

Spectral Assignments and Reference Data

¹H and ¹³C NMR signal assignment of synthetic (-)-methyl thyrsiflorin B acetate, (-)-thyrsiflorin C and several scopadulane derivatives

Miguel A. González and Ramón J. Zaragozá*

Instituto de Ciencia Molecular (UIQOT), Departamento de Química Orgànica, Universitat de València, E-46100 Burjassot (València), Spain

Received 9 May 2005; revised 1 June 2005; accepted 4 June 2005

The ¹H and ¹³C NMR signal assignment of the data of 13 scopadulane-type diterpenes is reported. It was based on one- and two- dimensional NMR techniques which included ¹H, ¹³C, DEPT, HMQC and 1D NOE difference spectroscopy. Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: ¹H NMR; ¹³C NMR; scopadulcic acid derivatives; scopadulane terpenoids

*Correspondence to: Ramón J. Zaragozá, Departamento de Química Orgànica, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain. E-mail: Ramon.J.Zaragoza@uv.es

Contract/grant sponsor: Spanish Ministry of Science and Technology

DGICYT; Contract/grant number: BQU2002-01032.

Contract/grant sponsor: AVCYT of the Generalitat Valenciana; Contract/grant number: GRUPOS03/176.

INTRODUCTION

Scopadulane diterpenes are a small group of structurally unique tetracyclic terpenoids isolated from medicinal plants of the Scrophulariaceae family. They were found for the first time in the plant *Scoparia dulcis* L. from Paraguay and later in different *Calceolaria* species from Chile.¹ These compounds and some derivatives have shown a broad range of bioactivities.²

In the course of our synthetic studies for the preparation of C7functionalized scopadulane diterpenes, we reported the synthesis of the methyl ester of the natural (-)-thyrsiflorin B acetate (8) and also thyrsiflorin C (9).³ More recently, we have synthesized several C6and C7-functionalized scopadulane derivatives for their biological evaluation as antivirals.⁴ During these syntheses, we have prepared a number of intermediates which have been characterized by NMR and physical data. We have realized that some NMR signal assignments found in the literature for 8 and 9 lack proof by 2D NMR correlation data and are different to our findings. Therefore, we describe in this paper the ¹H and ¹³C NMR signal assignments based on 1D and 2D NMR techniques for the natural products 8 and 9, and 11 structurally related scopadulane derivatives.

RESULTS AND DISCUSSION

The chemical structures and the numbering system of **1–13** are presented in Fig. 1. All compounds are based on the scopadulane carbon framework and are distinguished by their substitution pattern in the positions C-6, C-7, C-8, C-13, and C-14. For example, **1–4** present a double bond between C-8 and C-14 with modifications of oxygenation grade at positions C-6 and C-7. Compounds **5–11** only differ in the oxygenation pattern of positions C-7 and C-13 while compounds **12** and **13** differ only in the orientation of the

Carbon	1	2	3 ^c	4 ^c	5 ^c	6	7 ^c	8 ^{c,d}	9	10	11 ^c	12	13
1	32.82	32.89	31.21	30.82	32.33	32.27	32.11	32.25	32.45	32.22 ^a	32.25	33.56	34.99
2	18.32	18.08	18.25	18.12	18.59	18.61	18.63	18.58	18.68	18.67	18.61	18.68	18.86
3	41.86	41.51	41.06	40.99	41.84	41.88	41.96	41.89	41.95	41.96	41.92	43.94	44.61
4	33.10	33.33	32.80	33.22	33.08	33.47	33.17	33.14	33.05	33.08	33.14	33.26	34.18
5	42.46	43.97	50.00	48.66	46.34	45.85	45.92	45.87	46.11	46.14	45.89	53.36	51.26
6	29.59 ^a	37.03	127.25	56.15	32.02	27.94	28.05	27.98	31.85	32.11 ^a	28.01	70.12	67.80
7	72.71	200.09	138.42	53.28	73.91	76.28 ^a	76.58	75.97	73.80	74.20 ^b	76.04	41.37	39.25
8	163.23	157.98	163.03	162.23	47.34	41.99	38.30	41.80	45.18	41.44	41.80	37.02	32.69
9	58.18	57.43	56.57	56.31	52.46	53.10	53.99	53.20	53.04	53.91	53.24	51.79	52.50
10	37.32	36.59	38.14	37.86	38.81	38.34	38.56	38.40	38.53	38.70	38.41	40.01	38.77
11	44.92	44.87	43.06	44.69	45.19	44.49	37.68	44.48	44.58	37.73	44.50	44.32	44.48
12	50.73	52.22	50.98	51.18	53.62	44.10	43.73	43.13	44.14	43.74	43.04	44.32	43.86
13	204.89	204.53	205.28	203.95	213.77	76.00 ^a	74.49	79.31	76.22	74.65 ^b	77.83	76.16	76.22
14	130.30	128.32	122.54	131.00	40.13	30.58 ^b	33.10	30.30	30.66 ^a	33.48	30.50	37.59	37.57
15	33.85	31.63 ^a	33.11	33.82	36.73	33.99 ^b	36.27	31.87	34.28 ^a	36.34	31.94	30.50	30.51
16	29.69 ^a	31.24 ^a	29.14	30.05	25.57	25.83	24.24	25.82	25.97	24.32	25.85	24.75	23.86
17	20.11	19.54	20.34	20.33	19.69	23.08	23.85	22.90	23.13	23.91	23.03	23.26	23.23
18	33.40	32.62	33.05	32.87	33.50	33.12	33.51	33.47	33.50	33.52	33.48	36.95	33.85
19	22.44	21.50 ^b	22.71	22.66	21.91	21.94	22.04	21.93	22.01	22.10	21.94	22.53	21.30
20	21.16	20.08 ^b	18.40	20.10	17.47	17.49	17.71	17.50	17.58	17.80	17.50	18.59	25.15
R_1, R_2	133.01;	-	-	-	_	170.86;	171.07;	170.95;	-	-	170.99;	-	-
	129.80					21.30	21.34	21.34			170.97		
	129.53;	-	-	-	_				-	_	21.34;	-	-
	128.52										21.23		

^{a,b} Signals may be interchanged.

^c Signal assignments based on HMQC experiments.

^d Additional side-chain ester ¹³C signals in 8 at δ 167.04 ppm (s), 166.23 ppm (s), 52.37 ppm (q) and 41.64 ppm (t).

Table 2.	¹ H NMR cher	nical shifts (δ, Į	ppm) of 1–13										
	1	0	3c	4c	5°	9	Δc	8c	6	10	11 ^c	12	13
H-1	1.50 - 1.60	1.50 - 1.60	${\sim}1.48$	1.38	${\sim}1.47$	${\sim}1.40$	1.32 - 1.50	${\sim}1.40$	${\sim}1.40$	1.40	~ 1.41	${\sim}1.40$	${\sim}1.40$
H-2	1.50 - 1.70	1.50 - 1.65	1.50 - 1.75	1.54 - 1.75	1.30 - 1.55	1.30 - 1.60	1.38 - 1.60	1.34 - 1.61	1.30 - 1.60	1.30 - 1.60	1.30 - 1.52	1.30 - 1.60	1.30 - 1.60
Η-3α	${\sim}1.20$	~ 1.15	1.22	1.17	1.11	1.12	1.10	1.10	${\sim}1.10$	${\sim}1.08$	${\sim}1.10$	– d	р Г
Н-3β	1.50 - 1.60	1.50 - 1.60	${\sim}1.50$	~ 1.53	~ 1.41	${\sim}1.40$	1.40	1.40	– d	- d	1.38	– d	р Г
H-5	~ 1.25	~ 1.25	2.04	1.50	1.06	${\sim}1.01$	1.03	1.02	${\sim}1.00$	- d	1.04	– d	- Ч
Η-6α	I	2.62	I	I	1.87	1.80 - 1.90	1.85	~ 1.85	– d	- d	~ 1.83	I	4.30
Н-6β	1.90-2	2.51	6.23	3.38	~ 1.35	- d	~ 1.37	~ 1.33	- d	_ d	~ 1.34	3.90	I
H-7 α	I	I	I	I	3.53	4.68	4.67	4.71	3.41	3.36	4.72	– d	р –
$H-7\beta$	5.98	I	6.18	3.58	I	I	I	I	I	I	I	– d	р –
H-8	I	I	I	I	1.99	1.90	2.08	1.95	– d	- q	1.95	2.20	р –
H-11 α	_ م	1.70	1.76	1.52	1.69	1.46	1.54	1.52	1.42	р Г	1.51	ا م	р Г
H-11 β	~ 1.64	${\sim}1.80$	1.58	1.71	1.40	р –	1.12	1.08	р —	ч Ч	~ 1.06	ц Ч	р Г
H-13	I	I	I	I	I	3.35	3.43	4.67	3.38	3.48	4.60	3.40	3.42
$H-14\alpha$	I	I	I	I	2.11	– d	${\sim}1.40$	${\sim}1.12$	– d	- d	${\sim}1.10$	– d	- Ч
H-14 β	6.14	6.64	5.68	6.27	2.72	~ 2.03	1.74	2.10	2.31	2.04	2.07	_d	р <mark>г</mark>
H-15	р —	р —	${\sim}1.68$	${\sim}1.70$	1.56 - 1.75	– d	${\sim}1.42$	${\sim}1.20, 1.80$	– d	- d	\sim 1.20, 1.84	_ م	р Г
H-16	2.30	2.35	2.20	2.06	~ 2.01	– d	~ 1.73	~ 1.83	${\sim}1.80$	${\sim}1.80$	~ 1.79	– d	- q
H-16′	р —	р –	1.40	1.70	${\sim}1.67$	- d	${\sim}1.42$	~ 1.43	- d	- q	~ 1.42	- d	- q
H-17	1.19	1.24	1.22	1.20	1.04	0.99	1.01	0.94	0.99^{a}	1.02 ^a	0.92	1.01^{a}	1.02
H-18	0.93	0.96	1.00	1.11	0.85	0.81^{a}	0.84	0.83	$0.82^{\rm b}$	0.82	0.84	1.12	0.94
H-19	0.89	0.89	0.95	1.08	0.83	0.79^{a}	0.83	0.81	0.81^{b}	0.82	0.82	0.97	1.23 ^a
H-20	1.00	1.00	0.95	1.02	1.00	0.99	1.06	1.02	0.97 ^a	0.99 ^a	1.02	1.03 ^a	1.30^{a}
R_1, R_2	7.40 - 8.00	I	I	I	I	2.02	2.05	2.04, 3.74, 3.36	I	I	2.03, 2.04	I	I
^{a,b} Signí ^c Signal ^d Signal	als may be inte assignments b not assigned.	erchanged. Ased on HM(2C experimen:	ts.									

Spectral Assignments and Reference Data

878

MRC

Table 3.	Selected ¹ H	NMR signals of	f 1–13: multiplic	cities and coup.	ling constants	(<i>J</i> , Hz)							
	1	2	3 ^a	4a	5 ^a	9	7a	8ª	6	10	11 ^a	12	13
H-5	I	I	dd;	br s	dd;	I	dd;	dd;	I	I	dd;	I	I
			2.5, 1.5		12, 2.5		12.5, 2.5	12.5, 2.5			12, 2.5		
Η-6α	I	dd;	I	I	ddd;	I	ddd;	I	I	I	I	I	br s;
		19, 7			12.5, 5.5, 2.5		12.5, 5.5, 2.5						$W_{h/2} = 8$
H-6 β	I	dd;	dd;	dd;	I	I	I	I	I	I	I	ddd;	I
		19, 12.5	10, 2.5	4, 2.5								11, 10.5, 5.5	
$H-7\alpha$	I	I	dd;	I	ddd;	ddd;	ddd;	ddd;	ddd;	ddd;	ddd;	I	I
			10, 1.5		11, 10.5, 5.5	11, 10.5, 5.5	11, 11, 5.5	11, 11, 5.5	11, 9, 5.5	11, 10, 5.5	11, 10.5, 5.5		
$H-7\beta$	dd; 3, 3	I	I	d;4	I	I	I	I	I	I	I	I	I
H-8	I	I	I	I	I	I	ddd;	ddd;	I	I	ddd;	I	I
							11, 11, 5	11, 11, 5			11.5, 10.5, 5		
H-11 α	I	d;	d; 11.5	d; 11.5	d; 12	d; 12	br d; 11.5	d; 11	d;11.5	I	d; 11.5	I	I
		11.5											
H-11 β	I	I	br d; 11.5	br d; 11.5	br d; 12	I	br d; 11.5	br d; 11	I	I	I	I	I
H-13	I	I	I	I	I	dd; 10, 6	br s;	dd;	dd;	br s;	ddd;	dd;	dd;
							$W_{\rm h/2} = 8$	10.5, 6	10.5, 6	$W_{h/2} = 8$	10.5, 6, 1	10.5, 5.5	10, 6.5
H-14 α	br s	s	S	s	dd;	I	I	I	I	I	I	I	I
					15.5, 11.5								
H-14 β	I	I	I	I	dd;	I	ddd;	ddd;	ddd;	ddd;	ddd;	I	I
					15.5, 6		15, 5, 2	13, 6, 5	13, 6, 5	14, 5, 2	13, 6, 5		
H-16	ddd;	ddd;	ddd;	I	I	I	I	I	I	I	I	I	I
	12.5, 10, 7	12.5, 12.5, 7	12.5, 10, 6.5										
^a Signal	assignments	based on HM(2C experiment	s.									

Spectral Assignments and Reference Data

Spectral Assignments and Reference Data

Figure 1. Structures and numbering of the compounds investigated.

C-6 hydroxy group. Signal assignments of ¹³C NMR chemical shifts are listed in Table 1. The ¹H NMR chemical shifts are presented in Table 2; multiplicities and coupling constants of the most relevant ¹H NMR signals are shown in Table 3. The obvious assignments were deduced from the corresponding ¹H NMR, ¹³C NMR and DEPT spectra according to their chemical shifts and multiplicities. The remaining signals were assigned with the aid of double resonance experiments, one-bond heteronuclear (¹H,¹³C) multiple quantum correlation (HMQC) spectra, some 1D NOE difference experiments, and by comparison with literature data.⁵

The stereochemistry of the substituents located at positions C-6, C-7 and C-13 (1, 6–13) can be deduced from the coupling constant of the corresponding proton. For example, proton H-6 in 12 presents coupling constants (I = 11, 10.5 and 5.5 Hz) in agreement with an axial disposition (α) of this proton, whereas in 13 that proton signal appears as a broad singlet with a $W_{1/2}$ of 8 Hz indicating an equatorial orientation (β). In a similar manner, the stereochemistry

of the protons H-7 and/or H-13 can be deduced in **1** and **6–11**. The stereochemistry of the epoxide in **4** was assigned by NOE difference experiments, in particular, irradiation of the C-20 methyl signal gave NOE enhancements of the H-6, H-7 and H-19 signals, thereby confirming the α -orientation of the oxirane ring. From the ¹³C NMR data, we can observe a γ -effect on C-8 when there is an axial substituent on C-6 or C-13. For example, the signal due to C-8 in 7 and **10** is upfield (about 3.7 ppm to lower frequency) with respect to **6** and **9** respectively.

The ¹H NMR and ¹³C NMR data of the synthetic derivatives **8** and **9** were similar to those reported for the methyl ester of thyrsiflorin B acetate and thyrsiflorin C respectively.^{1d,e} However, our ¹H NMR data of **8**, specially the HMQC spectrum and NOE difference experiments, indicated that the assignments of H-17 and H-20 as well as some ¹³C signal assignments had to be reversed. We believe that this contribution could be useful as a reference for the assignment and characterization of similar compounds.

EXPERIMENTAL

Compounds

All the compounds were prepared as described previously.^{3,4}

NMR spectroscopy

All NMR experiments **1**–**13** dissolved in CDCl₃ were performed with Varian XL-300 and Varian 400 spectrometers operating at a proton frequency of 299.95 MHz and 399.95 MHz respectively. Detailed experimental parameters have been presented previously.⁵

Acknowledgements

This work was supported by research funds provided by the Spanish Ministry of Science and Technology DGICYT (project BQU2002-01032) and by the AVCYT of the Generalitat Valenciana (reference GRUPOS03/176). M. A. G. thanks the Spanish Ministry of Science and Technology for a research fellowship (Programa Ramón y Cajal).

REFERENCES

- (a) Hayashi T, Kishi M, Kawasaki M, Arisawa M, Shimizu M, Suzuki S, Yoshizaki M, Morita N, Tezuka Y, Kikuchi T, Berganza LH, Ferro E, Basualdo I *Tetrahedron Lett.* 1987; 28: 3693; (b) Hayashi T, Kishi M, Kawasaki M, Arisawa M, Morita N *J. Nat. Prod.* 1988; 5: 360; (c) Hayashi T, Asano S, Mizutani M, Takeguchi N, Kojima T, Okamura K, Morita N *J. Nat. Prod.* 1991; 54: 802; (d) Chamy MC, Piovano M, Garbarino JA, Miranda C, Gambaro V, Rodriguez ML, Ruiz-Perez C, Brito I *Phytochemistry* 1991; 30: 589; (e) Chamy MC, Piovano M, Garbarino JA, Vargas C. *Phytochemistry* 1995; 40: 1751.
- (a) Hayashi T Stud. Nat. Prod. Chem. 2000; 21: 689 (review);
 (b) Betancur-Galvis L, Zuluaga C, Arnó M, González MA, Zaragozá RJ. J. Nat. Prod. 2001; 64: 1318.
- Arnó M, González MA, Marín ML, Zaragozá RJ. J. Org. Chem. 2000; 65: 840.
- Arnó M, Betancur-Galvis L, Bueno-Sanchez JG, González MA, Zaragozá RJ. *Tetrahedron* 2003; 59: 6455.
- Arnó M, González MA, Marín ML, Zaragozá RJ. Magn. Reson. Chem. 2001; 39: 414.