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 Carnosic acid (CA, 57) has also been reported to possess 
antitumour activities. For example, CA potently inhibits proliferation 
of ER-negative human breast cancer cells, induces G1 cell cycle 
arrest, and exhibits synergy with turmeric/curcumin.104 CA induced 
antiproliferative effects on androgen-independent human prostate 
cancer PC-3 cells in a concentration- and time-dependent manner, 
which was due to apoptotic induction as evident from flow-
cytometry, DNA laddering and TUNEL assay.105 In addition, CA 
induced apoptosis in another androgen refractory prostate cancer 
DU145 cells. Thus, it was concluded that CA may have the potential 
for use in the prevention and/or treatment of prostate cancer. A study 
describing the antitumour action of CA on three human colon cancer 
cell lines (Caco-2, LoVo and HT29) has been reported.106 This 
investigation found that CA reduces cell viability by inducing 
apoptosis Caco-2 cell line, and inhibits cell migration ability. In 
addition, CA inhibited cyclooxygenase COX-2, at mRNA and 
protein levels. 
 The antimicrobial activity of carnosic acid related compounds, 
such as 11-acetoxy-carnosic acid (58), isolated from Salvia species, 
and 12-methoxycarnosic acid (59), isolated from Dauphinea 
brevilabra (Lamiaceae) has been described. Compound 58 showed 
considerable antibiotic activity against Gram-positive 
microorganism, Staphylococcus aureus and Bacillus subtilis.107 
Compound 59 also inhibited the growth of these organisms, 
including Streptomyces scabies with MIC values of 1.0, 20.0 and 1.0 
g/mL, respectively.108 A study on the structure-antimicrobial 
activity relationships of abietatriene diterpenoids from Salvia species 
has been reported.109 It concluded that the free catechol group is 
essential for antimicrobial activity against Gram-positive bacteria. 
The compounds in which the catechol group had been oxidised to a 
quinone exhibited enhanced activity. 
 Finally, the activation by compound 59 of the nuclear receptor 
peroxisome proliferator-activated receptor PPAR which is potential 
therapeutic target for many obesity-related disorders such as type 2 
diabetes, atherosclerosis, and the metabolic syndrome, has been 
reported.110  
 
Table 1. Biological activity found in compounds 2-59. 

Compound Biological activity Ref. 
Dehydroabietic acid, 2 Antiulcer 3 

Antimicrobial 20,21 

Antitumour 22,28 

Anti-inflammatory 23-
25,29 

Improves diabetes and 
hyperlipidemia 

26 

7-Oxydehydroabietic acid, 6 
Contact allergen 27 15-Hydroperoxy-

dehydroabietic acid, 7 

12-Hydroxydehydroabietic 
acid, 8 

Antitumour 28 

Anti-inflammatory 29 

Abieta-8,11,13-trien-7-one, 
9 

Antitumour 28 
Methyl 15-hydroxy-7-oxo-
dehydroabietate, 10 

15-Hydroxydehydroabietic 
acid, 11 

Anti-inflammatory 29 
15-Hydroxy-7-oxo-
dehydroabietic acid, 12 

8,11,13-abietratriene-7,18-
diol, 13 

Antitumour 29 

Pomiferin A 
(dehydroabietinol), 14 

Antitumour 29,30 

Antimicrobial 30 

Abieta-8,11,13-triene-
7,15,18-triol, 15 

Antitumour 31 

Ferruginol, 3 Antimicrobial 32 

Cytotoxicity 32b 

Miticidal 33 

Cardioactive 34 

Antioxidative 35 

Antileishmanial and 
nematicidal 

36 

Antiulcer 37 

Antitumour 38-41 

Antimalarial  36,43-
45 

Anti-inflammatory 42 

Trypanocidal 46 

Anti-SARS 47,48 

Glycogen phosphorylase 
inhibition 

49 

Cholesterolacyltransferase 
inhibition 

50 

Cholinesterase inhibition 51 

Hinokiol, 16 Antioxidative 54 

Anti-inflammatory 55 

Sugiol, 17 Antimalarial  56 

Anti-inflammatory and 
hepatoprotective 57 

Cytotoxicity 58 

Xanthine oxidase inhibition 59 

Antitumour 38 

Antimicrobial 60,61 

15-Hydroxy-7-oxoabieta-
8,11,13-triene, 18 

Antimicrobial 61 

6-Hydroxysugiol, 19 Antitumour 62,65 

12-Methoxyabieta-8,11,13-
trien-11-ol, 20 

Antitumour 62 

Demethylcryptojaponol, 21 Cytotoxicity 63 

1-Oxoferruginol, 22 Antimicrobial 64 

20-Hydroxyferruginol, 23 Antitumour 65 

18-Methyl esterferruginol, 
24 

Antioxidative 66 

Anti-inflammatory 

18-Dimethoxyferruginol, 25 Antioxidative 66 

2-Acetoxyferruginol, 26 Antimicrobial 67 

Taxodistine A, 27 Cytotoxicity 68 

Taxodistine B, 28 Cytotoxicity 
68 Inhibition of tubulin 

polymerisation 

Fleuryinol B, 29 Cytotoxicity 69 

19-Hydroxyferruginol, 30 Cytotoxicity 69 

Ferrugimenthenol, 31  Cytotoxicity 70 

Salviniol, 32 Cytotoxicity 71 

12-Methoxyabieta-8,11,13-
trien-7,11-diol, 33 

Antibacterial and antifungal 72 

12-O-(3-methyl-2-butenoyl)-
19-O-(3,4-dihydroxy-
benzoyl)-11-hydroxyabieta-
8,11,13-triene, 34 

Antioxidative 73 

7-Methoxydeoxo-
cryptojaponol, 35 

Antitumour 74 

Inuroyleanol, 36 Antioxidant 75 

Fortunin C, 37 Antitumour 76 

7-Hydroxydeoxy-
cryptojaponol, 38 

Anti-SARS 47 

11,14-Dihydroxy-8,11,13-
abietatrien-7-one, 39 

Cytotoxicity 77 

Salvadoriol, 40 Antitumour 78 

16-Acetoxysugiol, 41 Cytotoxicity 79 

Abieta-8,11,13-triene-14,19- Cytotoxicity 79 
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