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Abstract. The last decades have shown an increasing interest in studying how to
automatically capture the likeness or proximity among data objects due to its im-
portance in machine learning and pattern recognition. Under this scope, two ma-
jor approaches have been followed that use either feature-based or distance-based
representations to perform learning and classification tasks. This paper presents the
first results of a comparative experimental study between these two approaches for
computing similarity scores using a classification-based method. In particular, we
use the Support Vector Machine, as a flexible combiner both for a high dimensional
feature space and for a family of distance measures, to finally learn similarity scores
in a CBIR context. We analyze both the influence of the different input data formats
and the training size on the performance of the classifier. Then, we found that a
low dimensional multidistance-based representation can be convenient for small to
medium-size training sets whereas it is detrimental as the training size grows.
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1. Introduction

Learning a function that measures the similarity between a pair of objects is a common
and important task in applications such as classification, information retrieval, machine
learning and pattern recognition. The Euclidean distance has been widely used since
it provides a simple and mathematically convenient metric on raw features, even when
dealing with a small training set, but it is not always the optimal solution for the prob-
lem being tackled [14]. This has led to the development of numerous similarity learning
techniques [4,6] aimed to build a model or function that, from pairs of objects, produces
a numeric value that indicates some kind of conceptual or semantic similarity and also
allows to rank objects in descending or ascending order according to this score.

Some studies have have put their attention into automatically learning a similarity
measure that satisfies the properties of a metric distance [19,8] from the avalaible data
(e.g. in the form of pairwise constraints obtained from the original labeled information)



and have turned supervised metric learning into a topic of great interest [5]. Under this
scope, when the properties of a metric are not required, a similar setting can also be used
to train a classifier to decide whether a new pair of unlabeled objects is similar or not, an
approach that is named as classification similarity learning.

Classification similarity learning has traditionally represented the annotated objects
in the training set as numeric vectors in a multidimensional feature space. It is also known
that the performance of many classification algorithms is largely dependent on the size
and the dimensionality of the training data. Hence, a question that arises is what the ideal
size and dimension should be to obtain a good classification performance, considering
that greater values generally yield to a better classification but at the cost of increasing
the computational load and the risk of overfitting [13].

To deal with this issue, the dimensionality of the training data has been com-
monly reduced by using distance-based representations such as pairwise distances or
(dis)similarities [12]. It is also a frequent practice to use different (dis)similarity mea-
sures, each acting on distinct subsets of the muldimensional available features, that are
lately combined to produce a similarity score value. A number of combination techniques
then exists, under the name of fusion schemes, that have been categorised either as early
or late fusion [20]. While the first one uses a unified measure that merges all the fea-
tures, the second one computes multiple feature measures on a separate basis and then
combines them to obtain the similarity between two objects.

Inspired by the late fusion scheme, in this paper we use a multidistance represen-
tation that transforms the original feature space in a distance space resulting from the
concatenation of several distance functions computed between pairs of objects. This kind
of input data involves an additional knowledge injection to the classifier, because the use
of a distance measure is an implicit match between the characteristics of two objects and
also because of the usual correlation between semantic similarity and small values of
distance. It is worth mentioning that this multidistance space is related to the dissimilar-
ity space defined in [7]. Nevertheless, it differs from it in that the space transformation
is carried out at a feature level between freely selected pairs of objects instead of using a
fixed representation set.

The aim of this paper is to compare the performance obtained from the feature-based
and the multidistance-based representations when applied to a classification similarity
learning setting as well as to analyze the influence of different training data sizes. Thus,
our goal is twofold: on the one hand, we want to study the ability of a classifier to deal
with a high feature dimensionality when the training size grows; on the other hand, we
want to test under which circumstances the reduction in dimensionality leads to better
results than treating objects in their wholeness.

The proposed experimentation concerns the problem of Content-Based Image Re-
trieval (CBIR), where image contents are characterized by multidimensional vectors of
visual features (e.g. shape, color or texture). By considering pairs of images labeled as
similar or dissimilar as training instances, we face a binary classification problem that
can be solved through a soft classifier that provides the probability of belonging to each
class. This probability value can be considered as the score determining the degree of
similarity between the images and it can be used for ranking purposes. In particular, the
Support Vector Machine classification algorithm has been selected and we use four dif-
ferent values for the Minkowski distance to construct the multidistance-based represen-
tation. Additionally, we use as baseline for our comparison the performances obtained



from the global Euclidean distance and two other traditional score-based normalization
methods: the standard Gaussian normalization and the Min-max normalization.

The rest of the paper is organized as follows: Section 2 formulates the problem and
describes the multidistance-based representation into detail; Section 3 presents the exper-
imental setting and analyzes the obtained results; finally, Section 4 states the conclusions
and discusses future work.

2. Problem Formulation

Let us assume we have a collection of images X = {xi}, i = 1, 2 . . ., which are con-
veniently represented in a multidimensional feature space F. Let us also assume that
this feature space is defined as the Cartesian product of the vector spaces related to T
different descriptors such as color, texture or shape.

F = F
(1) × . . .× F

(t) × . . .× F
(T ) (1)

Hence, we can represent as x(t)
i the set of features that correspond to descriptor t in

xi. Let us finally consider a classical similarity learning setup [19,8], where k training
pairs (xi, xj) are available that are accordingly labeled as similar (S) or dissimilar (D).
In classification-based learning, these pairs are used to train a classifier that can later be
able to classify new sample pairs. Thus, when it comes to using a soft classifier, its output
will provide a score that may be used to judge the similarity between objects.

A straigthforward approach that fits this scheme is to concatenate the feature vectors
of the objects and use the resulting double-size vector as the input to the classifier (see
the arrow labeled “feature-based representation” in Figure 1). However, by following
this approach, the learning problem size highly depends on the dimensionality of the
feature space F, which is usually rather large. This situation might be specially critical for
small sample datasets, which unfortunately are often the case. The dimensionality of the
input data can then be reduced by using feature reduction techniques such as Principal or
Independent Component Analysis. Another way of tackling this problem is by applying
a similarity-based spatial transformation [7]. In this paper we evaluate the performance
of a multidistance-based representation resulting from a preprocessing layer that acts
before passing the traning data to an SVM (see the arrow labeled “multidistance-based
representation” in Figure 1).

The preprocessing layer is composed of two steps. The first one derives from com-
puting a family of N distance functions (e.g. Euclidean, cosine or Mahalanobis) for ev-
ery training pair. Each distance function is defined in each descriptor vector space as in
Equation 2.

d(t)n : F(t) × F
(t) −→ R (2)

Thus, we define a transformation function w as indicated in Equation 3 that, given
the feature-based representation of two images xi and xj , constructs a tuple of values

〈d
(1)
1 , . . . , d

(1)
N , d

(2)
1 , . . . , d

(2)
N , . . . , d

(T )
1 , . . . , d

(T )
N 〉, where d

(t)
n denotes the distance be-

tween x
(t)
i and x

(t)
j .

w : F× F −→ R
N ·T (3)



Figure 1. Feature-based and multidistance-based classification similarity learning approaches.

The choice of the most suitable distance function depends on the task at hand and af-
fects the performance of a retrieval system [15]. This has led different authors to analyze
the performance of several distance measures for specific tasks [1,9]. Therefore, rather
than choosing the most appropriate distance for a task, the proposed multidistance rep-
resentation aims to boost performance by combining several distance functions simulta-
neously. This operation transforms the original data into a labeled set of N · T -tuples,
where each element refers to a distance value, calculated on a particular subset of the
features (i.e. the corresponding descriptor).

The second step of the preprocessing layer normalizes the labeled tuples in order
to increase the accuracy of the classification [18] by placing equal emphasis on each

descriptor space [2]. We denote by 〈d̂
(1)
1 , . . . , d̂

(1)
N , d̂

(2)
1 , . . . , d̂

(2)
N , . . . , d̂1

(T )
, . . . , d̂

(T )
N 〉

the normalized tuples, where a simple linear scaling operation into range [0, 1] has been
applied. A complete schema of the input data transformation done by the preprocessing
layer can be seen in see Figure 2.

Once the SVM soft classifier has been trained, it can be used to provide a score value
that can be treated as a similarity estimation between images. For any new pair (xi, xj),
function w is applied to convert the original features into a tuple of distances (using the
same family of functions as for training). After normalization, the resulting vector is used
as input to the classifier, that provides a confidence estimation that the pair belongs to
any of the classes. This estimate can be used directly for ranking purposes, or converted
into a probability value by using the method in [16].



Figure 2. Scheme of the preprocessing layer.

3. Evaluation

3.1. Experimental setting

To analyze the performance of the SVM classifier for the feature-based and the
multidistance-based training data formats, a number of experiments have been run on a
medium-size image dataset that has also been used in other previous studies (e.g., [3]).
The dataset contains a subset of 5476 images from the large commercial collection called
"Art Explosion", which is composed of a total of 102894 royalty free photographs that
are distributed by the company Nova Development1. The images from the repository,
originally organized in 201 thematic folders, have been carefully selected and classified
into 63 categories so that images in the same category represent a similar semantic con-
cept. Each image in the dataset is described by a label that refers to the semantic concept
the image represents according to this manual classification and by a 104-dimensional
numeric feature vector defined in a muldimensional feature space through a set of ten
visual descriptors2.

The two classification similarity learning approaches have been also compared with
three other traditional score methods, that have been used as baseline. The first one is
the global Euclidean distance applied on the entire feature vectors. The second one is the
standard Gaussian normalization as described in [10], that consists of a mapping function
d
(t)
2 → (d

(t)
2 −µ)/3σ, where µ and σ represent the mean and the standard deviation of the

Euclidean distance on each descriptor vector space (d(t)2 ). The third one is the Min-max
normalization, that performs a linear transformation on data computing the minimum
and the maximum of the distance d

(t)
2 . The last two approaches are both applied to the

individual visual image descriptors and will be referred to as Gaussian normalization and

1http://www.novadevelopment.com
2The database and details about their content can be found in http://www.uv.es/arevalil/dbImages/



Min-max normalization, respectively. The experiments were run 50 times each and the
results were averaged.

To evaluate the influence of the training size, the experiments were run over twelve
training sets with increasing sizes. The smallest training set had 100 pairs while the
remaining training sets increased their size sequentially from 500 up to 5500 with steps
of 500 pairs. In each training set the pairs were labeled as similar (S) when the labels
associated with the vectors were the same, and as dissimilar (D) otherwise. It is worth
noting that sizes smaller than 100 pairs were discarded as the classification method was
outperformed by the baseline methods for such tiny training sets. On other hand, sizes
greater than 5500 pair did not show any qualitative difference and followed the trends
shown in this paper.

After the training phase, if any, the ranking performance of each algorithm was as-
sessed on a second different and independent test set composed of 5000 pairs randomly
selected from the repository. To this end, the Mean Average Precision (MAP), one com-
monly used evaluation measure in the context of information retrieval [17], was used. The
MAP value corresponds to a discrete computation of the area under the precision-recall
curve. Thus, by calculating the mean average precision we had a single overall mea-
sure that provided a convenient trade-off between precision and recall along the whole
ranking.

For the preprocessing layer generating the multidistance-based representation, we
have considered a pool composed of four Minkowski distances (Lp norms), with values
p = 0.5, 1, 1.5, 2. These are widely used dissimilarity measures that have shown rela-
tively large differences in performance on the same data [1,9], and hence suggest that
may be combined to obtain improved results. Fractional values of p have been included
because they have been reported to provide more meaningful results for high dimensional
data, both from the theoretical and empirical perspective [1], a result that has also been
confirmed in a CBIR context [9]. In addition, the kernel chosen for the SVM has been
a Gaussian radial basis function. The parameters γ and C have been tuned by using an
exhaustive grid search on a held out validation set composed of a 30% partition of the
training data (C ∈ {10−6, 10−5, ..., 100, 101} and γ ∈ {10−2, 10−1, ..., 104, 105}). To
compensate the SVM sensitiveness to unbalanced data sets [11], we fix the percentage
of similar pairs in the training set to 30%.

3.2. Results

Figure 3 plots the average MAP obtained for the compared similarity learning methods as
a function of the training size, where one can distinguish three performance regions. On
the left hand side, when the training set is very small (i.e. less than or equal to 100 pairs),
the normalization methods perform better than the two classification approaches, that
show a limited learning capacity. The reason behind this result is that there is not enough
information for training the classifier. Even so, the multidistance-based representation
outperforms the feature-based representation since it handles the high dimensionality in
a better way.

As the training set increases in size, we identify a second interval (i.e. from 100 to
2000 pairs, approximately) in which the reduction of dimensionality achieved through
the concatenation of multiple descriptor distances has positive effects on the classifier
performance. Indeed, the multidistance-based representation obtains the highest values
in this region of small to medium-size training sets.



Figure 3. Average MAP vs. training set size.

Notwithstanding, when we allow the training size to grow far enough (i.e. beyond
2000 pairs), the classical feature-based representation improves the results that can be
obtained from the rest of the algorithms. This third region demonstrates that the infor-
mation loss incurred by the multidistance-based representation can be detrimental for
big training sizes, since it limits the learning capabilities of the SVM classifier. All in
all, these results suggest that the training size can have an important effect on the clas-
sification performance when we adopt differents strategies for the representation of data
input.

Regarding the performance of the baseline approaches, the average MAP remain
constant for all the different training set sizes and show small values for the global Eu-
clidean distance. Values for the Gaussian and Min-max normalization are almost equal
and fall generally bellow the average MAP values obtained for both classification meth-
ods. Figures 4 and 5 allow us to observe the variability of the MAP values resulting
from respectively executing the feature-based and the multidistance-based representa-
tions. Each point in these plots correspond to one of the 50 executions run for each
training set size, while the solid line shows the linear curve fit. By comparing the plots,
we observe that the feature-based representation generates a higher variability while the
multidistance-based representation obtain more robust results. Even though these results
are still preliminary and need further exploration, the reason behind such an behaviour
could again be the difficulty of having enough examples to learn a high dimensional
classification model.



Figure 4. MAP vs. training set size for the feature-based representation.

4. Conclusion

In this paper we have conducted an experimental study comparing two approaches for
learning similarity scores in a multidimensional feature space using a classification-based
method as the SVM. The difference between these approaches is based on the represen-
tation format followed by the sample dataset that is used to train the classifier. On the
one hand, a feature-based representation of objects can have as drawback the high di-
mensionality of the learning problem that it poses to the classifier. On the other hand, a
multidistance-based representation can reduce dimensionality by transforming the orig-
inal multidimensional space in a distance space constructed as the concatenation of a
number of distance functions.

A series of performance patterns have been extracted from the analysis of the
different input data formats and the training size. We found that a low dimensional
multidistance-based representation can be convenient for small to medium-size training
sets whereas it is detrimental as the training size grows. The dimensionality reduction
(e.g. in the form of distances relations and its combitation) supposes additional informa-
tion to the classifier and boosts its performance. For large training sets, though, a higher
dimensional feature-based representation provides better results for the data base consid-
ered. This results can be of value when designing future systems that need to automati-
cally capture the similarity of pairs of objects.



Figure 5. MAP vs. training set size for the multidistance-based representation.

Future work will extend this study by including other databases with different char-
acteristics in size and dimensionality. Besides, further investigation is needed that con-
siders more distance combinations as well as other suitable techniques to reduce the
dimensionality of the training set and to finally improve the performance of classifiers.
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