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Abstract

We propose a novel approach to implement nonlinear morphological correlation. Previous implementation was based on a time
sequential approach that consists on displaying different binary image decomposition in a joint transform correlator adding each joint
power spectra sequentially. A second Fourier transformation of the sum of joint power spectra gives the correlation output. In this paper,
we propose to interlace the different binary images into one single distribution. Then, we introduce the distribution in a conventional
joint transform correlator. The correlation output gives the morphological correlation at a specific location. The advantage is important
considering that no sequential approach is needed anymore, so the necessary number of correlations is reduced. Optical implementation
results are provided.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Linear correlation for pattern recognition is the most
popular operation in optical signal processing [1,2]. Most
optical pattern recognition techniques involve either the
use of a matched filter based correlator [3] or of a joint
transform correlator (JTC) [4,5]. A matched filter based
correlator uses Fourier domain complex filter synthesis,
whereas a JTC utilizes spatial domain filter synthesis. Linear
correlation is associated with low correlation discrimination
and large correlation side-lobes and large auto-correlation
bandwidth. Moreover, the common matched filter is opti-
mum in the mean square error (MSE) sense, meaning that
maximizing the MSE leads to maximizing the common lin-
ear correlation (LC) [6]. The MSE is a function of the norm
and the acceptance of the LC is due to the mathematical
tractability of the square error metric and the simple optical
implementation. Another metric is the mean absolute error
(MAE). It has been shown that minimizing the MAE crite-
rion is equivalent to maximizing a nonlinear correlation
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namely the morphological correlation (MC) [7]. The MC
presents higher discrimination capability for pattern recog-
nition as compared with common LC. Also, due to its non-
linearity property, MC offers a more robust detection of
low-intensity images in the presence of high-intensity pat-
terns which are to be rejected. Because of that MC has been
shown to be an important tool for optical pattern recogni-
tion [8–13]. MC is defined by means of linear correlations
between binary decompositions of the input scene and the
reference. Moreover, MC can be implemented optically with
a JTC. The main drawback of MC is that involves many lin-
ear correlations. The number of correlations is connected
with the number of gray levels at the image. For common
MC definition [7,8] between 256 gray level images, one needs
to perform 256 linear correlations. In order to reduce the
number of correlations involved in the process, we defined
a modification of the MC based on bit-representation
decomposition [9], where for previous example (28 = 256),
only eight linear correlations are required. Indeed, this pro-
cess reduces the number of correlation, but still remains the
need to sum the results of the correlations.

In order to overcome the implementation of many corre-
lations, in this paper we introduce an interlacing technique
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to codify the binary bit-plane joint input images in a single
amplitude distribution. Interlacing techniques have been
used widely in optical signal processing basically for com-
puter generated holograms [14,15]. The idea of those papers
is to design a number of subholograms in a specific geomet-
rical configuration and add up their reconstructed images
coherently to a single desired image. However, those tech-
niques involve an iterative approach to reduce the recon-
struction errors. In this paper, we used the interlacing
process to encode the different binary images using a certain
geometrical configuration. The encoded amplitude distribu-
tion is then sent to a JTC. The correlation output distribu-
tion produces interlaced cross-correlations between the
binary slices. Morphological correlation is obtained for a
specific location. We calculate the location for MC and
we present both simulated and optical results.

Section 2 provides some mathematical background on
morphological correlations. In Section 3, we present the
description of the proposed approach. Sections 4 and 5
deal with the numerical and the experimental results,
respectively. The manuscript is concluded in Section 6.

2. Morphological correlation

The MC was described in Refs. [7,8]. Nevertheless, for
completeness, we repeat fundamental expressions in the
following.

Let f(x,y) and g(x,y) be the reference and the input
scene real valued objects, respectively. The conventional
linear correlation between f(x,y) and g(x,y) is

LCfgðx; yÞ ¼ f ðx; yÞ � gðx; yÞ

¼
X
u;v

f ðuþ x; vþ yÞgðu; vÞ; ð1Þ

where * denotes the correlation symbol.
The morphological correlation is defined as [7]

MCfgðx; yÞ ¼
X

u;v

min½f ðuþ x; vþ yÞ; gðu; vÞ�; ð2Þ

where the minimum operation comes from the minimiza-
tion of the MAE, whereas the product of the LC (see Eq.
(1)) comes from the minimization of the MSE [6].

Latter definitions of MC can be expressed in terms of a
thresholding function and linear correlations [7,8] as

MCfgðx; yÞ ¼
XQ�1

q¼0

½fq � gq�ðx; yÞ; ð3Þ

where Q is the total number of gray levels of images and

fqðx; yÞ ¼
1 if f ðx; yÞP q;

0 otherwise,

�
gqðx;yÞ ¼

1 if gðx;yÞP q;

0 otherwise

�
ð4Þ

Eq. (3) means that the MC can be defined in terms of a
summation of linear correlations between the same q-bin-
ary thresholded slices of the reference and the input. The
optical correlation of the MC [8] is carried out by means
of a JTC scheme [4]. The nonlinearity provides as a bonus
the detection of low-intensity images in the presence of
high-intensity patterns.

Although Eq. (3) is the common definition of the MC, in
this paper we use a binary decomposition based on bit
plane representation [9]. So, the reference and the input
are decomposed into a set of binary slices, each corre-
sponding to a specific bit in the binary representation of
the image. From now on, the definition of modified mor-
phological correlation (MMC) is

MMCfgðx; yÞ ¼
XN�1

q¼0

½Bq½f ðx; yÞ�� � ½Bq½gðx; yÞ��; ð5Þ

where Bq[Æ] is the of qth bit plane distribution, and N is the
number of bit planes involved in the process. More gener-
ally, for Q = 2N quantization levels, the MMC defined in
Eq. (5) requires N = log2 Q correlation operations rather
than the Q operations in the MC. An additional advantage
of the MMC process is that it improves discrimination
capabilities and thus yields a more selective system [9].

MMC can be implemented optically: Let f(x + x0,y) and
g(x � x0,y) be the reference and the input scene objects
centered at (�x0,0) and (x0,0), respectively. Each pair of
elementary binary joint input bit slices (one slice from the
reference object and one from the input scene) are placed
next to each other in the input plane. For each pair, the
joint power spectrum is performed. The summation of
the joint power spectrum for all the slices is

JPSRðu; vÞ ¼
XN�1

q¼0

JPSq

¼
XN�1

q¼0

jFTfBq½f �gj2þ
XN�1

q¼0

jFTfBq½g�gj2

þ
XN�1

q¼0

FTfBq½f �g�FT fBq½g�g exp½�i2/qðu; vÞ�

þ
XN�1

q¼0

FTfBq½f �gFT fBq½g�g� exp½i2/qðu; vÞ�; ð6Þ

where FT is the Fourier transform and /ðu; vÞ ¼ 2pux0

ðkf Þ , with

f being the focal length of the lens and k the wavelength of
the illumination coherent light. The Fourier transform of
the third term of Eq. (6) yields the MMC correlation as

FT
XN�1

q¼0

FTfBq½f �g�FTfBq½g�g exp½�i2/qðu; vÞ�
( )

¼
XN�1

q¼0

½Bq½f � � Bq½g��ðx� 2x0; yÞ. ð7Þ

In addition the Fourier transform of the fourth term is the
conjugate of the MMC correlation.
3. Interlacing techniques for morphological correlation

The proposed improvement of the MMC implementa-
tion will be analyzed in this section. Although MMC
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Fig. 2. Interlacing algorithm for joint input JTC image.
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reduces significantly the number of the required linear cor-
relations, we proposed to reduce to only one correlation
after a codification of the binary bit planes of the reference
and of the input using interlacing techniques rather than
placing them side by side. We will use an interlacing as
shown in Fig. 1 for the binary bit planes of input scene
as well as the binary bit planes for the reference object.
Note that the different bit planes are represented by differ-
ent texture patterns in order to illustrate clearly the algo-
rithm. To obtain a final joint interlaced image, we
combined the information of the bit maps of image f(x,y)
and of g(x,y) as shown in Fig. 2. Note that the period, in
pixels, of that distribution is twice the number of bit planes
in the decomposition. We will assume vertical interlacing
so, we consider 1D signals analysis for simplicity. The
interlacing technique can be viewed as a sampling method.
Eq. (8) shows the interlacing for the reference image as

If ðxÞ ¼
X

s

XN�1

k¼0

Bk½f ðxÞ�dðx� sDxÞ
( )

� d x� k
2N

Dx
� � !

;

ð8Þ
where Dx is the size for the joint interlaced gap (see Fig. 2)
and N is the number of bit planes for the reference func-
tion, f(x). The index s represents a sampling index for the
joint interlaced image and the index k represents the sam-
pling inside the interval Dx (running over the bit planes).
Moreover, the input scene, g(x), has to be interlaced next
to the reference function according to

IgðxÞ ¼
X

s

XN�1

k¼0

Bk½gðxÞ�dðx� sDxÞ
( ) 

� d x� ðk þ N � 1Þ
2N

Dx
� �!

. ð9Þ
Fig. 1. Interlacing algorithm
Again, the index k represents the sampling inside the inter-
val, Dx, and it permits to interlace the different binary bit
planes for f(x) and g(x).

The final joint interlaced image (Fig. 2) can be described
as I(x) = If(x) + Ig(x).

Let us assume Q = 8 gray levels, so that there are N = 3
bit planes. Once we codify the information of f(x,y) and
g(x,y) as in Fig. 2, we introduce that distribution in a
JTC. First, a Fourier transformation is obtained, and after
registering the joint power spectrum of the distribution, a
second Fourier transformation gives the correlation out-
put. In fact, the correlation output will be a complex distri-
bution with many cross-correlation terms. Due to
interlacing techniques, different correlations are obtained
just by selecting the appropriated pixels out of the JTC out-
put plane. For the sake of clarity Fig. 3(a) represents the
correlation between interlaced patterns at the origin, it
means no shift between both patterns. The result is the
addition of all auto-correlation terms as it is shown in
Fig. 3(a). For the sake of clarity, in Fig. 4 we have drawn
the correlation output plane with all the cross-correlation
for images codification.
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Fig. 3. Relations between interlacing and correlation.
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Fig. 4. The cross-section of the output.

Fig. 5. The gray-level input scene image. The reference object is placed on
the lower part.
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terms. In Fig. 4, we show which pixels has to be selected in
order to obtain the addition of all auto-correlation terms.

Moreover, if the shift between the interlaced patterns is
3 pixels, then the correlation output coincides with the
morphological correlation as it is shown in Fig. 3(b). In
Fig. 4, we mark the position of the pixels that have to be
selected in order to obtain the MMC.

4. Computer simulations

The input scene is shown in Fig. 5. It consists out of two
different cars. The reference car is placed below. The image
has eight gray levels, it means that it can be decomposed
using three binary bit planes, as shown in Fig. 6. We codify
the the bit planes of the input scene (Fig. 5) with three bit
planes of the reference car. In order to obtain correlation
peaks in a different position from the origin, a small dis-
placement between the targets at the input scene results
in a small displacement of the zero-order correlation peak.
After the interlacing algorithm (see Fig. 2), we simulate the
JTC process. The correlation output with all interlaced
cross-correlations is shown in Fig. 7. By selecting the
appropriated pixels (see Fig. 4), we can obtain the morpho-
logical correlation among other correlations. Fig. 8 repre-
sents the MMC correlation. Note that the small
displacement between the input and the reference results
with a shift in the auto-morphological correlation peak.
The MMC detects the correct target discriminating prop-
erly against the other false target. Note that the size of
the interlaced correlation output (Fig. 7) for x-axis is
2400 pixels, whereas for the MMC output (Fig. 8) it is
400 pixels because we are selecting pixels using intervals
of 6 pixels.

5. Experimental results

In this section, we have implemented optically the MMC
using the interlacing approach with a spatial light modula-
tor (SLM) working in amplitude modulation. The SLM
that we use for the optical experiments is a XGA LCTV
from CRL Smetic Technology. We have calibrated the
panel to work as almost amplitude-only modulator. We
have worked with a blue laser (k = 473 nm). The corre-
sponding joint power spectrum (JPS) is captured by a
CCD camera and then the second Fourier transformation
is done optically.

The interlaced image introduced at the modulator may
be seen in Fig. 9. The joint power spectrum is shown in
Fig. 10. Note the repetition of the spectrum caused because
we are sampling the images with an interval of 6 pixels.
After that, we introduce the JPS of Fig. 9 into the modula-
tor and a second Fourier transform produced the correla-
tion output plane. Again, selecting the appropriated
pixels we got the MMC correlation shown in Fig. 11. Note
that the two correlation peaks from the MMC do not have
the same energy. This is because the JPS of Fig. 10 is not
exactly symmetrical. It can be also because of non-uniform
illuminations.



Fig. 6. (a) Bit plane 2. (b) Bit plane 1. (c) Bit plane 0.

Fig. 7. Interlaced correlation output.

Fig. 8. MMC using interlacing techniques taking every 6th pixel.

Fig. 9. JTC input image.

Fig. 10. The joint power spectrum of Fig. 9.
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Fig. 11. Experimental MMC with one single step using interlacing
techniques. The auto-MMC peaks are marked with a square.
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6. Conclusion

This paper has discussed an efficient method to imple-
ment morphological correlation with the requirement of
only one correlation. Morphological correlations, as well
as other nonlinear correlations, are based on summation
of linear correlations between binary decomposed images.
The method proposed in this paper interlaces different bit
planes from the reference and the input scene into one sin-
gle amplitude distribution. The morphological correlation
is obtained for a specific location of the output plane.
The higher discrimination ability is maintained as it is
shown in the optical experiments.
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