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Abstract

We present a new approach for color pattern recognition based on multi-channel nonlinear correlations. High

discrimination capability is obtained in comparison with common linear multi-channel detection methods. We apply

the nonlinear morphological correlation to different color channel decompositions as RGB and ATD channels.

Moreover, in order to improve the discrimination we have introduced a new color transformation. When a high se-

lectivity is required, the combination of the nonlinear correlation and the new color decomposition yields to detect the

object using just a single channel. Simulation results are provided. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Color is one of the most powerful and impor-
tant information to be considered for image pro-
cessing, in particular for pattern recognition. From
the optical pattern recognition point of view, the
linear correlation is one of the most useful tool [1].
In fact, optical correlation can be extended to
polychromatic images. The first color detection
process was introduced by Yu and Chao [2]. In
that work, they used three coherent light sources
(red, green and blue, RGB) and a diffraction
grating. An extensive method to study color pat-

tern recognition is the multi-channel correlator [3–
5]. With this approach the input scene and the
color target are decomposed into three color
channels and then processed separately. Finally,
the correlation outputs are combined to give a fi-
nal detection using arithmetic or logical point-wise
operations. Much work has been devoted for the
multi-channel processing in order to improve the
process [6–9].
Nevertheless, color pattern recognition has not

been studied only with multi-channel methods.
There are methods based on preprocessing the
input scene and the color target in order to com-
bine the color information in a unique image.
Those are the single-channel approaches and some
work has been done based on its application to
two-dimensional [10,11] and tri-dimensional im-

15 March 2002

Optics Communications 203 (2002) 255–261

www.elsevier.com/locate/optcom

*Corresponding author. Tel.: +34-96-386-47-17; fax: +34-96-

386-47-15.

0030-4018/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0030-4018 (02 )01184-7



ages [12]. However, in spite of the advantages of a
reduction in the number of channels, those meth-
ods imply an important loss of information.
In a previous paper, a nonlinear correlation,

called morphological correlation (MC) [13] was
introduced for pattern recognition. The MC is
defined by thresholding the input and the target
into many binary slices. Then, different linear
correlations are performed between the threshol-
ded slices of the input and the target, and finally
the correlation outputs are added. MC can be
optically realized by a conventional joint trans-
form correlator (JTC) [14]. MC provides higher
discrimination between similar patterns in recog-
nition systems when compared with the linear
correlation (LC) [13,14].
The MC has been applied satisfactorily to color

pattern recognition using the multi-channel ap-
proach and the RGB color channel decomposi-
tions [15]. However, the RGB color components
are frequently correlated one from the other. This
mutual information will degrade the recognition
process and false color objects may be detected as
correct ones.
In order to solve this inconvenience, we have

extended the application of the morphological
correlation to other color channels defined using
different chromatic transformations. These new
transformations are based on human visual models
[16,17]. The ATD models consist of an achromatic
(A) bright–dark channel that can be considered as
the luminance channel, a T channel (tritan channel)
that corresponds to the opponent response red–
green, and a D channel (deutan channel) that cor-
responds to the opponent response yellow–blue.
Although the discrimination capability of the rec-
ognition was improved in comparison with the
RGB transformation, equal shape objects but dif-
ferent in color are still detected as the same.
To achieve better results, we introduce a new

tri-dimensional color transformation inspired by
the mathematical expression of ATD transforma-
tion. Note that the new transformation has noth-
ing to do with visual parameters. Despite the loss
of physical meaning of the decomposition, the
discrimination capability of the process is signifi-
cantly improved. We call the color transformation
as color discrimination method (CDM). After the

decomposition, we have used the morphological
correlation as the pattern recognition operation.
The method consists of performing a morpholog-
ical correlation on the three CDM channels sepa-
rately. Then, we combine the correlation results
using a logical decision. The results are presented
in terms of a well-known discrimination parameter
which we have revised in Section 3.

2. The morphological correlation

The linear correlation has been widely and suc-
cessfully applied for optical pattern recognition
using a Vander Lugt matched filter [1]. In a correct
detection process, the analysis of the maximum in
the correlation plane indicates the presence and
position of the target. The linear correlation, be-
tween two real discrete functions f and g, is given by

LCfgðx; yÞ ¼ f ðx; yÞ � gðx; yÞ

¼
X
u;v

f ðuþ x; vþ yÞgðu; vÞ; ð1Þ

where � denotes the correlation symbol.
The morphological correlation is defined as

MCfgðx; yÞ ¼
X
u;v

min f ðu½ þ x; vþ yÞ;gðu; vÞ�: ð2Þ

The latter definition can be expressed in terms of a
thresholding function and linear correlations
[13,14]

MCfgðx; yÞ ¼
XQ
q¼1

MCfqgqðx; yÞ

¼
XQ
q¼1

LCfqgqðx; yÞ

¼
XQ
q¼1

½fq � gq�ðx; yÞ; ð3Þ

where Q is the total number of gray levels of im-
ages and

fqðx; yÞ ¼
1 if f ðx; yÞP q
0 otherwise

�
and

gqðx; yÞ ¼
1 if gðx; yÞP q;
0 otherwise:

� ð4Þ
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The optical implementation of the MC [14] is
carried out by means of a JTC scheme [18]. The
nonlinearity provides as a bonus the detection of
low-intensity images in the presence of high in-
tensity patterns.

3. A color discrimination method for color pattern

recognition

As we have pointed out in Section 1, the RGB
decomposition has been applied for multi-channel
pattern recognition. The multi-channel algorithm
implies the application of an operation to each
channel separately and then to combine the result
using a decision theory. However, the RGB de-
composition is not appropriated for discriminating
between similar color objects. For this reason,
other color transformations have been studied.
One of these transformations is the ATD. It is
possible to transform the primary RGB compo-
nents into the new ATD components allowing a
reduction of similarity degree between the color
channels. If we call ½M � the transformation matrix,
we have

A
T
D

2
4

3
5 ¼ ½M �

R
G
B

2
4

3
5: ð5Þ

Some models have been defined to transform
RGB color space into ATD. The usual transfor-
mations proposed by Guth et al. [16] and Boynton
[17] are two examples.

½M �Guth ¼
0:5967 0:3654 0
0:9553 �1:2836 0
�0:0248 0 0:0483

2
4

3
5;

½M �Boynton ¼
1 1 0
1 �2 0
1 1 �1

2
4

3
5:

ð6Þ

Millan et al. [7] applied those transformations
to common multi-channel pattern recognition us-
ing linear correlation. They reduced the number of
channels needed for the recognition of the correct
color object, passing from the three RGB channels
to the T and D channels. Although, they reduce
the number of channels from three to two, the
discrimination was not substantially improved.

In this paper we give two ideas to improve the
discrimination. First we apply the MC which is
more selective than linear methods used for rec-
ognition, and second we introduce a new ½M �
matrix to decorrelate as much as possible the
common RGB color channels. In Eq. (7) is shown
the CDM transformation.

C
D
M

0
@

1
A ¼

1 �2 �1
�1 1 2
2 �1 1

0
@

1
A R

G
B

0
@

1
A: ð7Þ

This color transformation is very efficient for
the recognition process providing better discrimi-
nation between similar color objects. The motiva-
tion to define such a transformation matrix must
be understood in the sense to achieve higher dis-
crimination capability using higher degree of dec-
orrelation between channels in comparison to
previous ATD decompositions [16,17]. Although
the visual interpretation of this color transforma-
tion is lost, it is not an important issue for the
possible optical implementation of the method.
Also, we would like to point out that although the
transformation is heuristic because there is neither
mathematical nor physiological justification, it
gives good results in discrimination capability for
color pattern recognition.
Those decorrelated CDM channels will improve

the discrimination process for images with the
same external shape but different internal color
information. When the CDM components for the
input scene and the reference object are obtained,
we apply the morphological correlation. Finally,
we combine the results of the morphological cor-
relation using a logical decision table to obtain the
final result.
In order to evaluate the discrimination capa-

bilities of the recognition we used the discrimina-
tion capability (DC) parameter as follows:

DCð%Þ ¼ 1

�
�MaxðCCÞ

AC

�
	 100; ð8Þ

where AC represents the auto-correlation peak
intensity and CC is the cross-correlation peak in-
tensity.
As we can see from Eq. (8), a high value for DC

will indicate that the color reference object will be
detected with a high discrimination and at the
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same time the others will be rejected. If the DC
value is high then objects that are similar to the
reference object will be rejected.

4. Results

The color input scene is made up of four but-
terflies (Fig. 1). Three of them have the same shape

but they are different in color (P1, P2 and P3),
whereas the fourth one (P4) has different shape and
color. In this scene we want to detect the first
butterfly (P1). In order to show the influence of the
morphological correlation in any pattern recogni-
tion method, we show in Figs. 2(a)–(c) the linear
correlation for the three red, green and blue
channels, respectively. As we see from the figure,
the linear correlation is not very discriminant and

Fig. 1. Color input image. (a) R channel; (b) G channel; (c) B channel.

Fig. 2. Tri-dimensional representation of the linear correlation for the red channel (a), green channel (b) and blue channel (c).

Correlation plots for the morphological correlation, red channel (d), green channel (e) and blue channel (f).
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false alarms have appeared. On the contrary, in
Figs. 2(d)–(f) we have used the morphological
correlation applied again on the three color com-
ponents R, G and B. The color channels have 16
gray scale levels. Although we might have false
alarms the discrimination has basically improved
and correlation peaks are sharper than the linear
case.
In order to compare the morphological corre-

lation with common filters, like phase only filters
(POF) Fig. 3 shows the results obtained with POF.
As we observe, there are false alarms for the three
color channel. These results justify the application
of a more discriminant operation as the morpho-
logical correlation.
As the results obtained with MC depend on the

color object decomposition, Table 1 shows the
values of the correlation peaks obtained for every
channel when MC is applied to RGB, ATD and
CDM decompositions. In a column, we have
shown the DC for all of the different color chan-
nels used. We notice that when we combine the
MC and the DCM decomposition, the system
presents higher discrimination capabilities than
any other color decomposition.
In order to give a final detection decision we

combine the information of the three correlation
outputs. We assume that for each channel the
object is detected if the correlation peak is higher
than a certain fixed recognition threshold. De-
pending on the threshold chosen the information
of all the three channels will be needed generally to
take the final decision. However, in some cases
depending on the threshold values, two or even
one channel will be enough. As examples, we have

considered two threshold values: 50% and 20% of
the highest peak.
In Table 1, the correlation values that exceed

50% of the auto-correlation are marked in bold
writing. From the table, we observe that we detect
the reference object for all the channel systems. In
some cases, in order to obtain the correct detection
we need to combine the information of only two
channels, for instance G–B for the RGB decom-
position. Moreover, for the ATD Boynton’s model
and the CDM transformation, just one channel,
any of them, is enough to detect the correct object.
However, for a certain recognition process may be
this 50% threshold could be too high and it would
be interesting to decrease the recognition threshold
because a lower value of the threshold implies a
higher selectivity in the recognition process. Let us
assume the value of 20% of the auto-correlation as
the recognition threshold. In the same table, the
correlation values that exceed this 20% of the auto-
correlation are underlined. Note that neither with
the RGB nor with the ATD decompositions we
detect the correct object without false alarms. Only
when we use the combination of the morphologi-
cal correlation and the CDM transformation, the
P1 object is isolated. Moreover, as was mentioned
before, this detection decision can be achieved
using a single channel. For the sake of clarity, in
Fig. 4 we show the correlation outputs obtained
applying the MC to the CDM channels.
As we see from the results, for a certain

threshold of discrimination, the combination of
the CDM transformation and the morphological
correlation will allow the possibility of using sim-
ply a single channel to isolate the correct object.

3

Fig. 3. Correlation plots for the phase only filter (POF) case, red channel (a), green channel (b) and blue channel (c).
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This is an important result because other compa-
rable methods shown in the paper require more
than one correlation output to take the final de-
cision.

5. Conclusion

In this paper we have combined two approaches
for color pattern recognition. The first approach is

Table 1

Correlation results for the recognition of object and P1, P2, P3 and P4 with different color channel decompositions

Channel system P1 P2 P3 P4 DC (%)

MC with RGB

channels

R 6:5397	 105 2:0574	 105 2:3673	 105 0:2451	 104 64

G 6:9510	 105 3:9638	 105 1:8416	 105 0:8289	 104 43

B 6:9510	 105 1:6672	 105 4:1687	 105 0:3342	 104 40

Decision,

Thr¼ 50%
Detected Rejected Rejected Rejected

Decision,

Thr¼ 20%
Detected Detected Detected Rejected

MC with ATD

Boynton’s model

A 10:8368	 105 7:8203	 105 1:2124	 105 0:2200	 104 28

T 6:6673	 105 1:9965	 105 0:62428	 105 0:3898	 104 70

D 6:2008	 105 1:5507	 105 0:72000	 105 0:3801	 104 75

Decision,

Thr¼ 50%
Detected Rejected Rejected Rejected

Decision,

Thr¼ 20%
Detected Detected Rejected Rejected

MC with ATD

Guth’s model

A 19:5172	 105 9:5547	 105 2:9576	 105 0:6037	 104 51

T 7:1760	 105 2:0177	 105 0:8178	 105 0:4149	 104 72

D 48:6904	 105 45:3264	 105 45:3264	 105 2:3919	 105 7

Decision,

Thr¼ 50%
Detected Rejected Rejected Rejected

Decision,

Thr¼ 20%
Detected Detected Rejected Rejected

MC with color

discrimination

C 6:5291	 105 0:4261	 105 0:8469	 105 0:2144	 104 87

D 6:4462	 105 0:4675	 105 0:4853	 105 0:2017	 104 92

method M 5:3098	 105 0:4115	 105 0:6815	 105 0:2772	 104 87

Decision,

Thr¼ 50%
Detected Rejected Rejected Rejected

Decision,

Thr¼ 20%
Detected Rejected Rejected Rejected

Decision when the threshold used is 50% of the highest correlation peak value is marked bold. Decision when the threshold used is

20% of the highest correlation peak value is underlined.

Fig. 4. Tri-dimensional representation of the morphological correlation for the C channel (a), D channel (b) and M channel (c).
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to use a nonlinear correlation, the morphological
correlation, which is more selective than linear
correlation. In a second step, in order to work with
channels as much decorrelated as possible we have
introduced a new transformation matrix to de-
compose the primary RGB channels into the new
CDM components. So, the discrimination capa-
bility for color pattern recognition is improved.
The motivation to decorrelate the color channels is
to distinguish among objects which are similar in
shape but different in color. We show different
results provided from the application of the mor-
phological correlation to different color channel
decompositions, which can be seen from Table 1.
We notice that the combination of morphological
correlation and the CDM decomposition gives
better results than applying the MC to other color
channel decompositions. Although the matrix
choice is heuristic, one of the main advantages of
the method is the possibility of a reduction of the
number of channels involved in the final detection
process. This reduction is related with the detec-
tion threshold chosen. Another improvement is the
high values for the discrimination capability ob-
tained.
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