia (syn. Phyllospongia)[8]. Another Australian sponge of the genus Carteriospongia, C. flabellifera, contained the homoscalarane 50 [51], whose structure was later confirmed by X-ray diffraction analysis [52]. From an Indonesian sponge, Phyllospongia sp., were isolated the homoscalaranes 51 and 52, whose structu-

Fig. (7). Saturated 24-homoscalarane and 20,24-bishomoscalaranes.

res were confirmed by X-ray analysis. Both compounds exhibited 30-95% inhibition of the growth of KB cells at 10 μ g/mL [53]. 12 α -Acetoxy-16 β -hydroxy-24methyl-24-oxoscalaran-25-al (51) was also found, together with 16\beta-hydroxy-24-methyl-12,24-dioxoscalaran-25-al (53), in Lendenfeldia sponges collected at Madagascar. Both compounds (51 and 53) were shown to be cytotoxic against fourteen human tumour cell lines (IC₅₀= $1.45-3.86 \,\mu g/mL$)[44].

Fig. (8). 23,24-Bishomoscalarane 62.

Within the subgroup of tetracyclic scalaranes possessing a saturated methyl ketone, there are various 20,24-bishomoscalarane members (compounds 54-61, Fig. 7). The first isolated member of this subgroup is foliaspongin (54), which has been found in the Okinawan sponge Phyllospongia foliascens and showed antiinflammatory properties [54]. From the Neo Guinean sponge Carteriospongia (syn. Phyllospongia) foliascens was isolated 12a-acetoxy-16\beta-hydroxy-20,24dimethyl-24-oxoscalaran-25-al (55), which was ichthyotoxic to the fish Lebistes reticulatus (LD= 5 mg/L)[55]. Compound 55 has also been found in Lendenfeldia sponges collected at Madagascar [44], in the Australian sponge Strepsichordaia lendenfeldi [48], and an Indonesian sponge, Phyllospongia sp. [53]. This compound (55) exhibited potent cytotoxicity against thirteen human tumour cell lines (IC₅₀= 1.13-1.99µg/mL)[44], two additional tumour cell lines (mouse lymphoma P388 and human lung carcinoma A549, $IC_{50} = 0.1 \ \mu g/mL)$ [48], and exhibited 30-95% inhibition of the growth of KB cells at 10 µg/mL [53]. Later, reexamination of Okinawan sponges Phyllospongia foliascens yielded dehydrofoliaspongin (56) and phyllofoliaspongin (57) together with known foliaspongin (54), whose structure was revised based on chemical and physical evidence (ethyl group at C-4 is axial, β)[56]. Phyllofoliaspongin (57) showed cytotoxic, antitrhrombocyte and vasodilative activities [56]. Similar 20,24-dimethylscalaranes (compounds 58-61) were isolated from Australian sponges Strepsichordaia lendenfeldi [48,49]. Compounds 58-60 exhibited potent cytotoxicity against two tumour cell lines (mouse lymphoma P388, IC₅₀= 0.23, 0.5 and 0.67 μ g/mL; human lung carcinoma A549, $IC_{50}= 0.66$, 0.5 and 0.67 µg/mL; respectively). Furthermore, compound 58 was active against Bacillus subtilis and Staphylococcus aureus and compound 60 was also active against Bacillus subtilis [48].

Fig. (9). 25-Oxidised 24-homoscalarane and 20,24-bishomo-scalaranes.

Within the subgroup of tetracyclic scalaranes possessing a saturated methyl ketone, there is a rare 23,24bishomoscalarane member (compound **62**, Fig. **8**), which was isolated from the Northern Adriatic sponge *Cacospongia scalaris* [57]. This compound is characterised by the lack of functionality at C-12 and methylation at C-23.

Finally, we describe several tetracyclic scalaranes that are metabolites related to 24-homoscalarane and 20,24-bishomoscalaranes. They are characterised by the oxidation state at C-25 as well as the lack of this carbon (25-norscalaranes). The first subgroup is composed of scalaranes possessing a carboxylic acid or derivative at C-25 (compounds 63-69, Fig. 9). For example, 24-homoscalarane 63 was found in the sponge Lendenfeldia frondosa collected at Solomon Islands [58]. 24-Homoscalaranes 64-66 were isolated from two different species of Madagascan sponges of the genus Lendenfeldia [44]. Methyl 126,166,22-trihydroxy-24methyl-24-oxoscalaran-25-carboxylate (64) exhibited cytotoxicity against the human lung carcinoma A549 cell line (IC₅₀= $3.7 \ \mu g/mL$)[44]. 20,24-Dimethylscalarane 67 has been isolated, as its methyl ester, from the Neo Guinean sponge Carteriospongia (syn. Phyllospongia) foliascens [55], and its structure was confirmed by single-crystal X-ray diffraction [59]. From another sponge also collected at Papua New Guinea, Phyllospongia papyracea, were isolated the 20,24bishomoscalaranes 68 and 69 [60].

The last group of tetracyclic scalaranes is composed of 24-homo-25-norscalarane and 20,24-bishomo-25norscalaranes (compounds 70-84, Fig. 10). For example. 25-nor-24-methyl-12,24-dioxoscalar-16-en-22-oic acid (70) was isolated from Palauan sponges (Dictyoceratida sp. and Halichondria sp.)[41]. 12β , 16β,22-Trihydroxy-24-methyl-24-oxo-25-norscalarane (71) was found in the sponge Phyllospongia dendyi collected at the Indian Ocean [61]. 24-Methylscalaranes 72 and 73 have been isolated from an Indonesian sponge, Phyllospongia sp., and both compounds exhibited 30-95% inhibition of the growth of KB cells at 10 µg/mL [53]. 20,24-Dimethylscalarane 74 (phyllofenone A) was isolated from the South China Sea sponge, Phyllospongia foliascens, and showed weak antifungal activity against Candida pseudotropicalis [62]. Another specimen of the same Chinese sponge, Phyllospongia foliascens, contained a related 20,24dimethylscalarane, phyllofenone E (75)[63]. From the same sponge, Carteriospongia (syn. Phyllospongia) foliascens, collected at Great Barrier Reef, compounds 76 and 77 on isolated [64]. Another specimen of the sponge Carteriospongia (syn. Phyllospongia) foliascens collected at Papua New Guinea contained the related 20,24-dimethylscalarane 78, which was moderately ichthyotoxic to the fish Lebistes reticulatus (LD= 20 mg/L)[55]. Compound 78 has also been found in an Indonesian sponge, *Phyllospongia* sp., and exhibited 30-95% inhibition of the growth of KB cells at 10 μ g/mL [53]. 25-Nor-12 α -acetoxy-16 β -(3'-hydroxybutanoyloxy)-20,24-dimethyl-24-oxoscalarane (79) has been isolated from the Australian sponge Strepsichordaia lendenfeldi [49]. The related 20,24-dimethyl-25norscalarane 80 was isolated from the Madagascaran sponge Phyllospongia madagascarensis [65]. Finally, there are several uncommon compounds that lack the C-25 and possess a double bond instead. For example, phyllofenone C (81), which was isolated from the Indonesian sponge, Strepsichordaia aliena [66]. Compound 82 is a chemical constituent of the sponge *Phyl*lospongia papyracea collected from Hainan Island in the South China Sea. 12α-Acetoxy-16β-hydroxy-20,24-dimethyl-25-norscalar-17-en-24-one (82) was cytotoxic against the leukemia P388 cancer cell line, with an IC₅₀ value of 5.0 μ g/mL [67]. Recently, two new 20,24-bishomo-25-norscalaranes, compounds 83 and 84, have been isolated from the Indonesian sponge Carteriospongia (syn. Phyllos-pongia) foliascens. Bishomonorscalarane 84 is an inhibitor of Ras proteolytic enzyme (IC₅₀ = 38 μ g/mL) and also inhibits the growth of four tumour cell lines (prostate PC3, IC_{50} = 3.8 μ g/mL; colon LoVo, IC₅₀= 7.6 μ g/mL; colon CA-CO2, IC₅₀= 3.4 µg/mL; breast MDA 468, IC₅₀= 9.5 µg/mL)[68].

2.2. Pentacyclic Scalaranes

The first subgroup of pentacyclic scalaranes contains compounds derived formally from scalarin (1), and therefore characterised by the functionalisation present in ring E, either a γ -lactol or a γ -lactone ring E (Fig. 11). Scalarin (1) was first isolated in 1972 by Fattorusso et al. from the sponge Cacospongia scalaris collected in the gulf of Naples (Italy)[9]. Later, it has been found in other sponges Cacospongia scalaris collected at the Southern Coast of Spain [14] and collected at the gulf of Astakos (Greece)[69], as well as other different marine sponges. For example, scalarin (1) was found among the constituents of an undescribed sponge species of Cacospongia collected at Apra Harbor, Guam (Micronesia)[16,17], the sponges Dysidea villosa and Dysidea marshalla collected at the South China sea [18], the sponge Hyatella intestinalis collected at the gulf of California [39], the sponge Hyrtios sp. collected off Okinawa Island [70], the sponge Spongia matamata collected at Palau [71], the sponge Hyrtios erecta collected at Hainan (China)[72], and an unnamed sponge of the genus Ircinia [73]. During these studies, the structure and relative stereochemistry of scalarin (1) was verified by X-ray crystallography [73]. however, the potential biological activity of this molecule has not yet been studied.

Fig. 10. 24-Homo-25-norscalaranes 70-73 and 20,24bishomo-25-norscalaranes 74-84.

A number of scalarin-related metabolites have been isolated, They differ mainly in the functionalisation at C-12 and C-25 (compounds 85-103, Fig. 11 and 12). For example, 12-epi-scalarin (85) was first isolated in 1977 from the Mediterranean sponge Spongia nitens [74]. Later, it has been found in the Tongan sponge Hyrtios erecta [28], in the sponge Spongia agaricina collected near Tarifa Island (Spain)[30], in a sponge Hyrtios sp. collected at American Samoa [32], in the sponges Hyrtios erecta collected at Setouchi (Japan)[75] and collected from Hainan Island in the South China Sea [76], in sponges of the genus Spongia collected at the Japan Sea [77,78] and collected at the South Sea of Korea [79], and in the nudibranch Chromodoris funerea collected at Kaibakku Lake, Palau [80]. 12-Epi-scalarin (85) exhibited moderate cytotoxicity towards four tumour cell lines (murine leukemia L1210, IC₅₀= 13.2 μ g/mL; human cervix epithelioid carcinoma HeLa, IC_{50} = 26.0 µg/mL; human lung carcinoma A549, IC₅₀= 23.7 μ g/mL; and human oral

Table 1. Biological Activity Found in Compounds 2-84

Compound	Biological activity
Scalaradial, 2	Cytotoxic [12b]
Scalaradial, 2	Antifeedant [16,17]
Scalaradial, 2	Antitumour [18]
Scalaradial, 2	Ichthyotoxic [19]
Scalaradial, 2	Phospholipase A ₂ (PLA ₂) inhibition [24,25]
Desacetylscalaradial, 3	Cytotoxic [13]
Desacetylscalaradial, 3	Ichthyotoxic [19]
12-Deacetoxyscalaradial, 4	Cytotoxic and antifeedant [12b]
12-Epi-scalaradial, 5	PLA ₂ inhibition and antiinflammarory [25]
12-Epi-scalaradial, 5	Antimicrobial [29]
12-Epi-scalaradial, 5	Antitubercular, antimicrobial and cytotoxic [31,32]
12-Epi-scalaradial, 5	Epidermal growth factor receptor (EGFR) inhibition [33]
12-Deacetyl-12-epi-scalaradial, 6	Antitubercular [31]
12-Deacetyl-12-epi-scalaradial, 6	Antimicrobial and cytotoxic [32]
25-Dihydroscalaradial, 7	Cytotoxic [14]
18-epi-scalaradial, 8	Cytotoxic[14]
12,18-Diepi-scalaradial, 9	Antimicrobial [29]
12-Deacetyl-12,18-diepi-scalaradial, 10	Antitubercular, antimicrobial and cytotoxic [31,32]
12-Deacetyl-12,18-diepi-scalaradial, 10	Antifeedant [34,35]
12-Deacetyl-18-epi-12-oxoscalaradial, 11	Antimicrobial and cytotoxic [32]
12-Deacetyl-12-oxoscalaradial, 12	Ichthyotoxic [19] and antitubercular [31]
12-Deacetyl-12-oxoscalaradial, 12	Antimicrobial and cytotoxic [32]
Mooloolabenes A (13), B (14) and C (15)	Cytotoxic [36]
Compounds 16-18	Cytotoxic [37]
Compound 18	Antimicrobial [37]
Hyrtial, 19	Antiinflammatory [28]
12-Deacetylhyrtial, 20	Antimicrobial [29]
12-Deacetylhyrtial, 20	Cytotoxic [38]
Compound 21	Antimicrobial [29]
12-Deacetyl- Δ^{17} -hyrtial, 22	Cytotoxic [38]
Norscalarals A-C, 23-25	Cytotoxic [14]
12-Deacetylnorscalaral B, 26	Cytotoxic [39]
24-Methyl-24,25-dioxoscalar-16-en-12β-yl 3-hydroxybutanoate, 27	Antifungal and antiinflammatory [8]
22-Hydroxy-24-methyl-12,24-dioxoscalar-16-en-25-al, 29	Cytotoxic [45] and antitumour [46]
12α-Acetoxy-22-Hydroxy-24-methyl-24-oxoscalar-16-en-25-al, 31	Antitumour [46]
24-Methyl-12,24,25-trioxoscalar-16-en-22-oic acid, 32	Antitumour [43,46]

(Table 1) Contd....

Compound	Biological activity
12α-Acetoxy-24-methyl-24-oxoscalar-16-en-22,25-dial, 33	Platelet aggregation inhibition [41] and antitumour [46]
24-Methyl-12,24,25-trioxoscalar-16-en-22-oate, 35	Cytotoxic [44,45]
22-Hydroxy-24-methyl-12α-hydroxy-24-oxoscalar-16-en-25-al, 36	Cytotoxic [45]
24-Methyl-12,24-dioxoscalar-16-en-22,25-dial, 37	Antitumour [46]
12α-Acetoxy-24-Methyl-24,25-dioxoscalar-16-en-22-oic acid, 38	Antitumour [46]
22-Acetoxy-24-methyl-12β-hydroxy-24-oxoscalar-16-en-25-al, 39	Ichthyotoxic and PLA ₂ inhibition [47]
12α-(3'-Acetoxypentanoyloxy)-20,24-dimethyl-24-oxoscalar-16-en-25-al, 41	Antimicrobial and cytotoxic [48]
12α-(3'-Propanoyloxypentanoyloxy)-20,24-dimethyl-24-oxoscalar-16-en-25-al, 42	Antimicrobial and cytotoxic [48]
12α-(3'-Acetoxybutanoyloxy)-20,24-dimethyl-24-oxoscalar-16-en-25-al, 43	Cytotoxic [48]
12α-Acetoxy-16β-hydroxy-24-methyl-24-oxoscalaran-25-al, 51	Cytotoxic [44,53]
12α,16β-Diacetoxy-24-methyl-24-oxoscalaran-25-al, 52	Cytotoxic [53]
16β-Hydroxy-24-methyl-12,24-dioxoscalaran-25-al, 53	Cytotoxic [44]
Foliaspongin, 54	Antiinflammatory [54]
12α-Acetoxy-16β-hydroxy-20,24-dimethyl-24-oxoscalaran-25-al, 55	Cytotoxic [44,48,53] and ichthyotoxic [55]
Phyllofoliaspongin, 57	Cytotoxic, anti-thrombocyte and vasodilative [56]
12α-Acetoxy-16β-(3'-hydroxybutanoyloxy)-20,24-dimethyl-24-oxoscalaran-25-al, 58	Antimicrobial and cytotoxic [48]
12α-Acetoxy-16β-(3'-hydroxypentanoyloxy)-20,24-dimethyl-24-oxoscalaran-25-al, 59	Cytotoxic [48]
12α-Acetoxy-16β-propanoyloxy-20,24-dimethyl-24-oxoscalaran-25-al, 60	Antimicrobial and cytotoxic [48]
Methyl 12β,16β,22-trihydroxy-24-methyl-24-oxoscalaran-25-carboxylate, 64	Cytotoxic [44]
12α -Acetoxy-16 β -hydroxy-24-methyl-24-oxo-25-norscalarane, 72	Cytotoxic [53]
12α-Acetoxy-16β,18β-dihydroxy-24-methyl-24-oxo-25-norscalarane, 73	Cytotoxic [53]
Phyllofenone A, 74	Antifungal [62]
12α-Acetoxy-16β-hydroxy-20,24-dimethyl-24-oxo-25-norscalarane, 78	Cytotoxic [53] and ichthyotoxic [55]
12α-Acetoxy-16β-hydroxy-20,24-dimethyl-25-norscalar-17-en-24-one, 82	Cytotoxic [67]
12α-(3'-Hydroxy-4'-methylpentanoyloxy)-16α-hydroxy-20,24-dimethyl-25-norscalar- 17-en-24-one, 84	RCE-protease inhibition and antitumour [68]

epidermoid carcinoma KB, IC_{50} = 18.5 µg/mL)[77], as well as neurotrophic activity in pheochromocytoma (PC-12) cells at the concentration of 50 µg/mL [78]. Compound **85** also showed inhibition of farnesoid X-activated receptor (FXR) transactivation, which is related to potential drugs for hypercholesterolemia in humans, with IC_{50} value of 60.4 µM [79].

12-O-Deacetyl-scalarin (**86**) has been isolated from the sponge *Dysidea villosa* collected at the South China sea [18], and a sponge *Hyrtios* sp. collected off Okinawa Island [70]. Compound **86** exhibited nerve growth factor (NGF) synthesis-stimulating activity in cultured astroglial cells at 30 μ g/mL, 4.8-fold of normal control, which has led to a patent for the treatment of Alzheimer's disease [70,81].

12-*O*-Deacetyl-12-epi-scalarin (**87**) has been isolated from sponges of the genus *Spongia* collected at the Japan Sea [77,78] and collected at the South Sea of Korea [79], and sponges *Hyrtios erecta* collected at the Red Sea (Egypt)[82], and collected near Kavieng, Papua New Guinea [83]. 12-*O*-Deacetyl-12-epi-scalarin (**87**) exhibited moderate cytotoxicity towards four tumour cell lines (murine leukemia L1210, IC₅₀= 2.3 μ g/mL; human cervix epithelioid carcinoma HeLa, IC₅₀= 15.0 μ g/mL; human oral epidermoid carcinoma KB,

Fig. (11). Scalarin (1) and related metabolites.

IC₅₀= 14.3 μg/mL)[77], as well as neurotrophic activity in pheochromocytoma (PC-12) cells at the concentration of 50 μg/mL [78]. Compound **87** also showed inhibition of farnesoid X-activated receptor (FXR) transactivation with IC₅₀ value of 75.0 μM [79]. The chemical study of the sponge *Hyatella intestinalis*, collected at the gulf of California, has yielded the new sesterterpene 12-*O*-deacetyl-25-epi-scalarin (**88**)[39].

25-Dehydroxy-scalarin (89) has been found in the sponge Cacospongia scalaris collected at the Southern Coast of Spain [14], Meanwhile its epimer at C-12, 25dehydroxy-12-epi-scalarin (90), was isolated from the Pacific nudibranch Glossodoris dalli extract, after acetylation [47], and also from the sponges *Hyrtios erecta* collected at the South China Sea [76] and Brachiaster sp. collected near Koh-Tao (Thailand)[84]. Both compounds (89 and 90) have been prepared by semisynthesis from scalarin (1) and 12-epi-scalarin (85), respectively [74]. Compound 90 has displayed both antitubercular (MIC= 117 μ M) and cytotoxic activities (human breast adenocarcinoma MCF-7, IC_{50} = 5.2 µM; colorectal carcinoma HT-29, IC₅₀= 2.3 µM; human cervical carcinoma HeLa, IC₅₀= 5.5 µM; and human oral epidermoid carcinoma KB, $IC_{50}=3.0 \ \mu M)[84]$.

25-Dehydroxy-12-epi-deacetylscalarin (91) was first isolated in 1995 from the sponge *Heteronema* (syn. *Hyrtios*) *erecta* [85]. Later, it has been found in other sponges *Hyrtios erecta* collected at Hainan Island

Fig. (12). Scalarin-related metabolites 99-103.

in the South China Sea [72], collected at the Indian Ocean, which included the X-ray structure determination [86], and collected at the Red Sea (Egypt)[87], as well as other different marine sponges. For example, compound 91 was found among the constituents of three undescribed sponge species of the genus Spongia collected at the Japan Sea [77,78] and collected at the South Sea of Korea [79], the sponge *Brachiaster* sp. collected near Koh-Tao (Thailand)[84], the sponge Hyatella cribriformis collected at the Indian Ocean [88], and the Thai sponge Hyrtios gumminae [89]. Recently, compound **91** has been prepared by semisynthesis from other natural pentacyclic scalaranes [32]. The biological activity of compound **91** is wide, for example, it has been described as a neurotrophic agent in pheochromocytoma (PC-12) cells at 50 µg/mL [78], as a farnesoid X-activated receptor (FXR) transactivation inhibitor $(IC_{50}=31.6 \ \mu M)[79]$, as a murine lymphocytic leukemia P388 cell line inhibitor (ED₅₀= 2.9 μ g/mL)[86], and as a weak antitubercular agent (MIC= $16 \mu M$ [84]; 16% inhibition against Mycobacterium tuberculosis $(H_{37}Rv)$ at 6.25 µg/mL)[87]. In addition, compound 91 has displayed cytotoxicity against a number of cancer cell lines (murine leukemia L1210, IC₅₀= 1.6 µg/mL; human cervix epithelioid carcinoma HeLa, IC_{50} = 16.5 μ g/mL; human lung carcinoma A549, IC₅₀= 16.5 µg/mL; and human oral epidermoid carcinoma KB, $IC_{50} = 17.1 \ \mu g/mL)[77]$; human breast adenocarcinoma MCF-7, IC₅₀= 0.3 µM; colorectal carcinoma HT-29, $IC_{50}=0.9 \ \mu M$; human cervical carcinoma HeLa, $IC_{50}=$ 2.0 µM; and human oral epidermoid carcinoma KB, $IC_{50}= 0.7 \mu M$ [84]; and human cholangiocarcinoma HuCCA-1, IC₅₀= 42 μ M; human oral epidermoid carcinoma KB, IC₅₀= 7.0 μ M; human cervical carcinoma HeLa, $IC_{50}= 23 \mu M$; hormone-independent breast cancer MDA-MB-231, IC₅₀= 5.9 μ M; hormone-dependent breast cancer T47D, IC₅₀= 5.2 μ M; and multidrugresistant small-cell lung cancer H69AR, IC₅₀= 57 µM [89]. However, semisynthetic 91 lacks cytotoxicity at doses up to 45 µM against three human cancer cell lines (ovarian cancer SKOV3; melanoma SK-MEL; and breast cancer BT549) and was not active against *Mycobacterium intracellulare* and methicillin-resistant *Staphylococcus aureus* [32].

12-Deacetoxy-19-acetoxyscalarin (92) was isolated from the sponge Hyrtios erectus (also called H. erecta) collected from Southern Japan and exhibited cytotoxicity against P388 murine leukemia cells ($IC_{50}=0.9$ µg/mL)[90]. From the sponge Hyrtios erecta, collected from Hainan Island in the South China Sea, hyrtiosins A-C (93-95) were isolated [76]. We must say at this point that the names hyrtiosin A and B had been used previously for two indole alkaloids [91]. A sponge specimen of the genus Spongia collected at the South Sea of Korea contained the scalarin-related compounds 96-98 and exhibited inhibition of farnesoid X-activated receptor (FXR) transactivation with IC₅₀ values of 24.0, >100, and 2.4 µM, respectively [79]. Compound 96 has been also isolated from a sample of the sponge Hyrtios erecta collected near Kavieng, Papua New Guinea, though this compound might be an isolation artifact [83].

The group of scalarin-related metabolites also includes a number of compounds which are characterised by the lack of functionality at C-12 (compounds 99-103, Fig. 12). For example, 12-deacetoxy-22-hydroxy-25-acetoxyscalarin (99) was found in the Korean sponge Smenospongia sp., and showed moderate cytotoxicity against human chronic myelogenous leukemia K562 cell line (LC₅₀ 22.5 µg/mL)[37]. In addition, compound 99 exhibited antibacterial activity against both Grampositive and -negative bacteria [37]. Deacetoxyscalarin (100) has been isolated from a sponge of the genus Spongia collected at the Japan Sea [78]. 12-Deacetoxy-25-acetoxy-scalarin (101) was isolated from the Thai sponge Brachiaster sp. and showed potent antitubercular activity (MIC= 4 µM)[84]. 12-Deacetoxy-22,25diacetoxy-scalarin (102)and 12-deacetoxy-22acetoxyscalarin (103) were isolated from the sponge Smenospongia sp. collected at Gagu-Do Island (Korea) and displayed moderate cytotoxicity toward the human leukemia cell line K562 (LC50 4.9 and 11.2 µg/mL, respectively)[92].

Other scalarin-related metabolites are characterised by a γ -lactol ring E possessing a double bond between C-17 and C-18 (compounds **104-108**, Fig. **13**), instead of the typical double bond between C-16 and C-17. Hyrtiolide (**104**) has been isolated from an Okinawan specimen of *Hyrtios erectus* (also called *H. erecta*)[38] and the Thai sponge *Hyrtios gumminae* [89]. Hyrtiolide (**104**) showed weak cytotoxic activity against several cancer cell lines (human cholangiocarcinoma HuCCA-1, IC₅₀= 57 μ M; human oral epidermoid carcinoma KB, IC₅₀= 12 μ M; human cervical carcinoma HeLa, IC₅₀= 22 μ M; hormone-independent breast cancer MDA-MB-231, IC₅₀= 26 μ M; and hormone-dependent breast cancer T47D, IC₅₀= 34 μ M)[89]. 12 α -O-Acetylhyrtiolide (105) was found in a Chinese specimen of Hyrtios erectus (also called H. erecta)[72]. The related 12-Oacetyl-16-O-methylhyrtiolide (106), however, was isolated in a sponge of the genus Spongia collected at the Japan Sea and exhibited cytotoxicity against four tumour cell lines (murine leukemia L1210, $IC_{50}= 2.2$ µg/mL; human cervix epithelioid carcinoma HeLa, IC₅₀= 5.3 µg/mL; human lung carcinoma A549, IC₅₀= 5.3 µg/mL; and human oral epidermoid carcinoma KB, IC_{50} = 15.6 µg/mL)[77]. Sesterstatin 6 (107) was isolated from an Indian Ocean specimen of the sponge Hyrtios erecta, and showed significant cancer cell growth inhibition against murine P388 lymphocytic leukemia (ED₅₀= $0.17 \mu g/mL$) and a series of human tumour cell lines (human pancreas carcinoma BXPC-3, $GI_{50}=0.44$ µg/mL; thyroid KAT-4, GI₅₀= 0.4 µg/mL; thyroid SW1736, GI₅₀= 0.87 µg/mL; lung-NSC NCI-H460, $GI_{50}= 0.18 \ \mu g/mL;$ pharynx-sq FADU, $GI_{50}= 0.89$ µg/mL; prostate DU-145, GI₅₀= 0.37 µg/mL)[93]. Another compound belonging to this subgroup is 12α acetoxy-19\beta-hydroxyscalara-15,17-dien-24,25-olide (108) which is characterised by an additional double bond, probably formed by elimination of an oxygenated-precursor at C-16. This compound was found in the sponge Spongia matamata collected at Risong marine lake, Republic of Palau [71].

Fig. (13). Hyrtiolide-related metabolites 104-108.

Another subgroup of scalarane metabolites which also contains a double bond between C-17 and C-18 are compounds **109-116** (Fig. **14**). These compounds are also characterised by a γ -lactone ring E having the carbonyl group located at C-25. There is a variety of oxygenation pattern at C-3, C-12, C-16 and C-19. For example, scalarolide (**109**) was isolated from the sponge *Spongia idia* [34] and *Leiosella idia* [35] collected at Point Loma, San Diego, California, USA. Also, compound **109** was isolated from the Okinawan sponge *Hyrtios erectus* (also called *H. erecta*)[38], from a sponge *Cacospongia* sp. collected at Little Barrier Island, New Zealand [94], from the Red Sea sponge *Hyr*- tios erecta [82,95], from the sponge Hyatella cribriformis of the Indian Ocean [88], and the Thai sponge Hyrtios gumminae [89]. The X-ray structure of scalarolide (**109**) has been reported [73] as well as its semisynthesis [96]. Sesterstatins 1-3 (**110-112**) were isolated from The Republic of Maldives' sponge Hyrtios erecta and showed cytotoxic activity against P-388 leukemia (ED₅₀= 0.46, 4.2 and 4.3 µg/mL, respectively)[97].

16β-Hydroxyscalarolide (**113**) was found in the sponges *Hyrtios erectus* (also called *H. erecta*) collected at Okinawa [38] and Red Sea [82]. 19-Acetylsesterstatin 3 (**114**) and 3-acetylsesterstatin 1 (**115**) and sesterstatin 7 or 16β-acetoxyscalarolide (**116**) were found in the Red Sea sponge *Hyrtios erecta* [87,89,95]. Sesterstatin 7 (**116**) has been previously reported as a semisynthetic intermediate from the compound 16β-hydroxyscalarolide [38]. Compounds **115** and **116** showed inhibition of *Mycobacterium tuberculosis* (H₃₇Rv)[87].

Fig. (14). Scalarolide-related metabolites 109-116.

Another subgroup of scalarane metabolites, which also contains a double bond between C-17 and C-18 and a γ - lactol/lactone ring E (butenolide/hydroxybutenolide, having the carbonyl group located at C-25), are compounds **117-154** (Fig. **15** and **16**). Some of these compounds are characterised by a γ -hydroxybutenolide ring E (compounds **117-129**, Fig. **15**). For example, hyatolide E (**117**) and the related γ -lactols hyatolide C (**118**, OH-24 β) and hyatolide D (**119**, OH-24 α), both isolated as a 2.5:1 mixture of epimers, respectively, have been found during the chemical study of *Hyatella intestinalis* from the Gulf of California [39]. 24-Hydroxy-scalarolide (**120**) was found in the Great Barrier Reef sponge *Collospongia auris* and showed antimicrobial activity using the standard disk assay against Staphylo-coccus aureus (25 µg/disk), Bacillus subtilis (25 µg/disk), and Candida albicans (50 µg/disk)[29]. The related γ-hydroxybutenolides 12β-acetoxy-26hydroxy-17-scalaren-25,24-olide (121)and 12β , 16α , 24-trihy-droxy-17-scalaren-25, 24-olide (122) were obtained as mixtures of epimers from the Thai sponge Hyrtios gumminae [89]. Compound 122 showed weak cytoto-xic activity against several cancer cell lines (human cholangiocarcinoma HuCCA-1, IC₅₀= 65 μ M; human oral epidermoid carcinoma KB, IC₅₀= 14.0 μ M; human cervical carcinoma HeLa, IC₅₀= 26.0 μ M; hormone-independent breast cancer MDA-MB-231, IC_{50} = 29.0 µM; and hormone-dependent breast cancer T47D, IC₅₀= 48.0 μ M)[89]. 24 β -methoxyscalarolide (123) was isolated from the sponge Hyatella cribriformis of the Indian Ocean [88].

The six additional y-hydroxybutenolides (compounds 124-129) belong to the bishomoscalarane-type of sesterterpenes. For example, phyllolactone E (124)was isolated from the marine sponge Phyllospongia lamellosa collected at the Indo-West Pacific [98]. Phyllactone D (125, Me-24 α) and E (125, Me-24 β) were isolated as a 1:1 mixture of epimers at C-24 from the sponge Phyllospongia foliascens collected at the South China Sea [99,100], and the sponge Phyllospongia papyracea collected also from the South China Sea [67]. Phyllactone F (126, Me-24 α) and G (126, Me-24 β) were also isolated as a 1:1 mixture of epimers at C-24 from the sponge Phyllospongia foliascens collected at the South China Sea [101,102]. The corresponding C-12 epimers of phyllactone D (127, Me-24 α) and E (127, Me-24 β) were isolated as a 1:4 mixture from the sponge Carteriospongia (syn. Phyllospongia) foliascens collected at Indonesia [68]. The same sponge also contained the related epimeric 20,24-bishomoscalaranes 128 as a 1:1 mixture at C-24 [68]. The last metabolite having a y-hydroxybutenolide group is compound 129, which was isolated as a 1:1 mixture of epimers at C-24 from the sponge *Phyllospongia papyra*cea collected at Papua New Guinea [60].

Within this subgroup of scalarane metabolites, possessing a double bond between C-17 and C-18, a γ -lactone ring E (butenolide, having the carbonyl group located at C-25), and a methyl group at C-24, are compounds **130-154** (Fig. **16**). Among these compounds, we can distinguish both homoscalaranes and mainly bishomoscalaranes. For example, 12 β ,22-dihydroxy-24-methylscalar-17-en-25,24-olide (**130**) has been isolated from the Dorid nudibranch *Chromodoris sedna* [103], and the Indo-Pacific sponge *Lendenfeldia frondosa* [104]. Phyllofolactone D (**131**) was isolated, accompanied by its homologue phyllofolactone C (**132**), from the sponge *Phyllospongia foliascens* collected at the South China Sea [105]. Phyllofolactone B (**133**) was found in a Pacific specimen of the sponge

Fig. (15). γ-Hydroxybutenolide-based metabolites 117-129.

Phyllospongia foliascens [106], while in another sample of the same sponge was found the corresponding C-12 epimer, 12-epi-phyllofolactone B (134)[107]. This compound was renamed as phyllofolactone G (134) and was also found in another specimen of the sponge Phyllospongia foliascens collected at the South China Sea [100], accompanied by the related C24-epimer phyllofolactone F (134, Me-24 α). Both phyllofolactones F and G (134) were also isolated from the sponge Phyllospongia madagascarensis and the assignment of the NMR signals were corrected [65]. Phyllolactones A-D (135-138) were isolated from the marine sponge

130, $R_1 = OH$; $R_2 = \beta - OH$ **131**, R₁= H; R₂==O

137, R_1 = MeOCO-; R_2 = α -OH **138**, R_1 = EtOCO-; R_2 = α -OAc

139, $R_1 = H$; $R_2 = \alpha - OAc$

OR 0 16 'OR Ā Ā

147, R= Et, Me-24 α

140, R = H, Me-24 α 141, R= H, Me-24 β

142, R= Ac, Me-24 β

Ĥ

он о Ā Ē Ē R_2O 20 **149**, R_1 = Me; R_2 = Ac, Me-24 β **150**, R_1 = Me; R_2 = Ac, Me-24 α **151**, R_1 = Et; R_2 = Ac, Me-24 β **152**, $R_1 = Et$; $R_2 = Ac$, Me-24 α **153**, $R_1 = Me$; $\tilde{R}_2 = EtCO$, Me-24 β **154**, $R_1 = Me$; $R_2 = EtCO$, Me-24 α

Fig. (16). γ-Butenolide-based metabolites 130-154.

Phyllospongia lamellosa collected at the Indo-West Pacific, and were found to inhibit HIV-1 envelopemediated fusion with IC₅₀ of ~2 μ M [98]. From the sponge *Carteriospongia* (syn. *Phyllospongia*) foliascens, collected at Great Barrier Reef, was isolated 12 α acetoxy-20,24 β -dimethylscalar-17-en-25,24-olide

(139)[64], which was also found in the sponge Phyllospongia papyracea collected at Papua New Guinea [60]. Phyllactones A-C (140-142) were isolated from the sponge Phyllospongia foliascens collected at the South China Sea, and showed moderate cytotoxicity against KB cells (IC₅₀= 20 μ g/mL)[99]. Phyllactones H and I (143) were isolated from the sponge Phyllospongia sp. collected at the South China Sea [108]. Phyllofolactones H-K (144-147) were isolated from the Indonesian sponge, Strepsichordaia aliena [66]. The first isolated bishomoscalarane, which possess an oxygenated function at C-20 was 20-acetoxy-12\beta-hydroxy-20,24-dimethylscalar-17-en-25,24-olide (148) found in a specimen of Carteriospongia sp. collected at the Fiji Islands [109]. The structure of this compound was determined by single-crystal X-ray diffraction analysis. Other C20-functionalised bishomoscalaranes are honulactones C-D (149-150) and I-L (151-154), which were isolated from the Indonesian sponge, Strepsichordaia aliena [110]. Honulactones C (149) and D (150) exhibited cytotoxicity against P-388, A-549, HT-29, and MEL-28 cancer cells (IC₅₀= 1 μ g/mL)[110].

Another subgroup of scalarane metabolites are compounds **155-162** that lack the double bond between C-17 and C-18 but possess the γ -lactone ring E with the carbonyl group located at C-25 (Fig. **17**). We can also

Fig. (17). y-Lactone-based metabolites 155-162.

distinguish both homoscalaranes and bishomoscalaranes. For example, 22-acetoxy-12β,16β-dihydroxy-24methylscalaran-25,24-olide (155) was isolated from an Australian sponge (Lendenfeldia sp.)[40]. The related 12β,16β,22-trihydroxy-24-methylscalaran-25,24-olide (156, Me-24 β) was found, along with compound 157 (12β,16β-dihydroxy-24-methylscalaran-25,24-olide), in the sponge Phyllospongia dendyi collected at the Indian Ocean [61]. Soon after, compound 156 was also isolated from the sponge Lendenfeldia frondosa collected at the Solomon Islands, and the signals assignments were revised [58]. Compound 157 has also been isolated from the sponge Lendenfeldia sp. collected at Indonesia [43]. The C-24 epimer of 156, 126,166,22trihydroxy-24 α -methylscalar-25 β ,24 α -olide (158), was isolated from the Indo-Pacific sponge Lendenfeldia frondosa [104]. From a Chinese specimen of the sponge Phyllospongia foliascens was isolated phyllofolactone L (159)[63]. Within this subgroup of scalaranes there are three known bishomoscalaranes, compounds (160-162). For example, 12α -acetoxy-16 β -hydroxy-20,24-dimethylscalar-25 β ,24 α -olide (160) was isolated from the Neo Guinean sponge Carteriospongia (syn. Phyllospongia) foliascens [55]. Phyllofolactone A (161) was found in a Pacific specimen of the sponge Phyllospongia foliascens [106], while in another sample of the same sponge collected at the South China Sea was found the corresponding C-16 acetate, acetoxy-phyllofolactone A (162)[111].

Another subgroup of scalarane metabolites is composed of bioactive heteronemin (163) and its analogues, compounds 164-174 (Fig. 18). These compounds are characterised by an unsaturated and acetylated ylactol ring E having the acetoxy group located at C-25. There is a variety of oxygenation pattern at C-12, C-16, C-21, and C-22. For example, heteronemin (163) has been isolated many times, and the first isolation was reported from an Australian sample of the sponge He*teronema erecta* in 1976, in which the stereochemistry assignment of the oxygenated groups was wrong [112]. Heteronemin (163) was also found in the same sponge collected at the Red Sea, and the ¹³C-NMR data of this molecule were reported along with a study of the stereochemistry at C-12, C-16 and C-25, remaining the latter ambiguous [113]. The correct stereostructure was not described until 1981 [13]. The controversy about the stereochemistry at C-25 ended after structure confirmation by X-ray analysis [114]. Other sources of heteronemin (163) are the following: sponge Ca*cospongia scalaris* collected at Wakayama (Japan)[13]; sponge Hyrtios erecta and its nudibranch predators Glossodoris hikeurensis and Glossodoris cincta collected at Cocos Lagoon, Guam [16b]; sponge Hyrtios erecta collected at the Kingdom of Tonga [28]; sponge Collospongia auris collected at the Great Barrier Reef

Fig. (18). Heteronemin-like metabolites 163-174.

[29]; sponge Hyrtios sp. collected at Koh-Tao, Thailand [31]; sponge Hyrtios sp. collected at American Samoa [32]; sponge Spongia idia (syn. Leiosella idia) collected at San Diego, California [34,35]; sponge Hyrtios sp. collected at Okinawa Island (Japan)[70]; sponge Hyrtios erecta collected at the South China Sea [76]; sponge *Brachiaster* sp. collected at Thailand [84]; sponge Hyrtios cf. erectus (also called H. erecta) collected at Yakushima Island, Japan [90]; sponge Hyatella intestinalis collected at Darwin Harbor, Northern Australia [115]; sponge Hyrtios erecta collected at New Caledonia [116]; sponge Hyrtios erecta collected at Amami Island, Japan [117]; stony coral Tubastraea micrantha [118]; nudibranch Glossodoris atromarginata collected at Mandapam, India [119]; and sponge Hyrtios reticulata collected at New Caledonia [120]. Heteronemin (163) has resulted to be biologically active in various bioassay models, including antifeedant, antimicrobial, ichthyotoxicity, cytotoxicity, protein function inhibition, and antitubercular activity. For example, heteronemin (163) deterred feeding on sponges and nudibranches by several fishes [16b], and showed antimicrobial activity using the standard disk assay against Staphylococcus aureus (25 µg/disk), Bacillus subtilis (25 µg/disk), and Candida albicans (50 µg/disk) [29], as well as antimicrobial activity against *Mycobacterium intracellulare* (IC₅₀= 2.04 μ M)[32]. Compound 163 immobilises the larvae of the red abalone Haliotis rufescens at 1mg/L in seawater, as well as

bieng toxic to brine shrimp Artemia sp. at 10 mg/L and to the gametes of the giant kelp Macrocystis pyrifera at the same concentration [34]. Heteronemin (163) also showed cytotoxicity against human oral fibroblasts (IC₅₀= 5.25 µM)[31], ovarian cancer SKOV3 cells $(IC_{50}= 3.4 \ \mu M)[32]$, melanoma SK-MEL cells $(IC_{50}=$ 15.3 μ M)[32], breast cancer BT549 cells (IC₅₀= 11.2 μ M)[32], non-cancerous Vero cells (IC₅₀= 8.2 μ M) [32], human epidermoid carcinoma KB cells (IC_{50} = 1.2 $\mu g/mL$ [70], IC₅₀= 0.37 μM [84], IC₅₀= 0.23 $\mu g/mL$ [117]), human breast adenocarcinoma MCF-7 cells $(IC_{50} = 0.3 \ \mu M)[84]$, colorectal carcinoma HT-29 cells $(IC_{50}= 0.4 \ \mu M)[84]$, human cervical carcinoma HeLa cells (IC₅₀= 0.45 μ M)[84], murine leukemia L1210 cells (IC₅₀= 0.058 µg/mL)[117], and human thyroid carcinoma cells [119]. Also, heteronemin (163) is a known antitubercular agent (MIC= $3.0 \mu M$ [31,84]; inhibition of *Mycobacterium tuberculosis*, 99% H37Rv, MIC= 6.25 μ g/mL and IC₅₀= 1.3 μ g/mL)[121]. Finally, heteronemin (163) has displayed protein farnesyl transferase inhibition (IC₅₀= 3μ M)[120].

Heteronemin acetate (164) was isolated from the sponge Hyrtios erecta collected at the Kingdom of Tonga [28], and the Thai sponge Brachiaster sp. [84]. Recently, heteronemin acetate (164) has been prepared by semisynthesis from natural heteronemin (163) isolated from the sponge Hyrtios sp. [31,32]. Natural heteronemin acetate (164) showed cytotoxicity against human breast adenocarcinoma MCF-7 cells (IC₅₀= 6.45 μ M), and antitubercular activity (MIC= 6.0 μ M)[84]. Semisynthetic heteronemin acetate (164) has displayed both antitubercular (MIC= 3.0μ M) and cytotoxic activity (human oral fibroblasts, IC_{50} = 16.09 µM; ovarian cancer SKOV3, IC₅₀= 18.8 µM; melanoma SK-MEL, IC_{50} = 16.7 µM; breast cancer BT549, IC_{50} = 18.8 µM; Vero, IC₅₀= 9.0 μ M), as well as antimicrobial activity against Mycobacterium intracellulare with an IC₅₀ value of 18.8 µM [31,32]. 12-Epi-heteronemin (165) was isolated from the sponge *Hyrtios erecta* collected at New Caledonia [116,120]. 12-Epi-heteronemin acetate (166) was isolated from the sponge Hyrtios erecta collected at the Kingdom of Tonga [28], the sponge Hyrtios sp. collected at Okinawa Island (Japan)[70], and the sponge Hyrtios erecta collected at New Caledonia [116]. Compound 166 showed cytotoxicity against human epidermoid carcinoma KB cells (IC₅₀= 2.7 µg/mL)[70]. 12-Oxoheteronemin (167) has been prepared semisynthetically by oxidation from natural heteronemin (163)[31,32]. Semisynthetic 12-oxoheteronemin (167) has displayed both antitubercular (MIC= 0.23µM) and cytotoxic activity (human oral fibroblasts, IC_{50} = 0.91 µM; ovarian cancer SKOV3, IC_{50} > 37.6 μ M; breast cancer BT549, IC₅₀> 37.6 μ M; Vero, IC₅₀> 37.6 μ M), as well as antimicrobial activity against Mycobacterium intracellulare with an IC₅₀ value of 5.1 µM [31,32]. Hyrtiosin D (16-O-deacetylheteronemin,

168) and hyrtiosin E (12-dehydroxy-heteronemin, 169) were isolated from the sponge Hyrtios erecta collected at the South China Sea [76]. There exist five heteronemin-like compounds (170-174, Fig. 18) that lack the functionalisation at C-12 typically seen among the scalarane metabolites. For example, 12-deacetoxy-22hydroxyheteronemin (170) has been isolated from the sponge Smenospongia sp. collected at Gagu-Do Island (Korea) and displayed significant cytotoxicity toward the human leukemia cell line K562 (LC₅₀ $0.02 \mu g/mL$, respectively)[92]. Compound 170 has also been found in another sample of Smenospongia sp. collected at Soheuksan Island (Korea), along with 12-deacetoxy-22-acetoxyheteronemin (171), 12-deacetoxy-16-Odeacetylheteronemin (172) and 12-deacetoxy-22formylheteronemin (173)[37]. These compounds (170-173) showed moderate cytotoxicity toward the human leukemia cell line K562 (LC₅₀ 0.13, 6.8, 5.8 and 17.5 µg/mL, respectively) and some of them displayed antimicrobial activity (170: Bacillus subtilis MIC= 0.78 µg/mL, Salmonella typhimurium MIC= 6.25 µg/mL; 172: Bacillus subtilis MIC= 3.12 µg/mL, Salmonella typhimurium MIC= 12.5 µg/mL)[37]. Finally, mooloolaldehyde (174) was isolated from the Australian sponge Hvattella intestinalis and resulted to be cytotoxic toward the P388 mouse leukemia cell line with IC₅₀ value in the range $3-10 \mu g/mL$ [36].

Another subgroup of scalarane metabolites is composed of deoxoscalarin (175) and its analogues, compounds 175-213 (Fig. 19 and Fig. 20). These compounds are characterised by a cyclic hemiacetal as ring E having normally a double bond in the neighbouring ring D and the hemiacetalic hydroxy group at C-25. There is a variety of oxygenation pattern at C-3, C-6, C-12, C-16, and C-21. For example, deoxoscalarin (175) has been isolated many times, and the first isolation was reported from a Mediterranean sample of the sponge Spongia officinalis collected at the Bay of Naples in 1973 [122]. Other sources of deoxoscalarin (175) are the following: nudibranch Hypselodoris orsini collected at the Gulf of Naples [12a]; sponge Cacospongia mollior collected at the Gulf of Naples [16a]; sponge Cacospongia sp. and its predatory nudibranch Glossodoris pallida collected at Apra Harbor, Guam and collected at Hainan Island, China [16b, 17,20]; nudibranch Glossodoris rufomarginata collected at the South China Sea [19]; nudibranch Glossodoris averni collected at Eastern Australia [20]; nudibranch Glossodoris sedna collected at Osa Ballena, Costa Rica [47]; sponge *Cacospongia scalaris* collected at the Gulf of Astakos, Greece [69]; nudibranch Chromodoris funerea collected at Kaibakku Lake, Palau [80]; and nudibranch Chromodoris inornata collected at Fukuoka, Japan [123]. Deoxoscalarin (175) showed cytotoxic activity against murine lymphoma

 $\begin{array}{l} \textbf{175}, R_1 = H; R_2 = Me; R_3 = \alpha - OAc \\ \textbf{176}, R_1 = H; R_2 = Me; R_3 = \beta - OAc \\ \textbf{177}, R_1 = H; R_2 = CH_2OAc; R_3 = \beta - OH \\ \textbf{178}, R_1 = H; R_2 = Me; R_3 = \beta - OH \\ \textbf{179}, R_1 = O; R_2 = Me; R_3 = \beta - OH \\ \textbf{180}, R_1 = b - OH; R_2 = Me; R_3 = \beta - OH \\ \textbf{181}, R_1 = b - OH; R_2 = Me; R_3 = \beta - OAc \\ \textbf{182}, R_1 = O; R_2 = Me; R_3 = \alpha - OAc \\ \textbf{183}, R_1 = O; R_2 = Me; R_3 = \beta - OAc \\ \textbf{183}, R_1 = O; R_2 = Me; R_3 = \beta - OAc \\ \end{array}$

HO,

184, $R_1 = CH_2OH$; $R_2 = \alpha - OAc$ **185**, $R_1 = CH_2OAc$; $R_2 = \alpha - OAc$

187, $R_1 = CH_2OAc$; $R_2 = \beta - OAc$ **188**, $R_1 = CH_2OH$; $R_2 = \beta - OH$

Fig. (19). Deoxoscalarin-like metabolites 175-196.

L1210 and human epidermoid carcinoma KB cell lines (IC₅₀= 1.4 and 6.4 μ g/mL, respectively)[123].

12-Epi-deoxoscalarin (**176**) has been found in several marine sources. For example, it was isolated from the sponge *Collospongia auris* [29], the sponge *Spongia agaricina* [30], the sponge *Spongia idia* [34,35], the nudibranch *Glossodoris dalli* [47], the sponge *Hyrtios erectus* [72], the sponge *Spongia nitens* [74], the

211, R_1 = Me; R_2 = =O; R_3 = OAc; R_4 = H **212**, R_1 = Me; R_2 = =O; R_3 = OAc; R_4 = Me **213**, R_1 = Me; R_2 = α -OAc; R_3 = H; R_4 = H

Fig. (20). Deoxoscalarin-like metabolites 197-213.

sponge Hyatella cribriformis [88], the sponge Hyatella intestinalis [115], the nudibranch Chromodoris inornata [123], the sponge Spongia officinalis [124], and the sponge Spongia sp. [125]. 12-Epi-deoxoscalarin (**176**) showed cytotoxic activity against murine lymphoma L1210 and human epidermoid carcinoma KB cell lines (IC_{50} = 8.2 and >30.0 µg/mL, respectively)[123], as well as inhibition of transactivation for the nuclear hormone receptor FXR (farnesoid X-activated receptor, IC_{50} = 81.1 µM), a promising target to treat hypercholesterolemia in humans [125]. 21-Acetoxy-12-deacetyl-12-epi-deoxoscalarin (**177**) was isolated from the sponge Hyatella intestinalis collected at Darwin Harbor (Australia)[115], and from a Korean sample of a sponge of the genus Spongia [125]. Compound 177 showed inhibition of transactivation for the nuclear hormone receptor (IC₅₀= 25.3 μ M), FXR (farnesoid X-activated receptor)[125]. 12-Deacetyl-12-epi-deoxoscalarin (178) has been found in several sources including: the nudibranch Glossodoris pallida from Hainan Island (China)[20], the sponge Hyrtios erecta [75], a sample of sponge Spongia sp. collected at the Japan Sea [78], the sponge Hyatella cribriformis [88], and the nudibranch Glossodoris atromarginata and its sponge prey probably belonging to the genus Spongia [119]. Recently, 12-deacetyl-12-epi-deoxoscalarin (178) has been prepared by semisynthesis from natural heteronemin (163) isolated from the sponge Hyrtios sp. [31,32]. A semisynthetic sample of compound (178) displayed weak antitubercular activity (MIC= 257 µM)[31]. Natural 12-deacetyl-12-epi-deoxoscalarin (178) induced neurite outgrowth in pheochromocytoma (PC-12) cells at the concentration of 50 μ g/mL, which is a model system to study the mechanisms of neuronal differentiation [78]. 3-Oxo-12-deacetyl-12-epi-deoxoscalarin (179) was isolated, along with 3β -hydroxy-12deacetyl-12-epi-deoxoscalarin (180) and 3\beta-hydroxy-12-epi-deoxoscalarin (181), from the sponge Hyrtios erecta collected at Setouchi (Japan)[75]. Compound 179 was also found in the same sponge collected at the Red Sea and was renamed as salmahyrtisol C [95]. Compounds 179-181 displayed cytotoxic activities against mouse leukemia P388 cell line, with compound **179** being the most potent (IC₅₀= 14.5 ng/mL) and also showing potent activity against several human gastric cancer cell lines (MKN-1, IC₅₀= 57.7 ng/mL; MKN-7, IC₅₀= 56.0 ng/mL; MKN-74, IC₅₀= 36.8 ng/mL), including in vivo increased mean survival times (up to 15 days) and life spans (up to 75%) in P388 lymphatic leukemia-implanted mice in a dose dependent manner [75]. The related 3-keto-scalarane metabolites deoxoscalarin-3-one (182) and 12-epi-deoxoscalarin-3-one (183) were isolated, along with 19-hydroxydeoxoscalarin (184) and 19-acetoxydeoxoscalarin (185), from the nudibranch Chromodoris inornata collected at Fukuoka (Japan)[123]. Deoxoscalarins 182-185 showed cytotoxic activity against murine lymphoma L1210 $(IC_{50} = 0.95, 6.6, 4.1 \text{ and } 0.35 \text{ }\mu\text{g/mL}, \text{ respectively})$ and human epidermoid carcinoma KB cell lines (IC_{50} = 5.2, 22.8, 21.0 and 3.1 µg/mL, respectively)[123]. Deoxoscalarin-3-one (182) or the corresponding 1-keto analogue 186 was found in the nudibranch Chromodoris funerea, though the complete structure was not defined [80]. 19-Acetoxydeoxoscalarin (185) was also isolated from the Red Sea sponge Hyrtios erecta [87]. 21-Acetoxy-12-epi-deoxoscalarin (187) was isolated, a-21-hydroxy-12-deacetyl-12-epi-deoxolong with scalarin (188) and 25α -methoxy-12-deacetyl-12-epideoxoscalarin (189), from a Korean sample of a sponge

of the genus Spongia [125]. Compounds 187-189 showed inhibition of transactivation for the nuclear hormone receptor FXR (farnesoid X-activated receptor, IC₅₀= 8.1, 64.5, and 24.8 μM, respectively)[125]. 25α-Methoxy-12-deacetoxy-22-hydroxydeoxoscalarin (190) was isolated from a Korean sample of a sponge of the genus Smenospongia, and displayed antimicrobial activity against Bacillus subtilis (MIC= 50.0 µg/mL) and Salmonella typhimurium (MIC= 6.25 µg/mL), as well as potent cytotoxicity against human chronic myelogenous leukemia K562 cell line (LC₅₀ 0.11 µg/mL)[37]. 6-Keto-deoxoscalarin (191) was isolated from the nudibranch Hypselodoris orsini collected at the Gulf of Naples [12a]. Deoxoscalarin acetate (192) was found in the North Adriatic sponge Spongia officinalis [124], and in the nudibranch Glossodoris rufomarginata, in which were also found two 12-keto deoxoscalarins, 25α -acetoxy-12-deacetoxy-12-oxo-deoxoscalarin (193) and 12-deacetoxy-12-oxo-deoxoscalarin (194)[19]. 12-Keto deoxoscalarins 193 and 194 were also isolated from the nudibranch Glossodoris pallida [20]. Compound 194 was also found in the nudibranch Glossodoris atromarginata and showed specific cytotoxicity against human thyroid carcinoma [119]. Mooloolabene D (195) and E (196), which are two norscalaranes that lack the methyl group attached to C-8 and functionalisation at C-12, were isolated from the Australian sponge Hyattella intestinalis, and were cytotoxic toward the P388 mouse leukemia cell line with IC_{50} values in the range 3-10 µg/mL [36].

Within the subgroup of scalarane metabolites composed of deoxoscalarin-based compounds, there are compounds characterised by a cyclic hemiacetal as ring E having normally a double bond in the neighbouring ring D and the hemiacetalic hydroxy group at either C-24 or C-25 (compounds 197-213, Fig. 20). There is a variety of oxygenation pattern at C-3, C-12, C-16, and C-22. There are included in this subgroup several homoscalarane and bishomoscalarane members. For e-12-deacetyl-24-methyl-12-epideoxoscalarin xample. (197) was isolated, together with 22-hydroxy-24methyldeoxoscalarin (198), from the nudibranch Chromodoris sedna and displayed growth inhibition of the marine bacterium Vibrio anguillarum (100 µg/disk) [103]. Compound 197 was also found in the nudibranch Glossodoris sedna together with 12-deacetyl-22-acetoxy-24-methyl-12-epideoxoscalarin (199)[47]. 22-Hydroxy-25α-methoxy-24-methyldeoxoscalarin

(200) was isolated from the sponge *Phyllospongia dendyi* of the Indian Ocean [126]. 3-Hydroxy-20,24dimethyldeoxoscalarin (201) was isolated from the sponge *Dysidea vermicularis* and showed cytotoxicity against T-47D breast cancer cells (GI_{50} = 3.5 µM), while the related 3-oxo-20,24-dimethyl-deoxoscalarin (202) was found in a specimen of a sponge belonging to the genus *Carteriospongia* [127]. 24 α ,25 α - dimethoxydeoxoscalarin (203) was found in the sponge Dysidea villosa [18], while the C-12 epimer 12-epi- 24α , 25α -dimethoxy deoxos calarin (204) was isolated from the sponge Collospongia auris [29]. 16β-Acetoxy-dihydrodeoxoscalarin (205) was isolated from the Mediterranean sponge Cacospongia scalaris [69]. Dihydrodeoxoscalarins 206-208 were isolated from an Indonesian sponge of the genus Phyllospongia and exhibited 30-95% inhibition of the growth of KB cells at 10 μg/mL [53]. 12-Epideacetyl-24α-methoxy-25αacetoxy-deoxoscalarin (209) was found in the Thai sponge Hyrtios sp. collected at Koh-Tao and showed antitubercular activity (MIC= 54 μ M)[31]. Finally, there a few metabolites having the hemiacetalic hydroxy group at C-24. For example, scalardysin A (210) and B (211) were isolated from the sponge Dysidea herbacea [50], and scalardysin B (211) has also been found in sponges Phyllospongia foliascens collected at Okinawa and the South China Sea (named as phyllohemiketal A)[56,128,129]. Phylloketal (212) was isolated also from the South China Sea sponge Phyllospongia foliascens [130]. 12a-Acetoxy-24,25-epoxy-24-hydroxy-20,24-dimethylscalarane (213) was isolated from the Neo Guinean sponge Carteriospongia (syn. Phyllospongia) foliascens and was moderately ichthyotoxic against the fresh water fish Lebistes reticulatus (LD= 40 mg/L)[55].

Another subgroup of scalarane metabolites includes a number of furanoscalaranes, which present a furan ring E together with oxygenation at C-12 and C-16 (compounds 214-229, Fig. 21). We are going to admit in this subgroup several furanoscalaranes with a rearranged furan ring E, whose skeleton could be named as isoscalarane (compounds 225-229, Fig. 21). Scalarafuran (214) has been isolated several times, and the first isolation was reported from a Californian sample of the sponge Spongia idia collected at Pt. Loma, San Diego in 1979 [34,35], though the molecule was known as a semisynthetic compound obtained by pyrolysis from heteronemin (163)[112,113]. Other sources of scalarafuran (214) are the following: sponge Hyrtios erecta collected at the Kingdom of Tonga [28b]; sponge Hyrtios sp. collected at Okinawa Island, Japan [70]; sponge Hyrtios gumminae collected at Similan Island, Thailand [89]; sponge Hyrtios erecta collected at Amami Island, Japan [117]. Recently, scalarafuran (214) has been prepared by semisynthesis from heteronemin (163), and showed antitubercular activity (MIC= 14.0 µM)[31,32]. Compound 214 displayed cytotoxicity against several cancer cell lines (human epidermoid carcinoma KB, IC₅₀= 7.2 µg/mL [70], IC₅₀= 58.0 µM [89], and 4.0 µg/mL [117]; murine leukemia L1210, IC₅₀= 2.9 µg/mL [117]; human cholangiocarcinoma HuCCA-1, IC₅₀= 49.0 µM [89]; human cervical carcinoma HeLa, IC₅₀= 63.0 µM [89]; hormone-independent

Fig. (21). Furoscalaran-like metabolites 214-229.

breast cancer MDA-MB-231, IC_{50} = 14.0 µM [89]; hormone-dependent breast cancer T47D, IC₅₀= 28.0 µM [89]; and multidrug-resistant small-cell lung cancer H69AR, IC₅₀= 51.0 µM [89]). Scalarafuran (214) has been patented as an anti-HIV agent, since it inhibits the binding between HIV-1 integrase and its substrates $(IC_{50} = 120.0 \ \mu M)$ [131]. 16-Deacetoxy-12-epi-scalarafuran acetate (215) was isolated from the nudibranch Glossodoris averni from Australia [20], the sponge Hyrtios erectus (also called H. erecta) from Hainan Island (China)[72], and the North Adriatic sponge Spongia officinalis [124]. From the nudibranch Glossodoris pallida from Hainan Island (China) was isolated 12,16-deacetoxy-12-oxoscalarafuran (216), while from the nudibranch Glossodoris vespa from Australia was isolated the related 16-deacetoxyscalara-furan (217)[20]. Compound 217 has also been found in a sponge of the genus Spongia collected at the Japan Sea, and exhibited cytotoxicity against human cervix epitheloid carcinoma HeLa cells, IC_{50} = 19.5 µg/mL [77]. Salmahyrtisol B (16-deacetoxy-16-oxoscalara-furan, 218) was isolated from the Red Sea sponge Hyrtios erecta, and displayed cytotoxic activity against three types of cancer cells including murine leukemia P388, human lung carcinoma A549, and human colon carcinoma HT-29 with $IC_{50} \ge 1 \ \mu g/mL$ [95]. Isoscalarafuran A (16-deacetyl-12-epi-scalarafuran acetate, 219) and its C-16 epimer isoscalarafuran B (16-deacetyl-12,16-diepi-scalarafuran acetate, 220) were isolated from a Southern Australian sponge, Spongia hispida [132]. Compound 219 was also found in the sponge Hyrtios erectus from Hainan Island (China)[72]. Sesterstatin 4 (16-deacetyl-16-epi-scalarafuran, 221) and sesterstatin 5 (16-deacetyl-scalarafuran, 222) were isolated from a sample of the sponge Hyrtios erecta collected at the Republic of Maldives, and their structures were confirmed by independent single crystal X-ray crystallographic analyses [133]. Both sesterstatins 4 (221) and 5 (222) inhibited the growth of a number of cancer cell lines (sesterstatin 4: murine leukemia P388, GI_{50} = 4.9 µg/mL; pancreas BXPC-3, GI_{50} = 1.6 µg/mL; thyroid KAT-4, $GI_{50}= 2.0 \ \mu g/mL$; thyroid SW1736, $GI_{50}= 2.1 \ \mu g/mL; \ lung \ NSC \ NCI-H460, \ GI_{50}= 1.8$ $\mu g/mL$; pharynx FADU, GI₅₀= 2.0 $\mu g/mL$; prostate DU-145, GI_{50} = 1.6 µg/mL; sesterstatin 5: murine leukemia P388, GI₅₀> 10 µg/mL; pancreas BXPC-3, GI₅₀= 2.2 μ g/mL; melanoma RPMI-7951, GI₅₀= 2.1 μ g/mL; CNS U251, GI₅₀= 1.9 µg/mL; lung NSC NCI-H460, $GI_{50}= 2.5 \text{ µg/mL}$; pharynx FADU, $GI_{50}= 1.9 \text{ µg/mL}$; prostate DU-145, GI₅₀= 1.9 μ g/mL), and sesterstatin 5 (222) also inhibited the growth of the Gram-positive bacterium Micrococcus luteus (MIC= 25-50 µg/disk) 12-Dehydroxy-16-deacetoxy-22-hydroxy-[133]. scalarafuran (223) and the corresponding acetate 12dehydroxy-16-deacetoxy-22-acetoxy-scalarafuran (224) were isolated from the sponge Smenospongia sp. collected at Soheuksan Island (Korea), and exhibited antimicrobial activity (223: Bacillus subtilis MIC= 1.56 μg/mL, Micrococcus luteus MIC= 6.25 μg/mL, Salmonella typhimurium MIC= 12.5 µg/mL; 224: Bacillus subtilis MIC= 3.12 µg/mL, Micrococcus luteus MIC= 25.0 µg/mL), as well as cytotoxicity against human chronic myelogenous leukemia K562 cell line (LC₅₀ 0.97 and 2.3 μ g/mL, respectively)[37].

We will comment now an several furanoscalaranes with a rearranged furan ring E, whose skeleton could be named as an isoscalarane (compounds 225-229, Fig. 21). For example, furoscalarol (225) has been isolated several times, and the first isolation was reported from a sample of the sponge Cacospongia mollior [134]. Other sources of furoscalarol (225) are the following: nudibranch Hypselodoris orsini collected at the Gulf of Naples [12a]; sponge Cacospongia mollior collected near Naples [12b]; sponge Hyatella intestinalis collected at the Gulf of California [39], as well as the sponges Hyrtios sp. collected at Okinawa Island (Japan)[70], and Hyrtios erectus (also called H. erecta) collected at Hainan Island (China)[72], which also contained the corresponding deacetyl derivative 12deacetylfuroscalarol (226)[70,72]. Compound 226 inhibited rabbit platelet aggregation induced by adenosine diphosphate with the IC₅₀ values of 50-100 μ g/mL [70]. Furoscalarol (225) has also been found in the Mediterranean sponge Cacospongia scalaris, which also contained the corresponding acetate, acetylfuroscalarol (227)[14,69]. Acetylfuroscalarol (227) showed significant cytotoxicity toward five cancer cell lines (mouse lymphoma P388 and Schabel, ED₅₀= 2.5 µg/mL; human lung carcinoma A549, $ED_{50}= 5.0 \ \mu g/mL$; human colon carcinoma HT29, $ED_{50}= 2.5 \ \mu g/mL$; human melanoma MEL28 ED₅₀= 10.0 μ g/mL)[14]. From the sponge Spongia agaricina, collected near Tarifa Island (Spain), was isolated 12,16-di-epi-12-deacetyl-16acetylfuroscalarol (228), which showed significant cytotoxicity against four cancer cell lines (mouse lymphoma P388, human lung carcinoma A549, human colon carcinoma HT-29, and human melanoma MEL-28 with IC_{50} values of 1.0 µg/mL in all cases)[30]. The last furanoscalarane is 12-deacetylfuroscalar-16-one (229), which was found in a sample of the sponge Cacospongia sp. collected at Little Barrier Island, New Zealand [135].

The last subgroup of scalarane metabolites is composed of compounds (230-236, Fig. 22) with an isoscalarane skeleton typified by scalarolbutenolide (230), which was isolated for the first time from the sponge Spongia nitens in 1981 [136]. Scalarolbutenolide (230) has also been found, along with the corresponding C-16 epimer 16-epi-scalarolbutenolide (231), in the sponge Spongia agaricina [30]. 16-Epi-scalarolbutenolide (231) has also been isolated from the Red Sea sponge Hyrtios erecta, and displayed 40% inhibitory activity against Mycobacterium tuberculosis (H₃₇Rv)[87]. 16-Deacetyl-16-episcalarolbutenolide (232) and 12-acetyl-16-deacetyl-16-episcalarolbutenolide (233) were isolated from the sponge Hyrtios erectus (also called H. erecta) collected at Yakushima Island (Japan), and were cytotoxic against P388 leukemia cells with IC50 values of 0.4, and 2.1 µg/mL, respectively [90]. A sample of the sponge Hyrtios erecta, collected at Setouchi (Japan), also contained 16-deacetyl-16-episcalarolbute-

Fig. (22). Scalarolbutenolide-like metabolites 230-236.

nolide (232) as constituent [75]. 12-Acetyl-12,16-diepi-16-deacetylscalarolbutenolide (234) and the corresponding acetate, 12-acetyl-12,16-diepi-scalarolbutenolide (235), were isolated from the sponge Spongia matamata collected at Palau [71]. Compound 234 has also been found in an Indo-Pacific sponge of the genus Hyrtios [104], as well as in the nudibranch Chromodoris inornata, whose sample of 234 showed cytotoxic activity against murine lymphoma L1210 (IC₅₀= 2.4 µg/mL) and human epidermoid carcinoma KB cells $(IC_{50}=7.6 \ \mu g/mL)$ [123]. Compound 235 has also been isolated from the nudibranch Glossodoris pallida collected at Hainan Island (China)[20]. Finally, 12-acetyl-16-epi-scalarolbutenolide (236) has been isolated from the sponge Hyrtios erectus (also called H. erecta) collected at Kavieng (Papua New Guinea), and showed weak cytotoxic activity against human breast cancer MCF-7 cells and was toxic at concentrations of 50.0 µg/mL [83].

1.3. Miscellaneous Scalaranes

The last group of scalarane metabolites is composed of a number of compounds (237-265, Fig. 23) that differ in their structure in several aspects, including the presence of cyclopropane and cyclobutane rings, but have in common many structural features with the scalarane skeleton.

The first subgroup includes a number of pentacyclic pyrroloterpenes, named molliorins A-C (237-239), which possess a pyrrole ring E and were isolated from the sponge Cacospongia mollior [137-139]. It is thought that their mixed biosynthetic origin is scalaradial (2) that reacts with available amines to form the pyrrole ring. Another subgroup is composed pentacyclic scalaranes possessing a γ -lactone ring E, having the carbonyl group located at C-25 and the hydroxy group at C-12 (compounds 240-244, Fig. 23). They also belong to the homoscalarane series. 166,22-Dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone (240) and 22-acetoxy-16B-hydroxy-24-methyl-24-oxoscalaran- $25,12\beta$ -olactone (241) were isolated from sponges of the genus Lendenfeldia collected at Western Australia and Madagascar [40,44]. Compound 240 has also been found in Palauan sponges Dictyoceratida sp. and Halichondria sp. [41], the Indonesian sponge Lendenfeldia sp. [43], the sponge Lendenfeldia frondosa collected at Solomon Islands [58], and the sponge Phyllospongia dendyi collected at the Indian Ocean [61]. Compound 240 was examined in the broad range of tumour cell lines represented by the National Cancer Institute's 60cell line panel, and was found to inhibit tumour cell growth with very little specificity for individual cell lines (average GI_{50} value 20.4 μ M)[43], as well as it exhibited cytotoxicity against lung carcinoma A549

Compound	Biological Activity
12-Epi-scalarin, 85	Cytotoxic [77], neurotrophic activity [78], and FXR inhibition [79]
12-O-Deacetyl-scalarin, 86	NGF synthesis-enhancer [81]
12-O-Deacetyl-12-epi-scalarin, 87	Cytotoxic [77], neurotrophic activity [78], and FXR inhibition [79]
25-Dehydroxy-12-epi-scalarin, 90	Antitubercular and cytotoxic [84]
25-Dehydroxy-12-epi-deacetylscalarin, 91	Neurotrophic activity [78], and FXR inhibition [79]
25-Dehydroxy-12-epi-deacetylscalarin, 91	Antitubercular [84,87] and cytotoxic [77,84,86,89]
12-Deacetoxy-19-acetoxyscalarin, 92	Cytotoxic [90]
Compounds 96-98	FXR inhibition [79]
12-Deacetoxy-22-hydroxy-25-acetoxyscalarin, 99	Antimicrobial and cytotoxic [37]
12-Deacetoxy-25-acetoxyscalarin, 101	Antitubercular [84]
12-Deacetoxy-22,25-diacetoxyscalarin, 102	Cytotoxic [92]
12-Deacetoxy-22-acetoxyscalarin, 103	Cytotoxic [92]
Hyrtiolide, 104	Cytotoxic [89]
12-O-Acetyl-16-O-methylhyrtiolide, 106	Cytotoxic [77]
Sesterstatin 6, 107	Antitumour [93]
Sesterstatins 1-3, 110-112	Cytotoxic [95]
3-Acetylsesterstatin 1, 115	Antitubercular [87]
Sesterstatin 7, 116	Antitubercular [87]
24-Hydroxyscalarolide, 120	Antimicrobial [29]
12β,16α,24-Trihydroxy-17-scalaren-25,24-olide, 122	Cytotoxic [89]
Phyllolactones A-D, 135-138	Antiviral [98]
Phyllactones A-B,140-141	Cytotoxic [99]
Honulactones C-D, 149-150	Cytotoxic [110]
Heteronemin, 163	Antifeedant [16b], antimicrobial [29,32], ichthyotoxic [34], cytotoxic [31,32,70,84,117,119], antitubercular [31,84,121], and protein farnesyl transferase inhibition [120]
Heteronemin acetate, 164	Antimicrobial [32], cytotoxic [31,32,84], and antitubercular [31,84]
12-Epi-heteronemin acetate, 166	Cytotoxic [70]
12-Oxoheteronemin, 167	Antimicrobial, cytotoxic, and antitubercular [31,32]
12-Deacetoxy-22-hydroxyheteronemin, 170	Antimicrobial [37] and cytotoxic [37,92]
12-Deacetoxy-22-acetoxyheteronemin, 171	Cytotoxic [37]
12-Deacetoxy-16-O-deacetylheteronemin, 172	Antimicrobial and cytotoxic [37]
12-Deacetoxy-22-formylheteronemin, 173	Cytotoxic [37]
Mooloolaldehyde, 174	Cytotoxic [36]
Deoxoscalarin, 175	Cytotoxic [123]
12-Epi-deoxoscalarin, 176	Cytotoxic [123] and FXR inhibition [125]
21-Acetoxy-12-deacetyl-12-epi-deoxoscalarin, 177	FXR inhibition [125]

(Table 2) Contd....

Compound	Biological Activity
12-Deacetyl-12-epi-deoxoscalarin, 178	Antitubercular [31] and neurotrophic activity [78]
Deoxoscalarins 179-181	Cytotoxic [75]
Deoxoscalarins 182-185	Cytotoxic [123]
Deoxoscalarins 187-189	FXR inhibition [125]
25α-Methoxy-12-deacetoxy-22-hydroxydeoxoscalarin, 190	Antimicrobial and cytotoxic [37]
12-Deacetoxy-12-oxo-deoxoscalarin, 193	Cytotoxic [119]
Mooloolabenes D-E, 194-195	Cytotoxic [36]
12-Deacetyl-24-methyl-12-epideoxoscalarin, 197	Antimicrobial [103]
3-Hydroxy-20,24-dimethyl-deoxoscalarin, 201	Cytotoxic [127]
Dihydrodeoxoscalarins 206-208	Cytotoxic [53]
12-Epideacetyl-24 α -methoxy-25 α -acetoxy-deoxoscalarin, 209	Antitubercular [31]
12α-Acetoxy-24,25-epoxy-24-hydroxy-20,24-dimethylscalarane, 213	Ichthyotoxic [55]
Scalarafuran, 214	Antitubercular [31], cytotoxic [70,89,117], and anti-HIV [131]
16-Deacetoxyscalarafuran, 217	Cytotoxic [77]
Salmahyrtisol B (16-deacetoxy-16-oxoscalarafuran, 218)	Cytotoxic [95]
Sesterstatins 4 and 5, 221-222	Cytotoxic [133]
Scalarafurans 223 and 224	Antimicrobial and cytotoxic [37]
12-Deacetylfuroscalarol, 226	Platelet-aggregation inhibition [70]
Acetylfuroscalarol, 227	Cytotoxic [14]
12,16-di-epi-12-deacetyl-16-acetylfuroscalarol, 228	Cytotoxic [30]
16-Epi-scalarolbutenolide, 231	Antitubercular [87]
16-Deacetyl-16-episcalarolbutenolide, 232	Cytotoxic [90]
12-Acetyl-16-deacetyl-16-episcalarolbutenolide, 233	Cytotoxic [90]
12-Acetyl-12,16-diepi-16-deacetylscalarolbutenolide, 234	Cytotoxic [123]
12-Acetyl-16-epi-scalarolbutenolide, 236	Cytotoxic [83]

cells (GI₅₀= 0.5 μ g/mL,1.27 μ M)[44]. Compound 241 has also been isolated from the Palauan sponge Lendenfeldia chondrodes [42], and the sponge Phyllospongia chondrodes collected at Okinawa (Japan)[46]. Compound 241 showed repellent activity against the blue mussel Mytilus edulis galloprovincialis [42], cytotoxicity against lung carcinoma A549 cells (GI₅₀= 1.0 μ g/mL,2.13 μ M)[44], and induction of differentiation of K562 (myelogenous leukemia cell line) to hemoglobin producing erythroblast cells [46]. The C-16 epimer of compound **240**, 16α,22-dihydroxy-24-methyl-24oxoscalaran-25,12 β -olactone (242), was isolated from the sponge Lendenfeldia frondosa collected at Solomon Islands [58]. Sednolide (243) and sednolide 22-acetate (244) were isolated from the nudibranch Chromodoris sedna collected at Baja California (Mexico), and sednolide (243) inhibited the growth of the marine bacterium Vibrio anguillarum at 100 µg/disk [103]. Hyatelones A-C (245-247), hyatolides A (248) and B (249), and hyatelactam (250) are all scalarane-related sesterterpenes with novel ring systems, and were isolated from the sponge Hyatella intestinalis collected at the Gulf of California [39]. Hyatelone A (245) showed mild cytotoxic activity against the tumour cell lines MDA-MB-231 (breast carcinoma, $GI_{50}= 5.4 \mu g/mL$), and HT-29 (colon adenocarcinoma, GI_{50} = 9.2 µg/mL) [39]. Hyatolide A (248) showed mild cytotoxic activity against the tumour cell lines MDA-MB-231 (breast carcinoma, GI₅₀= 4.8 µg/mL), A459 (lung adenocarcinoma, GI_{50} = 5.1 µg/mL), and HT-29 (colon adenocarcinoma, GI_{50} = 5.0 µg/mL), while hyatelactam (250) was only cytotoxic against the HT-29 (colon adenocar-

Fig. (23). Miscellaneous scalaranes 237-265.

cinoma, GI_{50} = 8.1 µg/mL) cell line [39]. 12 β -hydroxy-20,24-dimethyl-13,18-oxa-25-norscalarane (**251**) was isolated from the Madagascaran sponge *Phyllospongia madagascarensis* and is characterised by a sevenmembered oxacycle that makes its skeletal system unique [65].

Within the group of miscellaneous scalaranes, there are several metabolites possessing either a cyclobutanol or a cyclopropane ring. They also belong to the bishomoscalarane series. For example, 12α -acetoxy-23,25-cyclo-16 β ,25-dihydroxy-20,24-dimethyl-24-oxoscalarane (**252**) was isolated from the Neo Guinean sponge *Carteriospongia* (syn. *Phyllospongia*) foliascens, and

was tested against the fresh water fish *Lebistes reticulatus* for its ichthyotoxicity (LD 5 mg/L)[55]. Another cyclobutanol-containing metabolite is the related ester, 12α -acetoxy-16 β -(3'-hydroxybutanoy-loxy)-13 β ,18 β -cyclobutan-20,24-dimethyl-24-oxosca-laran-25 β -ol (**253**), which was isolated from the Australian sponge *Strepsichordaia lendenfeldi* collected at the Great Barrier Reef [49]. The last cyclobutanol-containing metabolite is 12α -acetoxy-13 β ,18 β -cyclobutan-20,24-dimethyl-24-oxoscalar-16-en-25-ol (**254**), which was found in the sponge *Phyllospongia papyracea* collected at Papua New Guinea [60]. With respect to the cyclopropane-containing metabolites, honu'enone (**255**)

Compound	Biological Activity
16β,22-Dihydroxy-24-methyl-24-oxoscalaran-25,12β-olactone, 240	Cytotoxic [43,44]
22-acetoxy-16β-hydroxy-24-methyl-24-oxoscalaran-25,12β-olactone, 241	Antifouling [42], cytotoxic [44], and antitumour [46]
Sednolide, 243	Antimicrobial [103]
Hyatelone A, 245	Cytotoxic [39]
Hyatolide A, 249	Cytotoxic [39]
Hyatelactam, 250	Cytotoxic [39]
12α -Acetoxy-23,25-cyclo-16 β ,25-dihydroxy-20,24-dimethyl-24-oxoscalarane, 252	Ichthyotoxic [55]
Honulactone A, 256	Cytotoxic [110]
Honulactone B, 257	Cytotoxic [110]
Phyllofenone D, 262	Cytotoxic [63]
Phyllofenone B, 263	Cytotoxic [106]

Table 3. Biological Activity Found in Compounds 240-263

was isolated from an Indonesian sponge *Strepsichordaia aliena* collected at Turtle Bay [66]. The same sponge also afforded honulactones A (**256**) and B (**257**), and E-H (**258-261**), which differ mainly in the orientation of the methyl group at C-24, the length of the ester chain, and the oxygenation grade at C-16 [110]. Honulactones A (**256**) and B (**257**) exhibited cytotoxicity against P-388, A-549, HT-29, and MEL-28 cancer cells (IC₅₀= 1.0 µg/mL)[110].

Other miscellaneous scalaranes are phyllofenone D (262) and the related bishomoscalarane homologue phyllofenone B (263), which were isolated from the sponge *Phyllospongia foliascens* collected at the South China Sea [63,106]. Phyllofenone D (262) was cytotoxic against the P388 leukemia cell line with an IC₅₀ value of 6.5 µg/mL [63], while phyllofenone B (263) was cytotoxic against the same target with an IC₅₀ value of 5.0 µg/mL [106]. Finally, two scalarane-related sesterterpenes, coscinalactone (264) and coscinafuran (265), were isolated from the sponge *Coscinoderma mathewsi* [140]. These compounds possess a different stereochemistry in the skeletal structure in comparison with known scalarane-type sesterterpenes. In particular, they are characterised by a *cis-fused* B/C ring juncture.

3. CONCLUSION

The scientific investigations of the scalarane family of sesterterpenoids have been an active field during the last two decades producing more than one hundred publications on isolation and structural characterisation of its members, including several preliminary biological studies. Until quite recently researchers had not initiated any structure/function studies, and therefore this area also remains largely unexplored. In particular, recent investigations on the structure-activity relationships of antitubercular scalaranes have been reported [31,32]. The work listed in this review justifies the potential for discovery of novel pharmaceutical agents and biological probes in this area of research.

4. REFERENCES

- Connolly J. D.; Hill R. A. Dictionary of Terpenoids. In: Sesterterpenoids. Chapman & Hall: London, 1991; vol. 2, p. 1110.
- [2] (a) Hanson, J. R. Sesterterpenoids. Nat. Prod. Rep. 1986, 3, 123-132; (b) Hanson, J. R. The sesterterpenoids. Nat. Prod. Rep. 1992, 9, 481-489; (c) Hanson, J. R. The sesterterpenoids. Nat. Prod. Rep. 1996, 13, 529-535.
- [3] Liu,Y.; Wang, L.; Jung, J. H.; Zhang, S. Sesterterpenoids. *Nat. Prod. Rep.* 2007, 24, 1401-1429.
- [4] (a) Faulkner, D. J. Marine natural products. *Nat. Prod. Rep.* 2002, *19*, 1-49 and previous reviews of this series; (b) Faulkner, D. J.; Newman, D. J.; Cragg, G. M. Investigations of the marine flora and fauna of the Islands of Palau. *Nat. Prod. Rep.* 2004, *21*, 50-76.
- [5] Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Marine natural products. *Nat. Prod. Rep.* 2010, 27, 165-237 and previous reviews of this series.
- [6] De Rosa, S.; Mitova, M. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, 2005, vol. 32, pp. 109-168.
- [7] (a) Ungur, N.; Kulcitki, V. Synthesis of scalarane sesterterpenoids. *Recent Res. Dev. Org. Chem.* 2003, 7, 241-258; (b) Ungur, N.; Kulcitki, V. Synthetic paths towards scalaranes: assembling the scalaranic skeleton and further transformations. *Phytochem. Rev.* 2005, *3*, 401-415.
- [8] Kazlauskas, R.; Murphy, P. T.; Wells, R. J.; Daly, J. J. Terpenoid constituents from two Phyllospongia spp. Aust. J. Chem., 1980, 33, 1783-1797.
- [9] Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D. Scalarin, a new pentacyclic C-25 terpenoid from the sponge Cacospongia scalaris. *Tetrahedron* 1972, 28, 5993-5997.
- [10] Cimino, G.; De Stefano, S.; Minale, L. Scalaradial, a third sesterterpene with the tetracarbocyclic skeleton of scalarin,

from the sponge *Cacospongia scalaris*. *Experientia* **1974**, *30*, 846-847.

- [11] Puliti, R.; Mattia, C. A.; Mazzarella, L. Scalaradial, a sesterterpenoid metabolite from the marine sponge *Caco-spongia mollior*. Acta Crystallogr, Sect. C 1995, 51, 1703-1707.
- [12] (a) Cimino, G.; Fontana, A.; Giménez, F.; Marin, A.; Mollo, E.; Trivellone, E.; Zubia, E. Biotransformation of a dietary sesterterpenoid in the mediterranean nudibranch *Hypselodoris orsini. Experientia* 1993, 49, 582-586; (b) De Rosa, S.; Puliti, R.; Crispino, A.; De Giulio, A.; Mattia, C. A.; Mazzarella, L. A new scalarane sesterterpenoid from the marine sponge *Cacospongia mollior. J. Nat. Prod.* 1994, 57, 256-262.
- [13] Yasuda, F.; Tada, H. Desacetylscalaradial, a cytotoxic metabolite from the sponge Cacospongia scalaris. *Experientia* 1981, 37, 110-111.
- [14] Rueda, A.; Zubia, E.; Ortega, M. J.; Carballo, J. L.; Salvá, J. New cytotoxic metabolites from the sponge *Cacospongia* scalaris. J. Org. Chem. **1997**, 62, 1481-1485.
- [15] Terem, B.; Scheuer, P. J. Scalaradial derivatives from the nudibranch *Chromodoris youngbleuthi* and the sponge *Spongia oceania. Tetrahedron* **1986**, *42*, 4409-4412.
- [16] (a) Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. The chemical defense of four mediterranean nudibranchs. *Comp. Biochem. Physiol.* **1982**, *73B*, 471-474; (b) Rogers, S. D.; Paul, V. J. Chemical defenses of three Glossodoris nudibranchs and their dietary Hyrtios sponges. *Mar. Ecol. Prog. Ser.* **1991**, *77*, 221-232.
- [17] Avila, C.; Paul, V. J. Chemical ecology of the nudibranch *Glossodoris pallida*: is the location of diet-derived metabolites important for defense?. *Mar. Ecol. Prog. Ser.* **1997**, *150*, 171-180.
- [18] Huang, X.-C.; Liu, H.-L.; Lou, L.-G.; Guo, Y.-W. Chemical constituents of two marine sponges *Dysidea villosa* and *Dy*sidea marshalla. Chinese J. Nat. Med. 2008, 6, 425-429.
- [19] Gavagnin, M.; Mollo, E.; Docimo, T.; Guo, Y.-W.; Cimino, G. Scalarane metabolites of the nudibranch *Glossodoris rufomarginata* and its dietary sponge from the south china sea. J. Nat. Prod. 2004, 67, 2104-2107.
- [20] Manzo, E.; Gavagnin, M.; Somerville, M. J.; Mao, S.-C.; Ciavatta, M. L.; Mollo, E.; Schupp, P. J.; Garson, M. J.; Guo, Y.-W.; Cimino, G. Chemistry of *Glossodoris nudibranchs*: specific occurrence of 12-keto scalaranes. J. Chem. Ecol. 2007, 33, 2325-2336.
- [21] Kubo, I.; Ganjian, I. Insect antifeedant terpenes, hot-tasting to humans. *Experientia* 1981, 37, 1063-1064.
- [22] Caprioli, V.; Cimino, G.; Colle, R.; Gavagnin, M.; Sodano G.; Spinella, A. Insect antifeedant activity and hot taste for humans of selected natural and synthetic 1,4-dialdehydes. J. Nat. Prod. 1987, 50, 146-151.
- [23] Szallasi, A.; Biró, T.; Modarres, S.; Garlaschelli, L.; Petersen, M.; Klusch, A.; Vidari, G.; Jonassohn, M.; De Rosa, S.; Sterner, O.; Blumberg, P. M.; Krause, J. E. Dialdehyde sesquiterpenes and other terpenoids as vanilloids. *Eur. J. Pharmacol.* **1998**, *356*, 81-89.
- [24] (a) De Carvalho, M. S.; Jacobs, R. S. Two-step inactivation of bee venom phospholipase A₂ by scalaradial. *Biochem. Pharmacol.* 1991, 42, 1621-1626; (b) Potts, B. C. M.; Faulkner, D. J. Phospholipase A₂ inhibitors from marine organisms. *J. Nat. Prod.* 1992, 55, 1701-1717; (c) Potts, B. C. M.; Faulkner, D. J.; De Carvalho, M. S.; Jacobs, R. S. Chemical mechanism of inactivation of bee venom phospholipase A₂ by the marine natural products manoalide, luffariellolide, and scalaradial. *J. Am. Chem. Soc.* 1992, *114*, 5093-5100; (d) Monti, M. C.; Casapullo, A.; Cavasotto, C. N.; Napolitano, A.; Riccio, R. Scalaradial, a dialdehydecontaining marine metabolite that causes an unexpected

noncovalent PLA₂ inactivation. *ChemBioChem* **2007**, *8*, 1585-1591.

- [25] Marshall, L. A.; Winkler, J. D.; Griswold, D. E.; Bolognese, B.; Roshak, A.; Sung, C.-M.; Webb, E. F.; Jacobs, R. Effects of scalaradial, a type II phospholipase A₂ inhibitor, on human neutrophil arachidonic acid mobilization and lipid mediator formation. *J. Pharm. Exp. Therap.* **1994**, 268, 709-717.
- [26] Corey, E. J.; Luo, G.; Lin, L. S. A simple enantioselective synthesis of the biologically active tetracyclic marine sesterterpene scalarenedial. J. Am. Chem. Soc. 1997, 119, 9927-9928.
- [27] Cimino, G.; De Stefano, S.; Di Luccia, A. Further sesterterpenes from the sponge Spongia nitens: 12-epi-scalaradial and 12,18-diepi-scalaradial. *Experientia* 1979, 35, 1277-1278.
- [28] (a) Crews, P.; Bescansa, P.; Bakus, G. J. A non-peroxide norsesterterpene from a marine sponge *Hyrtios erecta*. *Experientia* 1985, 41, 690-691; (b) Crews, P.; Bescansa, P. Sesterterpenes from a common marine sponge *Hyrtios erecta*. J. Nat. Prod. 1986, 49, 1041-1052.
- [29] Bergquist, P. R.; Cambie, R. C.; Kernan, M. R. Scalarane sesterterpenes from *Collospongia auris*, a new thorectid sponge. *Biochem. System. Ecol.* **1990**, *18*, 349-357.
- [30] Rueda, A.; Zubia, E.; Ortega, M. J.; Carballo, J. L.; Salvá, J. New metabolites from the sponge *Spongia agaricina*. J. Nat. Prod. **1998**, 61, 258-261.
- [31] Jaisamut, S.; Thengyai, S.; Yuenyongsawad, S.; Karalai, C.; Plubrukarn, A.; Suwanborirux, K. Structure-activity relationships of antitubercular scalaranes: Heteronemin revisited. *Pure Appl. Chem.* 2009, *81*, 1019-1026.
- [32] Kamel, H. N.; Kim, Y. B.; Rimoldi, J. M.; Fronczek, F. R.; Ferreira, D.; Slattery, M. Scalarane sesterterpenoids: semisynthesis and biological activity. *J. Nat. Prod.* 2009, 72, 1492-1496.
- [33] Xie, Y.; Liu, L.; Huang, X.; Guo, Y.; Lou, L. Scalaradial inhibition of epidermal growth factor receptor-mediated Akt phosphorylation is independent of secretory phospholipase A₂. J. Pharm. Exp. Therap. **2005**, *314*, 1210-1217.
- [34] Walker, R. P.; Thompson, J. E.; Faulkner, D. J. Sesterterpenes from Spongia idia. J. Org. Chem. 1980, 45, 4976-4979.
- [35] Thompson, J. E.; Walker, R. P.; Faulkner, D. J. Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. *Mar. Biol.* **1985**, 88, 11-21.
- [36] Somerville, M. J.; Hooper, J. N. A.; Garson, M. J. Mooloolabenes A-E, norsesterterpenes from the Australian sponge *Hyattella intestinalis*. J. Nat. Prod. 2006, 69, 1587-1590.
- [37] Song, J.; Jeong, W.; Wang, N.; Lee, H.-S.; Sim, C. J.; Oh, K.-B.; Shin, J. Scalarane sesterterpenes from the sponge Smenospongia sp. J. Nat. Prod. 2008, 71, 1866-1871.
- [38] Miyaoka, H.; Nishijima, S.; Mitome, H.; Yamada, Y. Three new scalarane sesterterpenoids from the Okinawan sponge *Hyrtios erectus. J. Nat. Prod.* 2000, 63, 1369-1372.
- [39] Hernández-Guerrero, C. J.; Zubía, E.; Ortega, M. J.; Carballo, J. L. Sesterterpene metabolites from the sponge *Hyatella intestinalis. Tetrahedron* 2006, 62, 5392-5400.
- [40] Kazlauskas, R.; Murphy, P. T.; Wells, R. J. Five new C₂₆ tetracyclic terpenes from a sponge (Lendenfeldia sp.). Aust. J. Chem., **1982**, 35, 51-59.
- [41] Nakagawa, M.; Hamamoto, Y.; Ishihama, M.; Hamasaki, S.; Endo, M. Pharmacologically active homosesterterpenes from Palauan sponges. *Tetrahedron Lett.* **1987**, 28, 431-434.
- [42] Sera, Y.; Adachi, K.; Shizuri, Y. A new epidioxy sterol as an antifouling substance from a Palauan marine sponge, *Lendenfeldia chondrodes. J. Nat. Prod.* **1999**, *62*, 152-154.

- [43] Dai, J.; Liu, Y.; Zhou, Y.-D.; Nagle, D. G. Cytotoxic metabolites from an Indonesian sponge Lendenfeldia sp. J. Nat. Prod. 2007, 70, 1824-1826.
- [44] Chill, L.; Rudi, A.; Aknin, M.; Loya, S.; Hizi, A.; Kashman, Y. New sesterterpenes from *Madagascan Lendenfeldia* sponges. *Tetrahedron* 2004, 60, 10619-10626.
- [45] Liu, Y.; Liu, R.; Mao, S.-C.; Morgan, J. B.; Jekabsons, M. B.; Zhou, Y.-D.; Nagle, D. G. Molecular-targeted antitumor agents. 19. Furospongolide from a marine Lendenfeldia sp. sponge inhibits hypoxia-inducible factor-1 activation in breast tumor cells. J. Nat. Prod. 2008, 71, 1854-1860.
- [46] Aoki, S.; Higuchi, K.; Isozumi, N.; Matsui, K.; Miyamoto, Y.; Itoh, N.; Tanaka, K.; Kobayashi, M. Differentiation in chronic myelogenous leukemia cell K562 by spongean sesterterpene. *Biochem. Biophys. Res. Comm.* 2001, 282, 426-431.
- [47] Fontana, A.; Mollo, E.; Ortea, J.; Gavagnin, M.; Cimino, G. Scalarane and homoscalarane compounds from the nudibranch *Glossodoris sedna* and *Glossodoris dalli*: Chemical and biological properties. J. Nat. Prod. 2000, 63, 527-530.
- [48] Bowden, B. F.; Coll, J. C.; Li, H.: Cambie, R. C.; Kernan, M. R.; Bergquist, P. R. New cytotoxic scalarane sesterterpenes from the dictyoceratid sponge *Strepsichordaia lendenfeldi. J. Nat. Prod.* **1992**, *55*, 1234-1240.
- [49] Jahn, T.; König, G. M.; Wright, A. D. Three new scalaranebased sesterterpenes from the tropical marine sponge *Strep-sichordaia lendenfeldi*. J. Nat. Prod. **1999**, 62, 375-377.
- [50] Kashman, Y.; Zviely, M. New alkylated scalarins from the sponge *Dysidea herbacea*. *Tetrahedron Lett.* **1979**, 40, 3879-3882.
- [51] Schmitz, F. J.; Chang, J. C. Sesterterpenes from a pacific sponge, *Carteriospongia flabellifera*. J. Nat. Prod. 1988, 51, 745-748.
- [52] Hossain, M. B.; Beatty, K.; Schmitz, F. J.; Van der Helm, D. X-ray structure of sesterterpene, 16β-acetoxy-24-methyl-12,24-dioxoscalaran-25-al. J. Chem. Cryst. 1995, 25, 765-767.
- [53] Roy, M. C.; Tanaka, J.; De Voogd, N.; Higa, T. New scalarane class sesterterpenes from an Indonesian sponge, Phyllospongia sp. J. Nat. Prod. 2002, 65, 1838-1842.
- [54] (a) Kikuchi, H.; Tsukitani, Y.; Shimizu, I.; Kobayashi, M.; Kitagawa, I. Foliaspongin, an antiinflammatory bishomosesterterpene from the marine sponge *Phyllospongia foliascens* (Pallas). *Chem. Pharm. Bull.* **1981**, *29*, 1492-1494; (b) Kikuchi, H.; Tsukitani, Y.; Shimizu, I.; Kobayashi, M.; Kitagawa, I. Marine natural products. XI. An antiinflammatory scalarane-type bishomosesterterpene, foliaspongin, from the Okinawan marine sponge *Phyllospongia foliascens* (Pallas). *Chem. Pharm. Bull.* **1983**, *31*, 552-556.
- [55] (a) Braekman, J. C.; Daloze, D.; Kaisin, M.; Moussiaux, B. Ichthyotoxic sesterterpenoids from the neo guinean sponge *Carteriospongia foliascens. Tetrahedron* 1985, 41, 4603-4614; (b) Braekman, J. C.; Daloze, D.; Kaisin, M.; Moussiaux, B. Erratum: Ichthyotoxic sesterterpenoids from the neo guinean sponge *Carteriospongia foliascens. Tetrahedron* 1986, 42, 445; (c) Braekman, J. C.; Daloze, D. Chemical defence in sponges. *Pure Appl. Chem.* 1986, 58, 357-364.
- [56] Kitagawa, I.; Kobayashi, M.; Lee, N.-K.; Oyama, Y.; Kyogoku, Y. Marine natural products. XX. Bioactive scalarane-type bishomosesterterpenes from the Okinawan marine sponge *Phyllospongia foliascens*. *Chem. Pharm. Bull.* **1989**, *37*, 2078-2082.
- [57] De Rosa, S.; Crispino, A.; De Giulio, A.; Iodice, C.; Tommonaro, G.; Zavodnik, N. A new dimethylscalarane derivative from the sponge *Cacospongia scalaris*. *Tetrahedron* **1998**, *54*, 6185-6190.

- [58] Alvi, K. A.; Crews, P. Homoscalarane sesterterpenes from Lendenfeldia frondosa. J. Nat. Prod. 1992, 55, 859-865.
- [59] De Clercq, J. P.; Van Meerssche, M.; Braekman, J. C.; Daloze, D. A new 20,24-dimethylscalarane derivative isolated from the sponge *Carteriospongia foliascens*, C₃₀H₄₂O₆. Acta Crystallogr., Sect. C **1985**, *41*, 1222-1224.
- [60] Li, H.-J.; Amagata, T.; Tenney, K.; Crews, P. Additional scalarane sesterterpenes from the sponge *Phyllospongia papyracea. J. Nat. Prod.* 2007, *70*, 802-807.
- [61] Rao, C. B.; Kalidindi, R. S. H. S. N.; Trimurtulu, G.; Rao, D. V. Metabolites of porifera, part III. New 24methylscalaranes from *Phyllospongia dendyi* of the indian ocean. J. Nat. Prod. **1991**, 54, 364-371.
- [62] Zeng, L.-M.; Fu, X.; Su, J.-G.; Chen, S.; Snyder, J. K. Phyllofenone A, a new scalarane sesterterpene from the sponge *Phyllospongia foliascens* (Pallas). *Chem. Res. Chin. Univ.* **1991**, 7, 100-106.
- [63] Zhang, H.-J.; Tang, H.-F.; Yi Y.-H.; Lin, H.-W. Scalarane sesterterpenes from the chinese sponge *Phyllospongia foliascens. Helv. Chim. Acta* 2009, 92, 762-767.
- [64] (a) Quinn R. J.; Tucker, D. J. Two novel bisalkylated nor-scalaranes from the sponge *Carteriospongia foliascens*. *Aust. J. Chem.* 1989, 42, 751-755; (b) Barron, P. F.; Quinn R. J.; Tucker, D. J. Structural elucidation of a novel scalarane derivative by using high-field (14.1 T) N.M.R. spectroscopy. *Aust. J. Chem.* 1991, 44, 995-999.
- [65] Ponomarenko, L. P.; Kalinovsky, A. I.; Stonik, V. A. New scalarane-based sesterterpenes from the sponge *Phyl*lospongia madagascarensis. J. Nat. Prod. 2004, 67, 1507-1510.
- [66] Jiménez, J. I.; Yoshida, W. Y.; Scheuer, P. J.; Kelly, M. Scalarane-based sesterterpenes from an Indonesian sponge *Strepsichordaia aliena. J. Nat. Prod.* 2000, 63, 1388-1392.
- [67] Lan, W.-J.; Li, H.-J. New sesterterpenoids from the marine sponge *Pyllospongia papyracea*. *Helv. Chim. Acta* 2007, 90, 1218-1222.
- [68] Williams, D. E.; Hollander, I.; Feldberg, L.; Frommer, E.; Mallon, R.; Tahir, A.; Van Soest, R.; Andersen, R. J. Scalarane-based sesterterpenoid RCE-protease inhibitors isolated from the Indonesian marine sponge *Carteriospongia foliascens. J. Nat. Prod.* **2009**, *72*, 1106-1109.
- [69] Tsoukatou, M.; Siapi, H.; Vagias, C.; Roussis, V. New sesterterpene metabolites from the Mediterranean sponge *Cacospongia scalaris. J. Nat. Prod.* 2003, 66, 444-446.
- [70] Doi, Y.; Shigemori, H.; Ishibashi, M.; Mizobe, F.; Kawashima, A.; Nakaike, S.; Kobayashi, J. New sesterterpenes with nerve growth factor synthesis-stimulating activity from the Okinawan marine sponge Hyrtios sp. *Chem. Pharm. Bull.* **1993**, *41*, 2190-2191.
- [71] Lu, Q.; Faulkner, D. J. Two new sesterterpenoids and a new 9,11-secosterol from spongia matamata. J. Nat. Prod. 1997, 60, 195-198.
- Qiu, Y.; Deng, Z.; Pei, Y.; Fu, H.; Li, J.; Proksch, P.; Lin, W. Sesterterpenoids from the marine sponge *Hyrtios erectus. J. Nat. Prod.* 2004, 67, 921-924.
- [73] Cambie, R. C.; Rickard, C. E. F.; Rutledge, P. S.; Yang, X.-S. Scalarolide and scalarin, sesterterpenes from Cacospongia and Ircinia sponges. *Acta Crystallogr. Sect. C* 1999, 55, 112-114.
- [74] Cimino, G.; De Stefano, S.; Minale, L.; Trivellone, E. 12-Epi-scalarin and 12-epi-deoxoscalarin, sesterterpenes from the sponge *Spongia nitens. J. Chem. Soc., Perkin 1* 1977, 1587-1593.
- [75] Tsuchiya, N.; Sato, A.; Hata, T.; Sato, N.; Sasagawa, K.; Kobayashi, T. Cytotoxic scalarane sesterterpenes from a sponge, *Hyrtios erecta. J. Nat. Prod.* **1998**, *61*, 468-473.

- [76] Yu, Z.-G.; Bi, K.-S.; Guo, Y.-W. Hyrtiosins A-E, five new scalarane sesterterpenes from the South china sea sponge *Hyrtios erecta. Helv. Chim. Acta* 2005, 88, 1004-1009.
- [77] Tsukamoto, S.; Miura, S.; Van Soest, R. W. M.; Ohta, T. Three new cytotoxic sesterterpenes from a marine sponge Spongia sp. J. Nat. Prod. 2003, 66, 438-440.
- [78] Tokue, T.; Miura, S.; Kato, H.; Hikaru, H.; Hirota, H.; Ohta, T.; Tsukamoto, S. Neurotrophic sesterterpenes isolated from a marine sponge, Spongia sp. *Heterocycles* 2006, 69, 521-526.
- [79] Nam, S.-J.; Ko, H.; Ju, M. K.; Hwang, H.; Chin, J.; Ham, J.; Lee, B. J.; Won, D. H.; Choi, H.; Ko, J.; Shin, K.; Oh, T.; Kim, S.; Rho, J.-R.; Kang, H. Scalarane sesterterpenes from a marine sponge of the genus Spongia and their FXR antagonistic activity. J. Nat. Prod. 2007, 70, 1691-1695.
- [80] Kernan, M. R.; Barrabee, E. B.; Faulkner, D. J. Variation of the metabolites of *Chromodoris funerea*: Comparison of specimens from a Palauan marine lake with those from adjacent waters. *Comp. Biochem. Physiol.* **1988**, *89B*, 275-278.
- [81] Kobayashi, J.; Mizobe, F. JP Patent 06239741 A, **1994**.
- [82] Ashour, M. A.; Elkhayat, E. S.; Ebel, R.; Edrada, R.; Proksch, P. Indole alkaloid from the Red sea sponge *Hyrtios erectus*. Arkivoc 2007, 15, 225-231.
- [83] Díaz-Marrero, A. R.; Matainaho, T.; Van Soest, R.; Roberge, M.; Andersen, R. J. Scalarane-based metabolites isolated from the antimitotic extract of the marine sponge *Hyrtios erectus. Nat. Prod. Res.* 2008, 22, 1304-1309.
- [84] Wonganuchitmeta, S.-N.; Yuenyongsawad, S.; Keawpradub, N.; Plubrukarn, A. Antitubercular sesterterpenes from the Thai sponge Brachiaster sp. J. Nat. Prod. 2004, 67, 1767-1770.
- [85] Venkateswarlu, Y.; Biabani, M. A. F.; Rao, T. P. A new sesterterpene from the sponge *Heteronema erecta*. Ind. J. Chem. B 1995, 34, 563-564.
- [86] Pettit, G. R.; Cichacz, Z. A.: Tan, R.: Herald, D. L.: Melody, N.; Hoard, M. S.; Doubek, D. L.; Hooper, J. N. A. Antineoplastic agents. 385. The isolation and structure of a scalarane-type sesterterpene from the Indian ocean porifera *Hyrtios erecta. Collect. Czech. Chem. Commun.* **1998**, *63*, 1671-1677.
- [87] Youssef, D. T. A.; Shaala, L. A.; Emara, S. Antimycobacterial scalarane-based sesterterpenes from the Red sea sponge *Hyrtios erecta. J. Nat. Prod.* 2005, 68, 1782-1784.
- [88] Kumar, M. M. K.; Krishna, N.; Muralidhar, P.; Sastry, B. S.; Rao, D. V. A new scalarane sesterterpene from a marine spnge Hyatella cribriformis Hyatt of the Indian ocean. *Ind. J. Chem. B* 2008, *47*, 325-328.
- [89] Mahidol, C.; Prawat, H.; Sangpetsiripan, S.; Ruchirawat, S. Bioactive scalaranes from the Thai sponge *Hyrtios gumminae. J. Nat. Prod.* 2009, 72, 1870-1874.
- [90] Ryu, G.; Matsunaga, S.; Fusetani, N. Three new cytotoxic sesterterpenes from the marine sponge *Hyrtios cf. erectus*. *J. Nat. Prod.* **1996**, *59*, 515-517.
- [91] Kobayashi, J.; Murayama, T.; Ishibashi, M.; Kosuge, S.; Takamatsu, M.; Ohizumi, Y.; Kobayashi, H.; Ohta, T.; Nozoe, S.; Sasaki, T. Hyrtiosins A and B, new indole alkaloids from the Okinawan marine sponge *Hyrtios erecta*. *Tetrahedron* **1990**, *46*, 7699-7702.
- [92] Rho, J.-R.; Lee, H.-S.; Shin, H. J.; Ahn, J.-W.; Kim, J.-Y.; Sim, C. J.; Shin, J. New sesterterpenes from the sponge Smenospongia sp. J. Nat. Prod. 2004, 67, 1748-1751.
- [93] Pettit, G. R.; Tan, R.; Cichacz, Z. A. Antineoplastic agents. 542. Isolation and structure of sesterstatin 6 from the Indian ocean sponge *Hyrtios erecta*. J. Nat. Prod. 2005, 68, 1253-1255.
- [94] Cambie, R C.; Rutledge, P. S.; Yang, X.-S.; Bergquist, P. R. Chemistry of sponges. 18. 12-Desacetylfuroscalar-16-one, a

new sesterterpene from a Cacospongia sp. J. Nat. Prod. 1998, 61, 1416-1417.

- [95] Youssef, D. T. A.; Yamaki, R. K.; Kelly, M.; Scheuer, P. J. Salmahyrtisol A, a novel cytotoxic sesterterpene from the Red sea sponge *Hyrtios erecta*. J. Nat. Prod. 2002, 65, 2-6.
- [96] Meng, X.-J.; Liu, Y.; Fan, W.-Y.; Hu, B.; Du, W.; Deng, W.-P. The first synthesis of marine sesterterpene (+)scalarolide. *Tetrahedron Lett.* 2009, 50, 4983-4985.
- [97] Pettit, G. R.; Cichacz, Z. A.; Tan, R.; Hoard, M. S.; Melody, N.; Pettit, R. K. Antineoplastic agents. 386. Isolation of sesterstatins 1-3 from the marine sponge *Hyrtios erecta*. *J. Nat. Prod.* **1998**, *61*, 13-16.
- [98] Chang, L. C.; Otero-Quintero, S.; Nicholas, G. M.; Bewley, C. A. Phyllolactones A-E: new bishomoscalarane sesterterpenes from the marine sponge *Phyllospongia lamellosa*. *Tetrahedron* 2001, 57, 5731-5738.
- [99] Fu, X.; Zeng, L. M.; Su, J. Y.; Pais, M.; Potier, P. Scalarane-type bishomosesterterpenes from the sponge *Phyl*lospongia foliascens. J. Nat. Prod. **1992**, 55, 1607-1613.
- [100] Wan, Y.; Li, Q.; Zeng, L.; Su, J. Secondary metabolites of the marine sponge, *Phyllospongia foliascens. Acta Scientarium Naturalium* 1998, 37, 81-84.
- [101] Fu, X.; Zeng, L.; Su, J.; Pais, M.; Potier, P. Two new sesterterpenes from a South china sea sponge. J. Nat. Prod. 1993, 56, 1985-1988.
- [102] Zeng, L.; Fu, X.; Su, J.; Wang, Q. Phyllactones F and G, further bis-homoscalarane sesterterpenes from the sponge *Phyllospongia foliascens. Chem. Res. Chin. Univ.* **1993**, *9*, 161-164.
- [103] Hochlowski, J. E.; Faulkner, D. J.; Bass, L. S.; Clardy, J. Metabolites of the dorid nudibranch *Chromodoris sedna*. J. Nat. Prod. **1983**, 48, 1738-1740.
- [104] Stessman, C. C.; Ebel, R.; Corvino, A. J.; Crews, P. Employing dereplication and gradient 1D NMR methods to rapidly characterize sponge-derived metabolites. *J. Nat. Prod.* 2002, 65, 1183-1186.
- [105] Fu, X.; Zeng, L.; Su, J.; Schmitz, F. J. Phyllofolactones C and D, two new minor homoscalarane sesterterpenes from the chinese sponge *Phyllospongia foliascens*. J. Nat. Prod. 1999, 62, 644-646.
- [106] Zeng, L.; Fu, X.; Su, J.; Pordesimo, E. O.; Traeger, S. C.; Schmitz, F. J. Novel bishomoscalarane sesterterpenes from the sponge *Phyllospongia foliascens. J. Nat. Prod.* **1991**, 54, 421-427.
- [107] Reddy, M. V. R.; Venkateswarlu, Y.; Rao, J. V. A new bishomoscalarane sesterterpene 12-epi-phyllofolactone-B from *Phyllospongia foliascens. Indian J. Chem. B* 1993, 32, 1196-1197.
- [108] Wang, Y.-Q.; Su, J.-Y.; Zeng, L.-M.; Wang, M.-Y. Two new scalarane-type sesterterpenes phyllactone H and I from the sponge Phyllospongia sp. *Chem. J. Chin. Univ.* **1996**, *17*, 1747-1749.
- [109] Croft, K. D.; Ghisalberti, E. L.; Skelton, B. W.; White, A. H. Structural study of a new dialkylated scalarane from a Carteriospongia sp. J. Chem. Soc., Perkin 1 1983, 155-159.
- [110] Jiménez, J. I.; Yoshida, W. Y.; Scheuer, P. J.; Lobkovsky, E.; Clardy, J.; Kelly, M. Honulactones: new bishomoscalarane sesterterpenes from the Indonesian sponge *Strepsichordaia aliena. J. Org. Chem.* **2000**, *65*, 6837-6840.
- [111] Fu, X.; Zeng, L.; Su, J. Acetoxy phyllofolactone A A new bishomoscalarane sesterterpene from the South china sea sponge *Phyllospongia foliascens*. *Chem. J. Chin. Univ.* **1992**, *13*, 628-629.
- [112] Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J. Heteronemin, a new scalarin type sesterterpene from the sponge *Heteronema erecta*. *Tetrahedron Lett.* **1976**, *17*, 2631-2634.

- [113] Kashman, Y.; Rudi, A. The ¹³C-NMR spectrum and stereochemistry of heteronemin. *Tetrahedron* 1977, 33, 2997-2998.
- [114] Patil, A. D.; Westley, J. W.; Baures, P. W.; Eggleston, D. S. Structure of heteronemin. Acta Crystallogr. Sect. C 1991, 47, 1250-1253.
- [115] Karuso, P.; Cambie, R. C.; Bowden, B. F.; Bergquist, P. R. Chemistry of sponges, VI. Scalarane sesterterpenes from *Hyatella intestinalis. J. Nat. Prod.* **1989**, *52*, 289-293.
- [116] Bourguet-Kondracki, M. L.; Martin, M. T.; Debitus, C.; Guyot, M. 12-Epi-heteronemin: new sesterterpene from the marine sponge *Hyrtios erecta*. *Tetrahedron Lett.* **1994**, *35*, 109-110.
- [117] Kobayashi, M.; Okamoto, T.; Hayashi, K.; Yokoyama, N.; Sasaki, T.; Kitagawa, I. Marine natural products. XXXII. Absolute configurations of C-4 of the manoalide family, biologically active sesterterpenes from the marine sponge *Hyrtios erecta. Chem. Pharm. Bull.* **1994**, *42*, 265-270.
- [118] Alam, M.; Sanduja, R.; Wellington, G. M. Heteronemin from the stony coral *Tubastraea miccantha*. *Heterocycles* 1988, 27, 719.
- [119] Fontana, A.; Cavaliere, P.; Ungur, N.; D'Souza, L.; Parameswaram, P. S.; Cimino, G. New scalaranes from the nudibranch *Glossodoris atromarginata* and its sponge prey. *J. Nat. Prod.* **1999**, *62*, 1367-1370.
- [120] Ledroit, V.; Debitus, C.; Ausseil, F.; Raux, R.; Menou, J.-L.; Hill, B. Heteronemin as a protein farnesyl transferase inhibitor. *Pharm. Biol.* 2004, 42, 454-456.
- [121] El Sayed, K. A.; Bartyzel, P.; Shen, X.; Perry, T. L.; Zjawiony, J. K.; Hamann, M. T. Marine natural products as antituberculosis agents. *Tetrahedron* **2000**, *56*, 949-953.
- [122] Cimino, G.; De Stefano, S.; Minale, L. Deoxoscalarin, a further sesterterpene with the unusual tetracyclic carbon skeleton of scalarin, from *Spongia officinalis*. *Experientia* **1973**, 29, 934-936.
- [123] Miyamoto, T.; Sakamoto, K.; Amano, H.; Arakawa, Y.; Nagarekawa, Y.; Komori, T.; Higuchi, R.; Sasaki, T. New cytotoxic sesterterpenoids from the nudibranch *Chromodoris inornata. Tetrahedron* **1999**, *55*, 9133-9142.
- [124] De Giulio, A.; De Rosa, S.; Di Vincenzo, G.; Zavodnik, N. Terpenoids from the North adriatic sponge Spongia officinalis. J. Nat. Prod. 1989, 52, 1258-1262.
- [125] Nam, S.-J.; Ko, H.; Shin, M.; Ham, J.; Chin, J.; Kim, Y.; Kim, H.; Shin, K.; Choi, H.; Kang, H. Farnesoid Xactivated receptor antagonists from a marine sponge Spongia sp. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 5398-5402.
- [126] Rao, C. B.; Kalidindi, R. S. H. S. N.; Rao, D. V.; Sreedhara, C. Metabolites of porifera. Part IV. A new sesterterpene from *Phyllospongia dendyi* of the Indian ocean. *Ind. J. Chem. B* **1993**, *32*, 288-290.
- [127] Jaspars, M.; Jackson, E.; Lobkovsky, E.; Clardy, J.; Diaz, M. C.; Crews, P. Using scalarane sesterterpenes to examine

a sponge taxonomic anomaly. J. Nat. Prod. 1997, 60, 556-561.

- [128] Fu, X.; Zeng, L.; Su, J.; Chen, S.; Snyder, J. K. Bishomoscalarane sesterterpenes from the sponge *Phyllospongia foliascens. Chem. J. Chin. Univ.* **1991**, *12*, 1486-1487.
- [129] Fu, X.; Zeng, L.; Su, J.; Snyder, J. K. Spectral study on a bishomosesterterpene, phyllohemiketal A. J. Instrum. Anal. 1993, 12, 29-33.
- [130] Fu, X.; Zeng, L.; Su, J.; Schmitz, F. J. A new sesterterpene from the sponge *Phyllospongia foliascens*. *Chin. Chem. Lett.* **1991**, *2*, 543-544.
- [131] Shen, X.; Guo, Y.; Jian, H.; Yu, Z.; Du, L. CN Patent 1864691 A, 2006.
- [132] Davis, R.; Capon, R. J. Two new scalarane sesterterpenes: isoscalarafuran-A and -B, epimeric alcohols from a southern Australian marine sponge, *Spongia hispida. Aust. J. Chem.* **1993**, *46*, 1295-1299.
- [133] Pettit, G. R.; Tan, R.; Melody, N.; Cichacz, Z. A.; Herald, D. L.; Hoard, M. S.; Pettit, R. K.; Chapuis, J.-C. Antineoplastic agents 397: Isolation and structure of sesterstatins 4 and 5 from *Hyrtios erecta* (The republic of maldives). *Bioorg. Med. Chem. Lett.* **1998**, 8, 2093-2098.
- [134] (a) Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C.; Sica, D. Furoscalarol, a scalarin-like furanosesterterpenoid from the marine sponge *Cacospongia mollior. Gazz. Chim. Ital.* **1977**, *107*, 71-74; (b) Cimino, G.; Cafieri, F.; De Napoli, L.; Fattorusso, E. Carbon-13 NMR spectrum and absolute stereochemistry of furoscalarol. *Tetrahedron Lett.* **1978**, 2041-2044.
- [135] Cambie, R. C.; Rutledge, P. S.; Yang, X.-S.; Bergquist, P. R. Chemistry of sponges. 18. 12-Desacetylfuroscalar-16one, a new sesterterpene from a Cacospongia sp. J. Nat. Prod. 1998, 61, 1416-1417.
- [136] Cimino, G.; De Rosa, S.; De Stefano, S. Scalarolbutenolide, a new sesterterpenoid from the marine sponge *Spongia nit*ens. Experientia **1981**, *37*, 214-216.
- [137] Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C.; Sica, D. Molliorin-A: A unique scalarin-like pyrroloterpene from the sponge *Cacospongia mollior*. *Tetrahedron Lett.* **1977**, *18*, 477-480.
- [138] Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C. Molliorin-B, a second scalarin-like pyrroloterpene from the sponge *Cacospongia mollior*. *Experientia* **1977**, *33*, 994-995.
- [139] Cafieri, F.; De Napoli, L.; Iengo, A.; Santacroce, C. Molliorin-C, a further pyrroloterpene present in the sponge *Cacospongia mollior. Experientia* **1978**, *34*, 300-301.
- [140] Kimura, J.; Hyosu, M. Two new sesterterpenes from the marine sponge, *Coscinoderma mathewsi. Chem. Lett.* 1999, 61-62.

Revised: June 11, 2010

Accepted: July 7, 2010